1
|
He Y, Tang X, Peng Z, Bao X, Wei J. Anthocyanin-rich dark-colored berries: A bibliometric analysis and review of natural ally in combating glucolipid metabolic disorders. Nutrition 2024; 131:112669. [PMID: 39778386 DOI: 10.1016/j.nut.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
The risk of glycolipid metabolic disorders (GLMDs)-which encompass type 2 diabetes mellitus, hyperlipidemia, hypertension, obesity, non-alcoholic fatty liver disease, and atherosclerosis--is rising gradually and posing challenges to health care. With the popularity of healthy lifestyles, anthocyanin-rich berries have emerged as a potential dietary intervention. This review uses bibliometric analysis to synthesize current research on the role of anthocyanins in relieving GLMDs. Our examination of the literature underscores the diverse mechanisms by which anthocyanins exert their beneficial effects, including their intricate bioactivity and functional signaling pathways. The insights gleaned from anthocyanin research offer a promising avenue for harnessing the power of nature to support metabolic health and pave the way for integration into clinical strategies for GLMD management.
Collapse
Affiliation(s)
- Yujing He
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Xian Tang
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Ziheng Peng
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Xiaochao Bao
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Jie Wei
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China.
| |
Collapse
|
2
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
3
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
5
|
Wang Z, Wu Q, Guan M, Li Z, Pan W, Tang W. Investigation of gut microbiota changes and allergic inflammation of mice with milk protein-induced allergic enteritis. FEMS Microbiol Lett 2024; 371:fnad127. [PMID: 38066685 DOI: 10.1093/femsle/fnad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to investigate the changes of gut microbiota and allergic inflammation in mice with allergic enteritis caused by milk protein. In this study, female BALB\C mice in the whey protein (WP-sensitized) group were gavaged with WP and normal saline, the sham-sensitized group was given normal saline once a week for 5 weeks. One week later, the WP-sensitized mice were administered 60 mg β-lactoglobulin (BLG). The results showed that mice's body weight decreased, feces with loose and bloody, and systemic allergic reactions and ear swelling increased in the WP-sensitized group. The levels of WP-specific Ig, mMCP-1, calprotectin of feces, and inflammation-related factors in the WP-sensitized group were increased. WP-sensitized group intestine tissues were damaged severely and the expressions of ZO-1, Claudin-1, and Occludin reduced. The results of 16S rRNA sequencing showed that there were differences in operational taxonomic units (OUT) levels of gut microbes between the two groups, o_Clostridiales, c_Clostridia, and f_Lachnospiraceae were more abundant in the WP-sensitized group. In conclusion, the WP sensitization can induce the allergic inflammation, intestinal injury and intestinal barrier dysfunction in mice, and the gut microbes were also changed, which provided a reference for the treatment of WP-sensitized mice.
Collapse
Affiliation(s)
- Zhongmin Wang
- Department of Gastroenterology, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, China
| | - Qiao Wu
- Department of Pediatrics, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Minchang Guan
- Department of Pediatrics, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310021, China
| | - Ze Li
- Department of Gastroenterology, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, China
| | - Wei Pan
- Department of Gastroenterology, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, China
| | - Weihong Tang
- Department of Gastroenterology, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
7
|
Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel) 2022; 12:antiox12010048. [PMID: 36670910 PMCID: PMC9855055 DOI: 10.3390/antiox12010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, various concepts and features of anthocyanins have been comprehensively reviewed, taking the benefits of the scientific publications released mainly within the last five years. Within the paper, common topics such as anthocyanin chemistry and occurrence, including the biosynthesis of anthocyanins emphasizing the anthocyanin formation pathway, anthocyanin chemistry, and factors influencing the anthocyanins' stability, are covered in detail. By evaluating the recent in vitro and human experimental studies on the absorption and bioavailability of anthocyanins present in typical food and beverages, this review elucidates the significant variations in biokinetic parameters based on the model, anthocyanin source, and dose, allowing us to make basic assumptions about their bioavailability. Additionally, special attention is paid to other topics, such as the therapeutic effects of anthocyanins. Reviewing the recent in vitro, in vivo, and epidemiological studies on the therapeutic potential of anthocyanins against various diseases permits a demonstration of the promising efficacy of different anthocyanin sources at various levels, including the neuroprotective, cardioprotective, antidiabetic, antiobesity, and anticancer effects. Additionally, the studies on using plant-based anthocyanins as coloring food mediums are extensively investigated in this paper, revealing the successful use of anthocyanins in coloring various products, such as dietary and bakery products, mixes, juices, candies, beverages, ice cream, and jams. Lastly, the successful application of anthocyanins as prebiotic ingredients, the innovation potential of anthocyanins in industry, and sustainable sources of anthocyanins, including a quantitative research literature and database analysis, is performed.
