1
|
Li X, Chen X, Zhu Q, Zhang P, Nan S, Lv L, Qi S. D-mannose alleviates chronic periodontitis in rats by regulating the functions of neutrophils. BMC Oral Health 2024; 24:1336. [PMID: 39487474 DOI: 10.1186/s12903-024-05080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease characterized by the destruction of the components of the periodontium. It significantly impacts oral health and has been linked to systemic conditions like cardiovascular disease and diabetes. The critical role of neutrophils in the occurrence and development of chronic periodontitis has been paid increasing attention. The study aimed to explore the protective effects of D-mannose on chronic periodontitis and determine whether its underlying mechanisms is related to neutrophils. METHODS To explore the protective effects of D-mannose on chronic periodontitis, the eight-week-old Sprague Dawley rat model of lipopolysaccharide (LPS)-induced periodontitis was established, followed by D-mannose treatment by oral gavage. To evaluate the protective effects of D-mannose against periodontal bone loss, methylene blue staining, hematoxylin and eosin (H&E) staining, and micro-CT scanning were utilized. Then, immunofluorescence (IF), Western Blot, and RT-PCR were applied to assess the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and IL-17), anti-inflammatory cytokine (IL-10), tumor necrosis factor-alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), ten-eleven translocation 2 (TET2), and key glycolytic enzymes (HK1, HK2, PFKFB3), and to examine D-mannose's impact on the recruitment and activation of neutrophils in the gingiva. Additionally, neutrophils isolated from the peripheral blood of healthy rats were treated with LPS and D-mannose, and changes in the expression levels of myeloperoxidase (MPO), IL-1β, IL-6, IL-17, IL-10, and TET2 were observed via IF. RESULTS In vivo, D-mannose inhibited LPS-induced alveolar bone resorption in rats. After D-mannose treatment, the expression levels of IL-17 (p<0.01) and TET2 (p<0.01) were suppressed by IF, and the expression levels of IL-1β (p<0.05), IL-17 (p<0.05) and TET2 (p<0.01) were downregulated by WB. The results of qPCR showed that D-mannose reduced the expression levels of IL-1β (p<0.05), IL-6 (p<0.01), IL-17 (p<0.01), TNF-α (p<0.01), G-CSF (p<0.01), GM-CSF (p<0.01), TET2 (p<0.01), HK1 (p<0.01), HK2 (p<0.01), and PFKFB3 (p<0.01). D-mannose also inhibited the recruitment and activation of neutrophils in LPS-treated rat gingival tissues. In vitro, the results of IF showed that D-mannose inhibited the activation of neutrophils stimulated by LPS, downregulated the expression of IL-1β (p < 0.05), IL-6, IL-17 (p < 0.01), and TET2 (p < 0.01), and upregulated the expression of IL-10 (p < 0.01). CONCLUSIONS D-mannose can alleviate chronic periodontitis in rats by regulating the functions of neutrophils, potentially associated with the expression of TET2 and glycolysis, providing new insights into the potential application of D-mannose to chronic periodontitis.
