1
|
Wang C, Zhang S, Li Y, Gong L, Yao C, Fu K, Li Y. Phillygenin Inhibits TGF-β1-induced Hepatic Stellate Cell Activation and Inflammation: Regulation of the Bax/Bcl-2 and Wnt/β-catenin Pathways. Inflammation 2024; 47:1403-1422. [PMID: 38393550 DOI: 10.1007/s10753-024-01984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Hepatic fibrosis (HF), a precursor to cirrhosis and hepatocellular carcinoma, is caused by abnormal proliferation of connective tissue and excessive accumulation of extracellular matrix in the liver. Notably, activation of hepatic stellate cells (HSCs) is a key link in the development of HF. Phillygenin (PHI, C21H24O6) is a lignan component extracted from the traditional Chinese medicine Forsythiae Fructus, which has various pharmacological activities such as anti-inflammatory, antioxidant and anti-tumour effects. However, whether PHI can directly inhibit HSC activation and ameliorate the mechanism of action of HF has not been fully elucidated. Therefore, the aim of the present study was to investigate the in vitro anti-HF effects of PHI and the underlying molecular mechanisms. Transforming growth factor-β1 (TGF-β1)-activated mouse HSCs (mHSCs) and human HSCs (LX-2 cells) were used as an in vitro model of HF and treated with different concentrations of PHI for 24 h. Subsequently, cell morphological changes were observed under the microscope, cell viability was analyzed by MTT assay, cell cycle and apoptosis were detected by flow cytometry, and the mechanism of anti-fibrotic effect of PHI was explored by immunofluorescence, ELISA, RT-qPCR and western blot. The results showed that PHI suppressed the proliferation of TGF-β1-activated mHSCs and LX-2 cells, arrested the cell cycle at the G0/G1 phase, decreased the levels of α-SMA, Collagen I, TIMP1 and MMP2 genes and proteins, and promoted apoptosis in activated mHSCs and LX-2 cells. Besides, PHI reduced the expression of inflammatory factors in activated mHSCs and LX-2 cells, suggesting a potential anti-inflammatory effect. Mechanically, PHI inhibited TGF-β1-induced HSC activation and inflammation, at least in part through modulation of the Bax/Bcl-2 and Wnt/β-catenin pathways. Overall, PHI has significant anti-HF effects and may be a promising agent for the treatment of HF.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
2
|
Zhang J, Jiang T, Zhang Y, Yang K, Zhao Y, Zhou Q, Yang Z, Yang R, Ning R, Liu T, Deng L, Xi X, Xu X, Jiang M. Phillygenin prevents osteoclast differentiation and bone loss by targeting RhoA. Phytother Res 2024; 38:1863-1881. [PMID: 38358766 DOI: 10.1002/ptr.8074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 02/16/2024]
Abstract
Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yang
- Chemical Biology Core Facility, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Renhao Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Xi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Gong L, Zhou H, Zhang Y, Wang C, Fu K, Ma C, Li Y. Preparation of Phillygenin-Hyaluronic acid composite milk-derived exosomes and its anti-hepatic fibrosis effect. Mater Today Bio 2023; 23:100804. [PMID: 37753374 PMCID: PMC10518489 DOI: 10.1016/j.mtbio.2023.100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Liver fibrosis remains a serious problem affecting the health of millions of people worldwide. Hepatic stellate cells (HSCs) are the main effector cells in liver fibrosis and their activation could lead to extracellular matrix deposition, which may aggravate the development of liver fibrosis and inflammation. Previous studies have reported the potential of Phillygenin (PHI) as a hepatoprotective agent to inhibit HSCs activation and fibrosis development. However, the poor water solubility of PHI hinders its clinical application as a potential anti-liver fibrosis therapy. Milk-derived exosomes (mEXO) serve as scalable nanocarriers for delivering chemotherapeutic agents due to their excellent biocompatibility. Here, we developed a PHI-Hyaluronic acid (HA) composite mEXO (PHI-HA-mEXO) drug delivery system, in which DSPE-PEG2000-HA was conjugated to the surface of mEXO to prepare HA-mEXO, and PHI was encapsulated into HA-mEXO to form PHI-HA-mEXO. As a specific receptor for HA, CD44 is frequently over-expressed during liver fibrosis and highly expressed on the surface of activated HSCs (aHSCs). PHI-HA-mEXO can bind to CD44 and enter aHSCs through endocytosis and release PHI. PHI-HA-mEXO drug delivery system can significantly induce aHSCs death without affecting quiescent HSCs (qHSCs) and hepatocytes. Furthermore, we carried out in vitro and in vivo experiments and found that PHI-HA-mEXO could alleviate liver fibrosis through aHSCs-targeted mechanism. In conclusion, the favorable biosafety and superior anti-hepatic fibrosis effects suggest a promising potential of PHI-HA-mEXO in the treatment of hepatic fibrosis. However, detailed pharmokinetics and dose-responsive experiments of PHI-HA-mEXO and the mechanism of mEXO loading drugs are still required before PHI-HA-mEXO can be applied clinically.