Collapse
|
8
|
Visuthranukul C, Kwanbunbumpen T, Chongpison Y, Chamni S, Panichsillaphakit E, Uaariyapanichkul J, Maholarnkij S, Chomtho S. The Impact of Dietary Fiber as a Prebiotic on Inflammation in Children with Obesity. Foods 2022; 11:foods11182856. [PMID: 36140983 PMCID: PMC9498004 DOI: 10.3390/foods11182856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Obesity is associated with dysbiosis, contributing to inflammation and insulin resistance. Inulin might reduce inflammation by manipulating intestinal microbiota. Objective: We aimed to determine the effects of inulin supplementation on inflammation and assess the relationships of inflammatory cytokines with adiposity and insulin resistance in obese Thai children. Design: Obese Thai children ages 7−15 years were randomly assigned to inulin (intervention), maltodextrin (placebo), and dietary fiber advice groups. All participants received monthly follow-up and identical advice on lifestyle modification for six visits. Body composition was evaluated using bioelectrical impedance analysis. IL-1β, IL-6, TNF-α, and fecal calprotectin were analyzed by ELISA technique at baseline and the final visit. Spearman correlation was used to assess the associations between inflammation and other clinical outcome variables. Results: A total of 155 obese children completed the study (mean age: 10.4 ± 2.2 years, 59% male). All groups showed a significant decrease in BMI z-score, fat mass index (FMI), percent body fat, and trunk FMI. A generalized estimating equation (GEE) model showed significantly decreased IL-1β and TNF-α of 34.8% and 25.8%, (p < 0.0001) but increased IL-6 (21.5%, p = 0.006) in all groups. There were no significant differences in inflammatory cytokines and fecal calprotectin between groups. Mean IL-6 was higher in obese children with acanthosis nigricans (p = 0.048). Only IL-6 was positively correlated with body fat percentage and FMI (r = 0.29, p = 0.008 and r = 0.25, p = 0.049, respectively). Conclusions: Intensive behavioral modification and frequent follow-up visits were effective methods to reduce BMI and adiposity leading to decreased inflammatory cytokines. The additional benefits of inulin on inflammation could not be demonstrated due to the Hawthorne effect. Among the three cytokines, IL-6 was the most likely mediator relating FM and insulin resistance at baseline; therefore, it could be used as a surrogate marker of inflammation in obese children who are at risk for insulin resistance and metabolic syndrome.
Collapse
Affiliation(s)
- Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-256-4951; Fax: +66-2-256-4911
| | - Tanisa Kwanbunbumpen
- Division of Nutrition, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Yuda Chongpison
- The Skin and Allergy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Biostatistics Excellence Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekkarit Panichsillaphakit
- Division of Nutrition, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Jaraspong Uaariyapanichkul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nutrition, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Settachote Maholarnkij
- Division of Nutrition, Department of Pediatrics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Kan J, Wu F, Wang F, Zheng J, Cheng J, Li Y, Yang Y, Du J. Phytonutrients: Sources, bioavailability, interaction with gut microbiota, and their impacts on human health. Front Nutr 2022; 9:960309. [PMID: 36051901 PMCID: PMC9424995 DOI: 10.3389/fnut.2022.960309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Phytonutrients are natural bioactive components present in the daily diet that can exert a positive impact on human health. Studies have shown that phytonutrients may act as antioxidants and improve metabolism after being ingested, which help to regulate physiological processes and prevent metabolic disorders and diseases. However, their efficacy is limited by their low bioavailability. The gut microbiota is symbiotic with humans and its abundance and profile are related to most diseases. Interestingly, studies have shown that the gut microbiota is associated with the metabolism of phytonutrients by converting them into small molecules that can be absorbed by the body, thereby enhancing their bioavailability. Furthermore, phytonutrients can modulate the composition of the gut microbiota, and therefore improve the host's health. Here, we focus on uncovering the mechanisms by which phytonutrients and gut microbiota play roles in health, and the interrelationships between phytonutrients and gut microbiota were summarized. We also reviewed the studies that reported the efficacy of phytonutrients in human health and the future directions.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feng Wu