Collapse
Affiliation(s)
- Xue Li
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xueting Chen
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Qingyu Zhu
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Pengye Zhang
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Shunxue Nan
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Lei Lv
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Shengcai Qi
- Department of Prothodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Anuduang A, Ounjaijean S, Phongphisutthinant R, Pitchakarn P, Chaipoot S, Taya S, Parklak W, Wiriyacharee P, Boonyapranai K. Biological Activities of Soy Protein Hydrolysate Conjugated with Mannose and Allulose. Foods 2024; 13:3041. [PMID: 39410079 PMCID: PMC11476019 DOI: 10.3390/foods13193041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The non-enzymatic conjugation of peptides through the Maillard reaction has gained attention as an effective method to enhance biological functions. This study focuses on two conjugate mixtures: crude soy protein hydrolysate (SPH) conjugated with mannose (SPHM) and crude soy protein hydrolysate conjugated with allulose (SPHA). These two mixtures were products of the Maillard reaction, also known as non-enzymatic glycation. In vitro experiments were conducted to evaluate the antioxidant, anti-pancreatic lipase, inhibition of Bovine Serum Albumin (BSA) denaturation, and anti-angiotensin converting enzyme (ACE) activities of these conjugated mixtures. The results indicate that conjugated mixtures significantly enhance the antioxidant potential demonstrated via the DPPH and FRAP assays. SPHA exhibits superior DPPH scavenging activity (280.87 ± 16.39 µg Trolox/mL) and FRAP value (38.91 ± 0.02 mg Trolox/mL). Additionally, both conjugate mixtures, at a concentration of 10 mg/mL, enhance the BSA denaturation properties, with SPHM showing slightly higher effectiveness compared to SPHA (19.78 ± 2.26% and 5.95 ± 3.89%, respectively). SPHA also shows an improvement in pancreatic lipase inhibition (29.43 ± 1.94%) when compared to the SPHM (23.34 ± 3.75%). Furthermore, both the conjugated mixtures and rare sugars exhibit ACE inhibitory properties on their own, effectively reducing ACE activity. Notably, the ACE inhibitory effects of the individual compounds and their conjugate mixtures (SPHM and SPHA) are comparable to those of positive control (Enalapril). In conclusion, SPHM and SPHA demonstrate a variety of bioactive properties, suggesting their potential use in functional foods or as ingredients in supplementary products.
Collapse
Affiliation(s)
- Artorn Anuduang
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| | - Sakaewan Ounjaijean
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| | - Rewat Phongphisutthinant
- The Traditional Food Research and Development Unit, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.); (S.T.)
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- The Traditional Food Research and Development Unit, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.); (S.T.)
| | - Sirinya Taya
- The Traditional Food Research and Development Unit, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.C.); (S.T.)
| | - Wason Parklak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| | | | - Kongsak Boonyapranai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (A.A.); (S.O.); (W.P.)
| |
Collapse
|
3
|
Liu Y, Yang J, Guo Z, Li Q, Zhang L, Zhao L, Zhou X. Immunomodulatory Effect of Cordyceps militaris Polysaccharide on RAW 264.7 Macrophages by Regulating MAPK Signaling Pathways. Molecules 2024; 29:3408. [PMID: 39064986 PMCID: PMC11279930 DOI: 10.3390/molecules29143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharide is one of the principal bioactive components found in medicinal mushrooms and has been proven to enhance host immunity. However, the possible mechanism of immunomodulatory activity of Cordyceps militaris polysaccharide is not fully understood. Hot water extraction and alcohol precipitation, DEAE-Sephadex A-25 chromatography, and Sephadex G-100 chromatography were used to isolate polysaccharide from C. militaris. A high-molecular-weight polysaccharide isolated from C. militaris was designated as HCMP, which had an Mw of 6.18 × 105 Da and was composed of arabinose, galactose, glucose, mannose, and xylose in a mole ratio of 2.00:8.01:72.54:15.98:1.02. The polysaccharide content of HCMP was 91.2% ± 0.16. The test in vitro showed that HCMP activated mouse macrophage RAW 264.7 cells by enhancing phagocytosis and NO production, and by regulating mRNA expressions of inflammation-related molecules in RAW 264.7 cells. Western blotting revealed that HCMP induced the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, using inhibitors of MAPKs decreased the mRNA levels of inflammation-related molecules induced by HCMP. These data evidenced that the immunomodulatory effect of HCMP on RAW 264.7 macrophages was mediated via the MAPK signaling pathway. These findings suggested that HCMP could be developed as a potent immunomodulatory agent for use in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijian Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Lida Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingxia Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuanwei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (J.Y.); (Z.G.)
- Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Chen S, Wang K, Wang Q. Mannose: A Promising Player in Clinical and Biomedical Applications. Curr Drug Deliv 2024; 21:1435-1444. [PMID: 38310442 DOI: 10.2174/0115672018275954231220101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 02/05/2024]
Abstract
Mannose, an isomer of glucose, exhibits a distinct molecular structure with the same formula but a different atom arrangement, contributing to its specific biological functions. Widely distributed in body fluids and tissues, particularly in the nervous system, skin, testes, and retinas, mannose plays a crucial role as a direct precursor for glycoprotein synthesis. Glycoproteins, essential for immune regulation and glycosylation processes, underscore the significance of mannose in these physiological activities. The clinical and biomedical applications of mannose are diverse, encompassing its anti-inflammatory properties, potential to inhibit bacterial infections, role in metabolism regulation, and suggested involvement in alleviating diabetes and obesity. Additionally, mannose shows promise in antitumor effects, immune modulation, and the construction of drug carriers, indicating a broad spectrum of therapeutic potential. The article aims to present a comprehensive review of mannose, focusing on its molecular structure, metabolic pathways, and clinical and biomedical applications, and also to emphasize its status as a promising therapeutic agent.