Collapse
Affiliation(s)
| | | | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of StandardizatAion for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of StandardizatAion for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of StandardizatAion for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of StandardizatAion for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of StandardizatAion for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
4
|
Wang C, Wu R, Zhang S, Gong L, Fu K, Yao C, Peng C, Li Y. A comprehensive review on pharmacological, toxicity, and pharmacokinetic properties of phillygenin: Current landscape and future perspectives. Biomed Pharmacother 2023; 166:115410. [PMID: 37659207 DOI: 10.1016/j.biopha.2023.115410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Forsythiae Fructus is a traditional Chinese medicine frequently in clinics. It is extensive in the treatment of various inflammation-related diseases and is renowned as 'the holy medicine of sores'. Phillygenin (C21H24O6, PHI) is a component of lignan that has been extracted from Forsythiae Fructus and exhibits notable biological activity. Modern pharmacological studies have confirmed that PHI demonstrates significant activities in the treatment of various diseases, including inflammatory diseases, liver diseases, cancer, bacterial infection and virus infection. Therefore, this review comprehensively summarizes the pharmacological effects of PHI up to June 2023 by searching PubMed, Web of Science, Science Direct, CNKI, and SciFinder databases. According to the data, PHI shows remarkable anti-inflammatory, antioxidant, hepatoprotective, antitumour, antibacterial, antiviral, immunoregulatory, analgesic, antihypertensive and vasodilatory activities. More importantly, NF-κB, MAPK, PI3K/AKT, P2X7R/NLRP3, Nrf2-ARE, JAK/STAT, Ca2+-calcineurin-TFEB, TGF-β/Smads, Notch1 and AMPK/ERK/NF-κB signaling pathways are considered as important molecular targets for PHI to exert these pharmacological activities. Studies of its toxicity and pharmacokinetic properties have shown that PHI has very low toxicity, incomplete absorption in vivo and low oral bioavailability. In addition, the physico-chemical properties, new formulations, derivatives and existing challenges and prospects of PHI are also reviewed and discussed in this paper, aiming to provide direction and rationale for the further development and clinical application of PHI.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Zhang P, Jin Y, Xia W, Wang X, Zhou Z. Phillygenin inhibits inflammation in chondrocytes via the Nrf2/NF-κB axis and ameliorates osteoarthritis in mice. J Orthop Translat 2023; 41:1-11. [PMID: 37197096 PMCID: PMC10184049 DOI: 10.1016/j.jot.2023.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Objective Osteoarthritis (OA), widely seen in the elderly, is featured by cartilage degradation, subchondral bone remolding, and synovium inflammation. Currently, there is no cure for OA development. Phillygenin (PHI), an active ingredient from the Forsythiae Fructus, possesses many biological properties, such as anti-inflammation and anti-oxidative stress in several diseases. However, the potential effects and underlying mechanisms of PHI on OA remain unclear. Methods Western blotting, RT-PCR, ELISA and tissue staining were employed to explore the mechanisms by which PHI exerted a protective effect on IL-1β-induced production of pro-inflammation cytokines and extracellular matrix (ECM) degradation in primary murine chondrocytes and destabilization of the medial meniscus (DMM) mouse models. Results In this study, we found that PHI inhibited the production of pro-inflammation cytokines and ECM degradation induced by IL-1β in primary murine chondrocytes. Mechanically, PHI inhibited the NF-κB pathway via activating nuclear factor (erythrluteolind-derived 2)-like 2 (Nrf2). In vivo experiments also confirmed the chondroprotection of PHI in DMM mouse models. Conclusion PHI alleviated IL-1β-induced inflammation cytokines and ECM degradation via activating Nrf2 and inhibiting NF-κB pathway. The translational potential of this article This study provides a biological rationale for the use of PHI as a potential candidate for OA treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yesheng Jin
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou, 215000, China
- Corresponding author.