- Sequanta Technologies Co., Ltd., Shanghai, China
| | | | | | - Junrui Cheng
- Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis, NC, United States
| | - Yuan Li
- Sequanta Technologies Co., Ltd., Shanghai, China
| | - Yuexin Yang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
- Yuexin Yang
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
- *Correspondence: Jun Du
| |
Collapse
|
10
|
Santhiravel S, Bekhit AEDA, Mendis E, Jacobs JL, Dunshea FR, Rajapakse N, Ponnampalam EN. The Impact of Plant Phytochemicals on the Gut Microbiota of Humans for a Balanced Life. Int J Mol Sci 2022; 23:ijms23158124. [PMID: 35897699 PMCID: PMC9332059 DOI: 10.3390/ijms23158124] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The gastrointestinal tract of humans is a complex microbial ecosystem known as gut microbiota. The microbiota is involved in several critical physiological processes such as digestion, absorption, and related physiological functions and plays a crucial role in determining the host’s health. The habitual consumption of specific dietary components can impact beyond their nutritional benefits, altering gut microbiota diversity and function and could manipulate health. Phytochemicals are non-nutrient biologically active plant components that can modify the composition of gut microflora through selective stimulation of proliferation or inhibition of certain microbial communities in the intestine. Plants secrete these components, and they accumulate in the cell wall and cell sap compartments (body) for their development and survival. These compounds have low bioavailability and long time-retention in the intestine due to their poor absorption, resulting in beneficial impacts on gut microbiota population. Feeding diets containing phytochemicals to humans and animals may offer a path to improve the gut microbiome resulting in improved performance and/or health and wellbeing. This review discusses the effects of phytochemicals on the modulation of the gut microbiota environment and the resultant benefits to humans; however, the effect of phytochemicals on the gut microbiota of animals is also covered, in brief.
Collapse
Affiliation(s)
- Sarusha Santhiravel
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Alaa El-Din A Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Eresha Mendis
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Joe L Jacobs
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Ellinbank, VIC 3821, Australia
- Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Niranjan Rajapakse
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| |
Collapse
|
11
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
12
|
Effect of Wild Blueberry Metabolites on Biomarkers of Gastrointestinal and Immune Health In Vitro. IMMUNO 2022. [DOI: 10.3390/immuno2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wild blueberries (Vaccinium angustifolium Aiton.) are a rich source of dietary fiber and (poly)phenols with gastrointestinal and immune health-promoting properties, however, their mechanisms of action on the intestinal epithelial cells and transient tissue macrophages remain to be elucidated. In this study, we evaluated the individual effects of anthocyanins, short-chain fatty acids (metabolites derived from fiber), and a series of hydroxycinnamic and hydroxybenzoic acid metabolites common to anthocyanins and other polyphenols on epithelial gut homeostasis in human colon epithelial CCD-18 cells and murine RAW 264.7 macrophages. Gastrointestinal cell migration was enhanced in response to anthocyanin glucosides with the maximum effect observed for malvidin-3-glucoside, and a structural subset of hydroxybenzoic acids, especially 2-hydroxybenzoic acid. Enhanced staining for ZO-1 protein in the junctional complexes was observed in CCD-18 cells treated with malvidin and butyrate, as well as several phenolic metabolites, including hydroxybenzoic and hydroxycinnamic acids. Nitric oxide production and pro-inflammatory gene expression profiles in the LPS-stimulated macrophages were mostly affected by treatments with 3-caffeoylquinic (chlorogenic) and 3,4-dihydroxycinnamic (caffeic) acids, as well as 2-hydroxybenzoic acid. This study lays the foundation for future investigations evaluating the effects of dietary interventions on managing gastrointestinal and inflammatory pathophysiological outcomes.