Collapse
Affiliation(s)
- Sijing Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kana Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- The Department of Gynecologic Oncology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zheng Q, Li W, Zhang Y, Liu X, Fu Y, Luo S, Deng X, Zeng C. Circulating Metabolites and Dental Traits: A Mendelian Randomization Study. J Dent Res 2023; 102:1460-1467. [PMID: 37864545 DOI: 10.1177/00220345231196536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023] Open
Abstract
It is of great importance to uncover causal biomarkers to gain insight into the pathogenesis of oral diseases and identify novel treatment targets for prevention and treatment thereof. This study aimed to systematically evaluate the causal effects of hundreds of metabolites on 10 dental traits using a 2-sample Mendelian randomization (MR) approach. Genetic variants from genome-wide association studies of 309 known metabolites were used as instrumental variables. We selected 10 dental traits, including clinical measures of dental diseases, from the Gene-Lifestyle Interactions in Dental Endpoints Consortium and self-reported oral health data from the UK Biobank. The causal relationships between metabolites and dental traits were inferred using the inverse variance-weighted approach and further controlled for horizontal pleiotropy using 5 additional MR methods. After correcting for multiple tests, 5 metabolites were identified as causal biomarkers. Genetically predicted increased levels of mannose were associated with lower risk of bleeding gums (odds ratio [OR] = 0.72; 95% confidence interval [CI], 0.61-0.85; P = 9.9 × 10-5). MR also indicated 4 metabolites on the causal pathway to dentures, with fructose (OR = 0.50; 95% CI, 0.36-0.70; P = 5.2 × 10-5) and 1-palmitoleoyl-glycerophosphocholine (OR = 0.67; 95% CI, 0.56-0.81; P = 4.8 × 10-5) as potential protective factors and glycine (OR = 1.22; 95% CI, 1.11-1.35; P = 5.6×10-5) and 1,5-anhydroglucitol (OR = 1.32; 95% CI, 1.14-1.52; P = 1.5 × 10-4) as risk factors. The causal associations were robust in various sensitivity analyses. We further observed some shared metabolites among different dental traits, implying similar biological mechanisms underlying the pathogenic processes. Finally, the pathway analysis revealed several significant metabolic pathways that may be involved in the development of dental disorders. Our study provides novel insights into the combination of metabolomics and genomics to reveal the pathogenesis of and therapeutic strategies for dental disorders. It highlighted 5 metabolites and several pathways as causal candidates, warranting further investigation.
