1
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
2
|
Yerbanga IW, Lagrou K, Merckx R, Nakanabo Diallo S, Gangneux JP, Delabarre A, Denis O, Rodriguez-Villalobos H, Montesinos I, Bamba S. First detection of triazole-resistant aspergillus fumigatus harbouring the TR34/L98H Cyp51A mutation in Burkina Faso. Mycoses 2024; 67:e13732. [PMID: 38712846 DOI: 10.1111/myc.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.
Collapse
Affiliation(s)
- Isidore W Yerbanga
- Centre Hospitalier Universitaire Régional de Ouahigouya, Ouahigouya, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium
| | - Rita Merckx
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium
| | - Seydou Nakanabo Diallo
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre Muraz/Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), European ECMM Excellence Center in Medical Mycology, Rennes, France
| | - Aymeric Delabarre
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de recherche en santé, environnement et travail), European ECMM Excellence Center in Medical Mycology, Rennes, France
| | - Olivier Denis
- Department of Microbiology, CHU Namur site-Godinne, Université Catholique de Louvain, Brussels, Belgium
- Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Department of Microbiology, Cliniques Universitaires Saint-Luc-Université Catholique de Louvain, Brussels, Belgium
| | - Isabel Montesinos
- Department of Microbiology, CHU Namur site-Godinne, Université Catholique de Louvain, Brussels, Belgium
| | - Sanata Bamba
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre Hospitalier Universitaire Sourô Sanou, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
3
|
Abstract
The burden of fungal infections has been on the rise globally and remains a significant public health concern in Kenya. We estimated the incidence and prevalence of fungal infections using all mycology publications in Kenya up to January 2023, and from neighbouring countries where data lacked. We used deterministic modelling using populations at risk to calculate the disease burden. The total burden of serious fungal infections is estimated to affect 6,328,294 persons which translates to 11.57% of the Kenyan population. Those suffering from chronic infections such as chronic pulmonary aspergillosis are estimated to be 100,570 people (0.2% of the population) and probably nearly 200,000 with fungal asthma, all treatable with oral antifungal therapy. Serious acute fungal infections secondary to HIV (cryptococcal meningitis, disseminated histoplasmosis, pneumocystis pneumonia, and mucosal candidiasis) affect 196,543 adults and children (0.4% of the total population), while cancer-related invasive fungal infection cases probably exceed 2,299 and those in intensive care about 1,230 incident cases, including Candida auris bloodstream infection. The burden of fungal infections in Kenya is high; however, limited diagnostic test availability, low clinician awareness and inadequate laboratory capacity constrain the country's health system in responding to the syndemic of fungal disease in Kenya.
Collapse
Affiliation(s)
- Stanley N. Ratemo
- Research Department, Kisii Teaching and Referral Hospital, Kisii, Kenya
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Global Action for Fungal Infections (GAFFI), Geneva, Switzerland
| |
Collapse
|
4
|
Miranda-Calixto A, Loera-Corral O, López-Pérez M, Figueroa-Martínez F. Improvement of Akanthomyces lecanii resistance to tebuconazole through UV-C radiation and selective pressure on microbial evolution and growth arenas. J Invertebr Pathol 2023; 198:107914. [PMID: 36958641 DOI: 10.1016/j.jip.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tebuconazole (TEB) is a fungicide widely used in agriculture; however, its constant application has increased the emergence of resistant plant pathogenic fungal strains and reduced the effectiveness of fungi as biological control agents; for instance, the entomopathogenic and hyperparasitic fungus Akanthomyces lecanii, suitable for simultaneous biological control of insect pest and plant pathogenic fungi, is highly sensitive to fungicides. We carried out the induction of resistance to TEB in two wild type strains of A. lecanii by UV radiation and selective pressure in increasing fungicide gradients using a modified Microbial Evolution and Growth Arena (MEGA), to produce A. lecanii strains that can be used as biological control agent in the presence of tebuconazole. Nine UV-induced and three naturally adapted A. lecanii strains were resistant to TEB at the agriculturally recommended dose, and three irradiated strains were resistant to TEB concentration ten times higher; moreover, growth, sporulation rates, production of hydrolytic enzymes, and virulence against the hemipteran Coccus viridis, a major pest of coffee crops, were not affected in the TEB-resistant strains. These A. lecanii TEB-resistant strains would have a greater opportunity to develop and to establish themselves in fields where the fungicide is present and can be used in a combined biological-chemical strategy to improve insect and plant pathogenic fungal control in agriculture. Also, the selective pressure through modified MEGA plate methodology can be used for the adaptation of entomopathogenic filamentous fungi to withstand other chemical or abiotic stresses that limits its effectiveness for pest control.