Collapse
|
13
|
Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. Biofactors 2022; 48:255-273. [PMID: 34397132 PMCID: PMC9291298 DOI: 10.1002/biof.1772] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The human intestine contains an intricate ecological community of bacteria, referred as the gut microbiota, which plays a pivotal role in the host homeostasis. Multiple factors could interfere with this delicate balance, thus causing a disruption of the microbiota equilibrium, the so called dysbiosis. Gut microbiota dysbiosis is involved in gastrointestinal and extra-intestinal metabolic diseases, as obesity and diabetes. Polyphenols, present in a broad range of plant foods, are known to have numerous health benefits; however, their beneficial effect on pre-existing dysbiosis is less clear. Indeed, in most of the conducted animal studies the administration of polyphenols or foods rich in polyphenols occurred simultaneously with the induction of the pathology to be examined, then analyzing the preventive action of the polyphenols on the onset of dysbiosis, while very low studies analyzed the modulatory activity of polyphenols on the pre-existing dysbiosis. For this reason, the present review aims to update the current information about the modulation of the pre-established gut microbiota dysbiosis by dietary phenolic compounds in a broad range of disorders in both animal studies and human trials, distinguishing the preventive or treatment approaches in animal studies. The described studies highlight that dietary polyphenols, exerting prebiotic-like effects, can modulate the pre-existing dysbiosis stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in both animal models and humans. Anyway, most of the conducted studies are related to obesity and metabolic syndrome, and so further studies are needed to understand this polyphenols' ability in relation to other pathologies.
Collapse
Affiliation(s)
- Romina Molinari
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Nicolò Merendino
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Lara Costantini
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| |
Collapse
|
14
|
de la Rosa O, Flores‐Gallegos AC, Ascacio‐Valdés JA, Sepúlveda L, Montáñez JC, Aguilar CN. Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:307-337. [DOI: 10.1002/9781119702160.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
16
|
Ramos SDP, Giaconia MA, Assis M, Jimenez PC, Mazzo TM, Longo E, De Rosso VV, Braga ARC. Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules 2021; 26:molecules26051206. [PMID: 33668167 PMCID: PMC7956372 DOI: 10.3390/molecules26051206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022] Open
Abstract
Jussara pulp (Euterpe edulis Mart.) is rich in bioactive compounds known to be protective mediators against several diseases. In this context, nevertheless, anthocyanins, the most abundant natural pigment in jussara, are sensitive to temperature, pH, oxygen, and light conditions, leading to instability during food storage or digestion, and, thus jeopardizing the antioxidant proprieties retained by these flavonoids and limiting industrial application of the pulp. The production of nanostructures, from synthetic and natural polymers, containing natural matrices rich in bioactive compounds, has been widely studied, providing satisfactory results in the conservation and maintenance of the stability of these compounds. The current work aimed to compare uniaxial and coaxial electrospinning operation modes to produce core-shell jussara pulp nanofibers (NFs). Additionally, the parameters employed in the electrospinning processes were optimize using response surface methodology in an attempt to solve stability issues for the bioactive compounds. The best experimental conditions provided NFs with diameters ranging between 110.0 ± 47 and 121.1 ± 54 nm. Moreover, the coaxial setup improved jussara pulp NF formation, while further allowing greater integrity of NFs structures.
Collapse
Affiliation(s)
- Sergiana dos P. Ramos
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Michele A. Giaconia
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Marcelo Assis
- Department of Chemical, CDMF/LIEC (UFSCar) P.O. Box 676, São Carlos, SP 13560-970, Brazil; (M.A.); (E.L.)
| | - Paula C. Jimenez
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), P.O. Box, Santos, SP 11070-100, Brazil; (P.C.J.); (T.M.M.)
| | - Tatiana M. Mazzo
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), P.O. Box, Santos, SP 11070-100, Brazil; (P.C.J.); (T.M.M.)
| | - Elson Longo
- Department of Chemical, CDMF/LIEC (UFSCar) P.O. Box 676, São Carlos, SP 13560-970, Brazil; (M.A.); (E.L.)