Collapse
Affiliation(s)
- Q Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - W Li
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Key Laboratory of Dental Material, National Medical Products Administration, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Y Zhang
- Henan Academy of Sciences, Zhengzhou, Henan, China
| | - X Liu
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Key Laboratory of Dental Material, National Medical Products Administration, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Fu
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - S Luo
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Key Laboratory of Dental Material, National Medical Products Administration, Beijing, China
| | - C Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Henan Academy of Sciences, Zhengzhou, Henan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Lin H, Li X, Zhao J, Wang L, Liu Y, Gao C. D-mannose reduces adipogenesis by inhibiting the PI3K/AKT signaling pathway. Histol Histopathol 2023; 38:1283-1294. [PMID: 37246829 DOI: 10.14670/hh-18-631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PURPOSE To explore the effects and potential mechanisms of D-mannose on adipogenic differentiation of two kinds of representative mesenchymal stem cells (MSCs). METHODS We cultured two kinds of representative MSCs, human adipose tissue-derived stromal cells (hADSCs) as well as human bone marrow mesenchymal stem cells (hBMSCs), with adipogenic-induced medium containing D-mannose or D-fructose as the control. Oil red O staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB) were used to detect whether D-mannose had effects on adipogenic differentiation of MSCs. RNA sequencing (RNA-seq) transcriptomic analysis was further used to explore the potential mechanisms of D-mannose on adipogenic differentiation of MSCs. After that, qRT-PCR and WB were used to verify the results of RNA-seq. Last, we removed bilateral ovaries of female rats to establish an estrogen deficiency obesity model, and gave D-mannose intragastric administration. One month later, the femurs of rats were sliced for oil red O staining, and the inhibitory effect of D-mannose on lipid formation in vivo was studied. RESULTS Oil red O staining, qRT-PCR and WB in vitro demonstrated that D-mannose inhibited the adipogenic differentiation of both hADSCs and hBMSCs. Oil red O staining of femur sections proved that D-mannose was able to reduce in vivo adipogenesis. The results of RNA-seq transcriptomic analysis revealed that the adipogenesis-inhibition effects of D-mannose were performed by antagonizing the PI3K/AKT signaling pathway. Besides, qRT-PCR and WB further verified the results of RNA-seq. CONCLUSION Our study indicated that D-mannose was able to reduce adipogenic differentiation of both hADSCs and hBMSCs by antagonizing the PI3K/AKT signaling pathway. D-mannose is expected to be a safe and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Haozhi Lin
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Xin Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Jiping Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Lei Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Yizhen Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China
| | - Cui Gao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shan Dong Province, PR China.
| |
Collapse
|
7
|
LI C, YANG Y, FENG C, LI H, QU Y, WANG Y, WANG D, WANG Q, GUO J, SHI T, SUN X, WANG X, HOU Y, SUN Z, YANG T. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome. J TRADIT CHIN MED 2023; 43:1176-1189. [PMID: 37946480 PMCID: PMC10623263 DOI: 10.19852/j.cnki.jtcm.20231018.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe the efficacy of moxibustion in the treatment of chronic fatigue syndrome (CFS) and explore the effects on gut microbiota and metabolic profiles. METHODS Forty-eight male Sprague-Dawley rats were randomly assigned to control group (Con), CFS model group (Mod, established by multiple chronic stress for 35 d), MoxA group (CFS model with moxibustion Shenque (CV8) and Guanyuan (CV4), 10 min/d, 28 d) and MoxB group (CFS model with moxibustion Zusanli (ST36), 10 min/d, 28 d). Open-field test (OFT) and Morris-water-maze test (MWMT) were determined for assessment the CFS model and the therapeutic effects of moxibustion.16S rRNA gene sequencing analysis based gut microbiota integrated untargeted liquid chromatograph-mass spectrometer (LC-MS) based fecal metabolomics were executed, as well as Spearman correlation analysis, was utilized to uncover the functional relevance between the potential metabolites and gut microbiota. RESULTS The results of our behavioral tests showed that moxibustion improved the performance of CFS rats in the OFT and the MWMT. Microbiome profiling analysis revealed that the gut microbiomes of CFS rats were less diverse with altered composition, including increases in pro-inflammatory species (such as Proteobacteria) and decreases in anti-inflammatory species (such as Bacteroides, Lactobacillus, Ruminococcus, and Prevotella). Moxibustion partially normalized these changes in the gut microbiota. Furthermore, CFS was associated with metabolic disorders, which were effectively ameliorated by moxibustion. This was demonstrated by the normalization of 33 microbiota-related metabolites, including mannose (P = 0.001), aspartic acid (P = 0.009), alanine (P = 0.007), serine (P = 0.000), threonine (P = 0.027), methionine (P = 0.023), 5-hydroxytryptamine (P = 0.008), alpha-linolenic acid (P = 0.003), eicosapentaenoic acid (P = 0.006), hypoxanthine (P = 0.000), vitamin B6 (P = 0.000), cholic acid (P = 0.013), and taurocholate (P = 0.002). Correlation analysis showed a significant association between the perturbed fecal microbiota and metabolite levels, with a notable negative relationship between LCA and Bacteroides. CONCLUSIONS In this study, we demonstrated that moxibustion has an antifatigue-like effect. The results from the 16S rRNA gene sequencing and metabolomics analysis suggest that the therapeutic effects of moxibustion on CFS are related to the regulation of gut microorganisms and their metabolites. The increase in Bacteroides and decrease in LCA may be key targets for the moxibustion treatment of CFS.