Collapse
Affiliation(s)
- Arturo Miranda-Calixto
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Octavio Loera-Corral
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Marcos López-Pérez
- Universidad Autónoma Metropolitana-Lerma Departamento de Ciencias Ambientales, Av. de las Garzas 10, El panteón, C. P. 52005 Lerma de Villada, Mexico
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow - Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico.
| |
Collapse
|
5
|
Amona MF, Oladele RO, Resendiz-Sharpe A, Denning DW, Kosmidis C, Lagrou K, Zhong H, Han L. Triazole resistance in Aspergillus fumigatus isolates in Africa: a systematic review. Med Mycol 2022; 60:6652216. [PMID: 35906879 DOI: 10.1093/mmy/myac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Emergence of triazole resistance has been observed in Aspergillus fumigatus over the past decade including in Africa. This review summarizes the current published data on the epidemiology and reported mechanisms of triazole-resistant Aspergillus fumigatus (TRAF) in both environmental and clinical isolates from Africa. Searches on databases Medline, PubMed, HINARI, Science Direct, Scopus and Google Scholar on triazole resistance published between 2000 and 2021 from Africa were performed. Isolate source, antifungal susceptibility using internationally recognized methods, cyp51A mechanism of resistance and genotype were collected. Eleven published African studies were found that fitted the search criteria; these were subsequently analyzed. In total this constituted of 1686 environmental and 46 clinical samples. A TRAF prevalence of 17.1% (66/387) and 1,3% (5/387) was found in respectively environmental and clinical settings in African studies. Resistant to itraconazole, voriconazole, and posaconazole was documented. Most of the triazole-resistant isolates (30/71, 42.25%) were found to possess the TR34/L98H mutation in the cyp51A-gene; fewer with TR46/Y121F/T289A (n = 8), F46Y/M172V/E427K (n = 1), G54E (n = 13), and M172V (n = 1) mutations. African isolates with the TR34/L98H, TR46/Y121F/T289A and the G54E mutations were closely related and could be grouped in one of two clusters (cluster-B), whereas the cyp51A-M172V mutation clustered with most cyp51A- WT strains (cluster-A). A single case from Kenya shows that TR34/L98H from environmental and clinical isolates are closely related. Our findings highlight that triazole resistance in environmental and clinical A. fumigatus is a cause for concern in a number of African countries. There is need for epidemiological surveillance to determine the true burden of the problem in Africa.