| | - Veridiana V. De Rosso
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Anna R. C. Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP 09972-270, Brazil
- Correspondence: ; Tel.: +55-13-98145020
| |
Collapse
|
17
|
McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Harnessing machine learning for development of microbiome therapeutics. Gut Microbes 2021; 13:1-20. [PMID: 33522391 PMCID: PMC7872042 DOI: 10.1080/19490976.2021.1872323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
The last twenty years of seminal microbiome research has uncovered microbiota's intrinsic relationship with human health. Studies elucidating the relationship between an unbalanced microbiome and disease are currently published daily. As such, microbiome big data have become a reality that provide a mine of information for the development of new therapeutics. Machine learning (ML), a branch of artificial intelligence, offers powerful techniques for big data analysis and prediction-making, that are out of reach of human intellect alone. This review will explore how ML can be applied for the development of microbiome-targeted therapeutics. A background on ML will be given, followed by a guide on where to find reliable microbiome big data. Existing applications and opportunities will be discussed, including the use of ML to discover, design, and characterize microbiome therapeutics. The use of ML to optimize advanced processes, such as 3D printing and in silico prediction of drug-microbiome interactions, will also be highlighted. Finally, barriers to adoption of ML in academic and industrial settings will be examined, concluded by a future outlook for the field.
Collapse
Affiliation(s)
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, London, UK
| | - Mine Orlu
- UCL School of Pharmacy, University College London, London, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, London, UK
- FabRx Ltd., Ashford, Kent, UK
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
18
|
Rajendran M, Ravi Chandran K. Grain Dimension, Nutrition and Nutraceutical Properties of Black and Red Varieties of Rice in India. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional colored rice varieties in India are the source of carbohydrates, phytochemicals and minerals. They facilitate the growth of probiotics in intestine and protect human from many chronic diseases. The present study investigated the nutritional properties such as total sugars, digestible sugars, resistant sugars, hydrolysis index, glycemic index and total proteins of thirteen colored varieties of rice in India. Nutraceutical properties like anti diabetic and prebiotic activity were investigated by standard methods. Chak hao poreiton and mappillai samba grains were 6.3 mm in length. Lowest length of 5.1 mm was recorded in 60 m Kuruvai. Among the rice varieties, mappillai samba has high concentration of digestible starch of 91% and Chak hao poreiton had low concentration of 62%. Resistant starch was 38% in Chak hao poreiton and 8% in mappillai samba. Lowest glycemic index of 52 and 53 were recorded in karuthakar poha and Chak hao poreiton respectively. Anthocyanin extracted from Chak hao poreiton inhibited 24% of human pancreatic α-amylase activity. It significantly increased the probiotic number from 0.15 CFU/mL to 1.95 CFU/mL. The study revealed that the black rice variety, Chak hao poreiton was rich in resistant starch and exhibited low glycemic index. The anthocyanins from Chak hao poreiton possessed significant antidiabetic and prebiotic activity. Molecular docking studies revealed the interaction of anthocyanin with pancreatic α-amylase, β-glucosidase and GLUT1.
Collapse
Affiliation(s)
- Mala Rajendran
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | | |
Collapse
|
19
|
Hong G, Li Y, Yang M, Li G, Qian W, Xiong H, Bai T, Song J, Zhang L, Hou X. Gut fungal dysbiosis and altered bacterial-fungal interaction in patients with diarrhea-predominant irritable bowel syndrome: An explorative study. Neurogastroenterol Motil 2020; 32:e13891. [PMID: 32449259 DOI: 10.1111/nmo.13891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Little is known about intestinal fungi in IBS patients whose gut bacteria have been investigated a lot. In order to explore causal relationship between IBS and gut mycobiome, and use gut fungi to diagnose or even treat IBS, further characterization of it in IBS is required. METHODS Fifty-five diarrhea-predominant IBS (D-IBS) patients fulfilling Rome III criteria, and 16 healthy controls (HC) were recruited. Fresh fecal samples were collected and used for 16s rRNA and ITS2 high-throughput sequencing. Diversity and composition of gut bacteria and fungi, as well as bacterial-fungal interactions in D-IBS patients, were characterized. Specific fungal taxa differentiating D-IBS from HC were recognized by LEfSe and RandomForest methods, and their association with clinical symptoms was assessed by Spearman's correlation. RESULTS Diarrhea-predominant irritable bowel syndrome patients showed abnormal (IBS-dysbiosis) or normal (HC-like IBS) fecal bacterial structure and diversity compared with healthy controls. However, fecal fungal signatures differed absolutely between D-IBS and HC, which indicated a more susceptible alteration of gut fungi than bacteria in D-IBS. Fecal fungi showed significant correlations with IBS symptoms, especially Mycosphaerella, Aspergillus, Sporidiobolus, and Pandora which were identified to potentially differentiate D-IBS from HC. Moreover, compared with HC there were markedly declined bacterial-fungal interactions in D-IBS, in which Candida changed from negative to positive correlations with bacteria, and Eurotium changed from positive correlations to irrelevance, while Debaryomyces gained negative correlations with bacteria. CONCLUSIONS Gut fungal dysbiosis and altered bacterial-fungal interactions were present in patients with D-IBS, and gut fungi could be used to diagnose D-IBS.