Collapse
Affiliation(s)
- Chaoran LI
- 1 Department of Acupuncture, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Yan YANG
- 2 Department of Chinese Medical Literature, College of Basic Medicine, Heilongjiang University of Chinese medicine, Harbin 150040, China
| | - Chuwen FENG
- 3 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Heng LI
- 7 Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China
| | - Yuanyuan QU
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Yulin WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Delong WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Qingyong WANG
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing GUO
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tianyu SHI
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xiaowei SUN
- 4 Department of Acupuncture, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xue WANG
- 8 Department of Acupuncture, Chongqing Changshou District People's Hospital, Chongqing 401220, China
| | - Yunlong HOU
- 9 College of integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, and National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei 050000, China
| | - Zhongren SUN
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tiansong YANG
- 10 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, and Traditional Chinese Medicine Informatics Key Laboratory of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
8
|
Tallei TE, Fatimawali, Yelnetty A, Niode NJ, Kusumawaty D, Kepel BJ, Rahimah S, Effendi Y, Idroes R, Tumilaar SG, Mahmud S, Emran TB. Prediction of the activity of carbohydrate moiety of bromelain as immunomodulator using an in silico approach. AIP CONFERENCE PROCEEDINGS 2023. [DOI: 10.1063/5.0103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Hou C, Liu Y, Xu W, Lu X, Guo L, Liu Y, Tian S, Liu B, Zhang J, Wen C. Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. BIOMATERIALS ADVANCES 2022; 139:213018. [PMID: 35882159 DOI: 10.1016/j.bioadv.2022.213018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022]
Abstract
Graded porous titanium scaffolds are gaining increasing attention as dental implants due to their ability to mimic the mechanical and biological properties of human bone. In this study, we have developed titanium scaffolds with graded primitive structures with porosities of 50.7 %, 61.0 %, 70.5 %, and 80.3 % (denoted as P50, P60, P70, and P80, respectively) for dental applications. The simulation results in the oral environment showed that the maximum von Mises strains and stress of cortical bone tissue around P50, P60, and P70 were lower than 3000 με and 60 MPa, respectively, which was beneficial for bone regeneration. The elastic modulus and yield strength of P50, P60, and P70 ranged within 5.2-13.8 GPa and 88.6-217.8 MPa, respectively. Among these, P60 exhibited the most favorable mechanical properties with a compression yield strength of 163.2 MPa and an elastic modulus of 9.7 GPa, which are desirable mechanical properties for dental material applications. The tested permeabilities of the fabricated specimens were in the range 0.66-6.88 × 10-9 m2, which is within the range of human bone (0.01-12.10 × 10-9 m2). In vitro biocompatibility assay results showed that P60 and P70 had better potential for cell viability and osteogenesis than P50. It can be concluded that P60, which has a compatible elastic modulus, high yield strength, high permeability, good cytocompatibility, and osteogenesis properties, is a promising candidate for bone-tissue engineering applications in dentistry.
Collapse
Affiliation(s)
- Chenjin Hou
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China.