Collapse
Affiliation(s)
- Modeste Fructueux Amona
- Faculty of Health Sciences, Marien Ngouabi University, Brazzaville, Republic of Congo.,Research Center and Study of Infectious and Tropical Pathologies, Oyo, Republic of Congo
| | - Rita Okeoghene Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Agustin Resendiz-Sharpe
- Department of Microbiology, Laboratory of Clinical Bacteriology and Mycology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Biomedical MRI, KU Leuven, Leuven, Belgium
| | - David W Denning
- Manchester Fungal Infection Group, the University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chris Kosmidis
- National Aspergillosis Centre, Manchester University Foundation Trust, UK, and Manchester Academic Health Science Centre, the University of Manchester, Manchester, UK
| | - Katrien Lagrou
- Department of Microbiology, Laboratory of Clinical Bacteriology and Mycology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Hanying Zhong
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Rivelli Zea SM, Toyotome T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol Immunol 2021; 66:135-144. [PMID: 34870333 DOI: 10.1111/1348-0421.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
Aspergillus fumigatus, a ubiquitous pathogen, causes aspergillosis in humans, especially in immunodeficient patients. Azoles are frontline antifungal drugs for treating aspergillosis. The recent global emergence of azole resistance in A. fumigatus has become a serious problem worldwide. It has arisen through two routes: long-term azole medical therapy, called the patient route, and the use of azole fungicides in its habitats especially for agricultural activities, called the environmental route. Resistant strains developed through the latter route show cross-resistance to medical azoles because of the identical molecular target Cyp51A between azole compounds used for medical treatment and agricultural disease control. In azole-resistant strains arising through the environmental route, A. fumigatus is observed frequently possessing mutations in the cyp51A gene linked to tandem repeats in the promoter region such as TR34 /L98H and TR46 /Y121F/T289A. Results of microsatellite genotyping analyses of resistant A. fumigatus strains have suggested a transboundary spread of this microorganism in many countries. Diverse actors are involved in the global highway of transmission. Therefore, the matter must be addressed as a "One Health" issue. This review presents a background of azole resistance in A. fumigatus and introduces newly discovered difficulties generated as this pathogen spreads worldwide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
7
|
Otu A, Osaigbovo I, Orefuwa E, Ebenso B, Ojumu T. Collaborative One Health approaches can mitigate increasing azole-resistant Aspergillus fumigatus in Africa. THE LANCET MICROBE 2021; 2:e490-e491. [DOI: 10.1016/s2666-5247(21)00218-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
|
8
|
Resendiz-Sharpe A, Dewaele K, Merckx R, Bustamante B, Vega-Gomez MC, Rolon M, Jacobs J, Verweij PE, Maertens J, Lagrou K. Triazole-Resistance in Environmental Aspergillus fumigatus in Latin American and African Countries. J Fungi (Basel) 2021; 7:jof7040292. [PMID: 33921497 PMCID: PMC8070258 DOI: 10.3390/jof7040292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 01/10/2023] Open
Abstract
Triazole-resistance has been reported increasingly in Aspergillus fumigatus. An international expert team proposed to avoid triazole monotherapy for the initial treatment of invasive aspergillosis in regions with >10% environmental-resistance, but this prevalence is largely unknown for most American and African countries. Here, we screened 584 environmental samples (soil) from urban and rural locations in Mexico, Paraguay, and Peru in Latin America and Benin and Nigeria in Africa for triazole-resistant A. fumigatus. Samples were screened using triazole-containing agars and confirmed as triazole-resistant by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth dilution reference method. Isolates were further characterized by cyp51A sequencing and short-tandem repeat typing. Fungicide presence in samples was likewise determined. Among A. fumigatus positive samples, triazole-resistance was detected in 6.9% (7/102) of samples in Mexico, 8.3% (3/36) in Paraguay, 9.8% (6/61) in Peru, 2.2% (1/46) in Nigeria, and none in Benin. Cyp51A gene mutations were present in most of the triazole-resistant isolates (88%; 15/17). The environmentally-associated mutations TR34/L98H and TR46/Y121F/T289A were prevalent in Mexico and Peru, and isolates harboring these mutations were closely related. For the first time, triazole-resistant A. fumigatus was found in environmental samples in Mexico, Paraguay, Peru, and Nigeria with a prevalence of 7-10% in the Latin American countries. Our findings emphasize the need to establish triazole-resistance surveillance programs in these countries.
Collapse
Affiliation(s)
- Agustin Resendiz-Sharpe
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (R.M.); (J.J.); (J.M.)
| | - Klaas Dewaele
- Excellence Center for Medical Mycology (ECMM), Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Rita Merckx
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (R.M.); (J.J.); (J.M.)
| | - Beatriz Bustamante
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Maria Celeste Vega-Gomez
- Centro para el Desarrollo de la Investigación Científica, CEDIC, Asunción 1255, Paraguay; (M.C.V.-G.); (M.R.)
| | - Miriam Rolon
- Centro para el Desarrollo de la Investigación Científica, CEDIC, Asunción 1255, Paraguay; (M.C.V.-G.); (M.R.)
| | - Jan Jacobs
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (R.M.); (J.J.); (J.M.)
- Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerpen, Belgium
| | - Paul E. Verweij
- Radboud University Medical Center, Department of Medical Microbiology, 6500 HB Nijmegen, The Netherlands;
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (R.M.); (J.J.); (J.M.)
- Department of Hematology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (R.M.); (J.J.); (J.M.)
- Excellence Center for Medical Mycology (ECMM), Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium;
- Correspondence: ; Tel.: +32-016-34-70-98
| |
Collapse
|
9
|
First Investigative Study of Azole-Resistant Aspergillus fumigatus in the Environment in Burkina Faso. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052250. [PMID: 33668719 PMCID: PMC7956412 DOI: 10.3390/ijerph18052250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/10/2023]
Abstract
Azole-resistant Aspergillus fumigatus (ARAF) strains have been reported on all continents, however, limited data exist on these strains in Africa, while several factors, mainly environmental ones, suggest their presence on this continent. This study aimed to assess the environmental prevalence of ARAF strains in Burkina Faso, a country situated in the West African region where data on ARAF is non-existent. In total, 120 environmental samples (soil) were collected and analyzed. Samples were screened for resistance using three azole-containing agar plates; one without azole antifungal (growth control) and two supplemented with either itraconazole (4 mg/L) or voriconazole (2 mg/L). The EUCAST susceptibility testing method was used to confirm the azole-resistant phenotype of A. fumigatus sensu-stricto isolates. Mutations in the cyp51A gene were determined by sequencing. Of the 120 samples, 51 positive samples showed growth of A. fumigatus isolates on control medium. One ARAF (2%; 1/51) isolate was found amongst A. fumigatus positive samples and harbored the F46Y/M172V/E427K cyp51A mutations. No TR34/L98H or TR46/Y121F/T289A mutations were observed. Our study described the first A. fumigatus isolate resistant to an azole antifungal in Burkina Faso.
Collapse
|
10
|
Campbell CA, Osaigbovo II, Oladele RO. Triazole susceptibility of Aspergillus species: environmental survey in Lagos, Nigeria and review of the rest of Africa. Ther Adv Infect Dis 2021; 8:20499361211044330. [PMID: 34532039 PMCID: PMC8438939 DOI: 10.1177/20499361211044330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Triazole resistance is an emerging problem in the management of human aspergillosis globally and can arise in Aspergillus species which have been exposed to azole fungicides in the environment. We surveyed local government and council development areas in Lagos, Nigeria, to determine the distribution of Aspergillus species in the environment and their susceptibility to locally available triazole antifungal agents. We also reviewed the literature on the subject from the rest of Africa. METHODS A total of 168 soil samples from six locations in Lagos, Nigeria were processed and cultured on Saboraud dextrose agar impregnated with chloramphenicol to isolate Aspergillus species. Isolates were tested for susceptibility to itraconazole and voriconazole by microbroth dilution according to the European Committee on Antimicrobial Susceptibility Testing reference method. Relevant databases were searched to identify published work pertaining to triazole susceptibility of Aspergillus species in Africa. RESULTS A total of 117 Aspergillus species were isolated. Aspergillus niger was the most frequently isolated species (42.7%). Other species isolated were Aspergillus flavus, 37 (31.6%), Aspergillus terreus, 20 (17.1%), Aspergillus fumigatus, 5 (4.3%) and Aspergillus nidulans, 5 (4.3%). All isolates were susceptible to itraconazole and voriconazole. The literature review showed documented evidence of triazole-resistant Aspergillus species from East and West Africa. CONCLUSIONS We found no triazole resistance in environmental isolates of Aspergillus in Lagos, Nigeria. Nevertheless, regular surveillance in clinical and environmental isolates is necessary in the light of findings from other African studies.
Collapse
Affiliation(s)
- Cynthia Abosede Campbell
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Iriagbonse Iyabo Osaigbovo
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin, Benin City, Nigeria
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Rita Okeoghene Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
11
|
Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect 2019; 25:799-806. [DOI: 10.1016/j.cmi.2018.11.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023]
|