Collapse
Affiliation(s)
- Gaichao Hong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanhua Xiong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
21
|
Sivamaruthi BS, Kesika P, Chaiyasut C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods 2020; 9:foods9060687. [PMID: 32466434 PMCID: PMC7353506 DOI: 10.3390/foods9060687] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are water-soluble plant pigments, and based on their chemical structure (nature, position, and the number of sugar moieties attached; the number of hydroxyl groups; acylation of sugars with acids) about 635 different anthocyanins have been identified and reported from plants. Cyanidin, peonidin, pelargonidin, petunidin, and malvidin are the commonly found anthocyanidins (aglycon forms of anthocyanins) in edible plants out of almost 25 anthocyanidins that are identified (based on the position of methoxyl and hydroxyl groups in the rings) in nature. Anthocyanins are known for numerous health benefits including anti-diabetes, anti-obesity, anti-inflammatory bowel disease, anti-cancer, etc. Obesity can be defined as excessive or abnormal adipose tissue and body mass, which increases the risk of developing chronic diseases such as diabetes, cardiovascular diseases, cancers, etc. The manuscript summarizes the recent updates in the effects of anthocyanins supplementation on the health status of obese subjects, and briefly the results of in vitro and in vivo studies. Several studies confirmed that the consumption of anthocyanins-rich food improved obesity-associated dysbiosis in gut microbiota and inflammation in adipose tissue. Anthocyanin consumption prevents obesity in healthy subjects, and aids in maintaining or reducing the body weight of obese subjects, also improving the metabolism and energy balance. Though preclinical studies proved the beneficial effects of anthocyanins such as the fact that daily intake of anthocyanin rich fruits and vegetables might aid weight maintenance in every healthy individual, Juҫara pulp might control the inflammatory status of obesity, Queen garnet plum juice reduced the blood pressure and risk factors associated with metabolic disorders, and highbush organic blueberries improved the metabolism of obese individuals, we don't have an established treatment procedure to prevent or manage the over-weight condition and its comorbidities. Thus, further studies on the optimum dose, duration, and mode of supplementation of anthocyanins are required to develop an anthocyanins-based clinical procedure.
Collapse
|
22
|
Neri-Numa IA, Pastore GM. Novel insights into prebiotic properties on human health: A review. Food Res Int 2020; 131:108973. [PMID: 32247494 DOI: 10.1016/j.foodres.2019.108973] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/05/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Dietary prebiotics can be metabolized by different colonic microorganisms and release several classes of metabolites, particularly SCFAs into the intestine lumen, influencing the host physiology. Thus, human microbiota has been the focus of one of the most dynamic research fields of our time and their efforts are directed to understand how prebiotics structures and the microbiota-derived metabolites acts on signaling cell pathways and epigenetic control. Therefore, the aim of this review is to provide an overview about the new concept of prebiotics and their mechanistic local and systemically insights related to the host health.