| | - Xin Lu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China; Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Shiwei Tian
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Bowen Liu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiazhen Zhang
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne 3001, Australia
| |
Collapse
|
10
|
Zhou X, Zheng Y, Sun W, Zhang Z, Liu J, Yang W, Yuan W, Yi Y, Wang J, Liu J. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif 2021; 54:e13134. [PMID: 34561933 PMCID: PMC8560605 DOI: 10.1111/cpr.13134] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Chondrocyte ferroptosis contributes to osteoarthritis (OA) progression, and D-mannose shows therapeutic value in many inflammatory conditions. Here, we investigated whether D-mannose interferes in chondrocyte ferroptotic cell death during osteoarthritic cartilage degeneration. MATERIALS AND METHODS In vivo anterior cruciate ligament transection (ACLT)-induced OA mouse model and an in vitro study of chondrocytes in an OA microenvironment induced by interleukin-1β (IL-1β) exposure were employed. Combined with Epas1 gene gain- and loss-of-function, histology, immunofluorescence, quantitative RT-PCR, Western blot, cell viability and flow cytometry experiments were performed to evaluate the chondroprotective effects of D-mannose in OA progression and the role of hypoxia-inducible factor 2 alpha (HIF-2 α) in D-mannose-induced ferroptosis resistance of chondrocytes. RESULTS D-mannose exerted a chondroprotective effect by attenuating the sensitivity of chondrocytes to ferroptosis and alleviated OA progression. HIF-2α was identified as a central mediator in D-mannose-induced ferroptosis resistance of chondrocytes. Furthermore, overexpression of HIF-2α in chondrocytes by Ad-Epas1 intra-articular injection abolished the chondroprotective effect of D-mannose during OA progression and eliminated the role of D-mannose as a ferroptosis suppressor. CONCLUSIONS D-mannose alleviates osteoarthritis progression by suppressing HIF-2α-mediated chondrocyte sensitivity to ferroptosis, indicating D-mannose to be a potential therapeutic strategy for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wentian Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wenke Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jin Liu
- Lab for Aging ResearchState Key Laboratory of Biotherapy and National Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Zhang W, Cheng H, Gui Y, Zhan Q, Li S, Qiao W, Tong A. Mannose Treatment: A Promising Novel Strategy to Suppress Inflammation. Front Immunol 2021; 12:756920. [PMID: 34646279 PMCID: PMC8502929 DOI: 10.3389/fimmu.2021.756920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
High glucose and fructose intake have been proven to display pro-inflammatory roles during the progression of inflammatory diseases. However, mannose has been shown to be a special type of hexose that has immune regulatory functions. In this review, we trace the discovery process of the regulatory functions of mannose and summarize some past and recent studies showing the therapeutic functions of mannose in inflammatory diseases. We conclude that treatment with mannose can suppress inflammation by inducing regulatory T cells, suppressing effector T cells and inflammatory macrophages, and increasing anti-inflammatory gut microbiome. By summarizing all the important findings, we highlight that mannose treatment is a safe and promising novel strategy to suppress inflammatory diseases, including autoimmune disease and allergic disease.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Gui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qipeng Zhan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Si Li
- Discovery Project Unit, HitGen Inc. Tianfu International Bio-Town, Chengdu, China
| | - Wenliang Qiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Front Cell Dev Biol 2021; 9:654559. [PMID: 34239870 PMCID: PMC8258348 DOI: 10.3389/fcell.2021.654559] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs' functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Men
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
D-Mannose Inhibits Adipogenic Differentiation of Adipose Tissue-Derived Stem Cells via the miR669b/MAPK Pathway. Stem Cells Int 2020; 2020:8866048. [PMID: 33376493 PMCID: PMC7746460 DOI: 10.1155/2020/8866048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
The adipogenic differentiation of adipose tissue-derived stem cells (ADSCs) plays an important role in the process of obesity and host metabolism. D-Mannose shows a potential regulating function for fat tissue expansion and glucose metabolism. To explore the mechanisms through which D-mannose affects the adipogenic differentiation of adipose-derived stem cells in vitro, we cultured the ADSCs with adipogenic medium inducement containing D-mannose or glucose as the control. The adipogenic differentiation specific markers Pparg and Fabp4 were determined by real-time PCR. The Oil Red O staining was applied to measure the lipid accumulation. To further explore the mechanisms, microarray analysis was performed to detect the differences between glucose-treated ADSCs (G-ADSCs) and D-mannose-treated ADSCs (M-ADSCs) in the gene expression level. The microarray data were further analyzed by a Venn diagram and Gene Set Enrichment Analysis (GSEA). MicroRNA inhibitor transfection was used to confirm the role of key microRNA. Results. D-Mannose intervention significantly inhibited the adipogenic differentiation of ADSCs, compared with the glucose intervention. Microarray showed that D-mannose increased the expression of miR669b, which was an inhibitor of adipogenesis. In addition, GSEA and western blot suggested that D-mannose suppressed the adipogenic differentiation via inhibiting the MAPK pathway and further inhibited the expression of proteins related to glucose metabolism and tumorigenesis. Conclusion. D-Mannose inhibits adipogenic differentiation of ADSCs via the miR669b/MAPK signaling pathway and may be further involved in the regulation of glucose metabolism and the inhibition of tumorigenesis.