Collapse
Affiliation(s)
| | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
23
|
Jayarathne S, Stull AJ, Park OH, Kim JH, Thompson L, Moustaid-Moussa N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol Nutr Food Res 2019; 63:e1900149. [PMID: 31389663 DOI: 10.1002/mnfr.201900149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Obesity is a complex disease and a major public health epidemic. Chronic, low-grade inflammation is a common underlying feature of obesity and associated metabolic diseases; adipose tissue is a major contributor to this systemic inflammation. Evidence shows that obesity-associated inflammation may originate from gut dysfunction, including changes in intestinal bacteria or microbiome profiles. Increasingly, food and plant bioactive compounds with antioxidant and anti-inflammatory properties are proposed to ameliorate obesity-associated inflammation. Among these, the health-promoting effects of anthocyanin-rich foods are of interest here. Specifically, this review summarizes the reported benefits of anthocyanins in obesity-associated inflammation and underlying molecular mechanisms, including the role of gut microbiome and cell signaling pathways regulated by anthocyanins both in vivo and in vitro.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - April J Stull
- Department of Human Ecology, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Oak-Hee Park
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Leslie Thompson
- Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
24
|
Abstract
Purpose of the review In this review, we discuss the roles of the gut microbiota, dietary phytochemicals in improving human health. Recent studies have reported that the human gut microbiota can be altered by dietary phytochemicals including phenolics, carotenoids, and dietary fibers. In addition, both pathogenic and nonpathogenic bacteria show regulatory effects with phytochemicals, suggesting potential synergistic effects in the improvement of human gut health and prevention of chronic diseases. Recent findings Numerous studies have been conducted on gut microbial alterations induced by phytochemicals, such as phenolics and carotenoids. Butyrate, a short-chain fatty acid produced via bacterial fermentation in the colon, also shows a significantly beneficial effect in the maintenance of gut microbial homeostasis. However, the molecular mechanisms underlying the effects of diets and the interactions of the gut microorganisms remain poorly understood. The gut microbiome profile changes have been observed in chronic inflammation-induced diseases including colitis, Crohn's disease, immune dysfunction, colon cancer, obesity and diabetes. The anti-inflammatory effects of dietary phytochemicals against these diseases may be partially mediated by regulation of microbial profiles. Latest advances in biomedical technology such as the next-generation sequencing (NGS), and continuous cost reduction associated with these technologies, enabled researchers to perform ever-increasing number of large-scale, high-throughput computational analyses to elucidate the potential mechanism of phytochemical-microbiome interactions. Summary Information obtained from these studies may provide valuable insights to guide future clinical research for the development of therapeutics, botanicals and drug efficacy testing, many of which will be discussed in this review.
Collapse
|
25
|
Schön C, Wacker R, Micka A, Steudle J, Lang S, Bonnländer B. Bioavailability Study of Maqui Berry Extract in Healthy Subjects. Nutrients 2018; 10:nu10111720. [PMID: 30423989 PMCID: PMC6267473 DOI: 10.3390/nu10111720] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022] Open
Abstract
Several health promoting effects have been reported for maqui berry, rich in anthocyanins. Direct effects of anthocyanins as well as bioactive metabolites might be involved. Within the study, bioavailability of a proprietary standardized maqui berry extract Delphinol® was investigated based on two selected anthocyanins (delphinidin-3-O-glucoside (DS) + cyanidin-3-O-sambubioside (CS)) and two breakdown products (protocatechuic acid (PCA) + gallic acid (GA)) after a single-dose supplementation in humans. Pharmacokinetic parameters were calculated from individual concentration time curves. In all 12 subjects a significant increase was noted in plasma values of DG and CS after intake of maqui berry extract. Maximum concentration of DG was observed after 1.0 ± 0.3 h and CS after 2.0 ± 1.1 h. Within 8 h, concentrations nearly returned to baseline levels. The results confirm a fast uptake and metabolism of the two selected key substances. Additionally, the phenolic acids GA and PCA were observed as breakdown products of anthocyanins. In summary, the study clearly confirms the bioavailability of maqui berry extract and its specific anthocyanin compounds and related breakdown products in healthy subjects.
Collapse
Affiliation(s)
| | - Roland Wacker
- BioTeSys GmbH, Schelztorstr. 54⁻56, 73728 Esslingen, Germany.
| | - Antje Micka
- BioTeSys GmbH, Schelztorstr. 54⁻56, 73728 Esslingen, Germany.
| | - Jasmin Steudle
- BioTeSys GmbH, Schelztorstr. 54⁻56, 73728 Esslingen, Germany.
| | - Stefanie Lang
- Anklam Extrakt GmbH, Marienbergstr. 92, 90411 Nuremberg, Germany.
| | - Bernd Bonnländer
- Anklam Extrakt GmbH, Marienbergstr. 92, 90411 Nuremberg, Germany.
| |
Collapse
|