Collapse
|
14
|
Liu H, Gu R, Zhu Y, Lian X, Wang S, Liu X, Ping Z, Liu Y, Zhou Y. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects. Ther Adv Chronic Dis 2020; 11:2040622320912661. [PMID: 32341776 PMCID: PMC7169364 DOI: 10.1177/2040622320912661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background: D-mannose exhibits strong anti-inflammatory properties, but whether it has beneficial effects on preventing and treating osteoporosis remains unknown. Methods: Female, 12-month-old senile C57BL6/J mice (s-Man group) and 8-week-old ovariectomized C57BL6/J mice (OVX-Man group) were treated with D-mannose in drinking water for 2 months (six mice/group). Microcomputed tomography analysis and hematoxylin and eosin staining were performed to investigate the effect of D-mannose on attenuation of bone loss. Tartrate-resistant acid phosphatase staining of tissue sections, flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and gut microbiome biodiversity tests were used to explore the underlying mechanisms. Results: D-mannose-induced marked increases in cortical bone volume and trabecular bone microarchitecture in the s-Man and OVX-Man group compared with that in the s-CTRL (senile control) and OVX group, respectively. Moreover, D-mannose downregulated osteoclastogenesis-related cytokines in the bone marrow and expanded regulatory T cells in the spleen of mice. Furthermore, D-mannose reconstructed the gut microbiota and changed the metabolite composition. Conclusion: D-mannose attenuated bone loss induced by senility and estrogen deficiency in mice, and this effect may be mediated by D-mannose-induced proliferation of regulatory T cells and gut microbiota-dependent anti-inflammatory effects.
Collapse
Affiliation(s)
- Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaomin Lian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Siyi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhang Ping
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
15
|
Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death Dis 2019; 10:780. [PMID: 31611558 PMCID: PMC6791886 DOI: 10.1038/s41419-019-2025-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) possess great potential for clinical treatment of immune diseases due to their extensive immunomodulatory properties. However, the underlying mechanisms that govern the immunomodulatory properties of mesenchymal stem cells (MSCs) are still not fully elucidated. Here, we show that member of the Ten-eleven translocation (Tet) family, a group of DNA demethylases, are capable of regulating PDLSC immunomodulatory functions. Tet1 and Tet2 deficiency enhance PDLSC-induced T cell apoptosis and ameliorate the disease phenotype in colitis mice. Mechanistically, we found that downregulation of Tet1 and Tet2 leads to hypermethylation of DKK-1 promoter, leading to the activation of WNT signaling pathway and therefore promoting Fas ligand (FasL) expression, which results in elevated immunomodulatory capacity of PDLSCs. These results reveal a previously unrecognized role of Tet1 and Tet2 in regulating immunomodulation of PDLSCs. This Tet/DKK-1/FasL cascade may serve as a promising target for enhancing PDLSC-based immune therapy.
Collapse
|
16
|
Ge Z, Yang L, Xiao F, Wu Y, Yu T, Chen J, Lin J, Zhang Y. Graphene Family Nanomaterials: Properties and Potential Applications in Dentistry. Int J Biomater 2018; 2018:1539678. [PMID: 30627167 PMCID: PMC6304494 DOI: 10.1155/2018/1539678] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Graphene family nanomaterials, with superior mechanical, chemical, and biological properties, have grabbed appreciable attention on the path of researches seeking new materials for future biomedical applications. Although potential applications of graphene had been highly reviewed in other fields of medicine, especially for their antibacterial properties and tissue regenerative capacities, in vivo and in vitro studies related to dentistry are very limited. Therefore, based on current knowledge and latest progress, this article aimed to present the recent achievements and provide a comprehensive literature review on potential applications of graphene that could be translated into clinical reality in dentistry.
Collapse
Affiliation(s)
- Ziyu Ge
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| | | | | | - Yani Wu
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| | | | | | | | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| |
Collapse
|