| | - Zhiqiang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Corresponding author. Department of Orthopedcis, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
6
|
Yang J, Gu T, Lu Y, Xu Y, Gan RY, Ng SB, Sun Q, Peng Y. Edible Osmanthus fragrans flowers: aroma and functional components, beneficial functions, and applications. Crit Rev Food Sci Nutr 2023; 64:10055-10068. [PMID: 37287270 DOI: 10.1080/10408398.2023.2220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osmanthus fragrans (O. fragrans) has been cultivated in China for over 2,500 years as a traditional fragrant plant. Recently, O. fragrans has drawn increasing attention due to its unique aroma and potential health benefits. In this review, the aroma and functional components of O. fragrans are summarized, and their biosynthetic mechanism is discussed. The beneficial functions and related molecular mechanism of O. fragrans extract are then highlighted. Finally, potential applications of O. fragrans are summarized, and future perspectives are proposed and discussed. According to the current research, O. fragrans extracts and components have great potential to be developed into value-added functional ingredients with preventive effects on certain chronic diseases. However, it is crucial to develop efficient, large-scale, and commercially viable extraction methods to obtain the bioactive components from O. fragrans. Furthermore, more clinical studies are highly needed to explore the beneficial functions of O. fragrans and guide its development into functional food products.
Collapse
Affiliation(s)
- Jiani Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | | | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
7
|
Wang C, Liu Y, Gong L, Xue X, Fu K, Ma C, Li Y. Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and Wnt/β-Catenin Signaling Pathway. Inflammation 2023:10.1007/s10753-023-01826-1. [PMID: 37219693 DOI: 10.1007/s10753-023-01826-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
Liver fibrosis (LF) is caused by the chronic wound healing response to liver injury from various origins. Among the causes, inflammatory response is the central trigger of LF. Phillygenin (PHI) is a lignan derived from Forsythia suspensa, which has significant anti-inflammatory properties. However, the effect of PHI on improving LF and the underlying mechanism have rarely been studied. In this study, we used carbon tetrachloride (CCl4) to establish a mouse model of LF. Through histological analysis of liver tissue, and measurement of the levels of hepatocyte damage markers (ALT, AST, TBIL, TBA) and four indicators of LF (Col IV, HA, LN, PC-III) in serum, it was shown that PHI improved liver function and reduced the progress of LF. Subsequently, the detection of fibrogenic biomarkers in liver tissue showed that PHI inhibited the activation of hepatic stellate cells (HSCs). Next, the expression of inflammatory markers in liver tissue/serum was detected by immunohistochemistry, RT-qPCR, and ELISA, suggesting that PHI inhibited inflammation during LF. Similarly, in vitro experiments also confirmed that PHI could inhibit lipopolysaccharide-induced inflammatory responses in RAW264.7 cells, which showed strong anti-inflammatory effects. In addition, the results of network pharmacology, molecular docking, RT-qPCR and western blot confirmed that PHI could alleviate CCl4-induced LF by inhibiting the Wnt/β-catenin pathway. In conclusion, our research showed that PHI curbed LF through inhibition of HSC activation and collagen accumulation via inhibiting multiple profibrogenic factors, modulating a variety of inflammatory factors, and suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
8
|
Guo J, Tang JK, Wang BF, Yan WR, Li T, Guo XJ, Zhang L, Wang T, Sun QY, Zhang LW. Phillygenin from Forsythia suspensa leaves exhibits analgesic potential and anti-inflammatory activity in carrageenan-induced paw edema in mice. J Food Biochem 2022; 46:e14460. [PMID: 36200742 DOI: 10.1111/jfbc.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
Forsythia suspensa (Thunb.) Vahl (Oleaceae) leaves are valuable sources of phillygenin. This study aimed to isolate phillygenin from F. suspensa leaves and examine its analgesic and anti-inflammatory effects. Phillygenin was successfully extracted and isolated from F. suspensa leaves after fermentation. Phillygenin significantly reduced the number of writhing induced by acetic acid, prolonged the latency period in the hot plate test, and inhibited the xylene-induced ear edema and carrageenan-induced paw edema in mice. IL-6, TNF-α, IL-1β, NO, and PGE2 levels in the carrageenan-induced paw edema were notably reduced after pretreatment with phillygenin. Phillygenin significantly decreased the iNOS and COX-2 protein expressions and the IκB-α and NF-κB p65 phosphorylation. This study demonstrated that phillygenin is a potential therapeutic candidate for managing pain and inflammation-mediated disorders. The study contributes to the comprehensive development and utilization of F. suspensa leaves for economic and health care. PRACTICAL APPLICATIONS: Phillygenin is one of the major active ingredients in Forsythia suspensa. But the content of phillygenin in F. suspensa is very low which limits its application. Phillygenin has potential pharmacological activity and anti-inflammatory properties. However, the potential effects of phillygenin on analgesic activity have not been clarified. Furthermore, the data on its anti-inflammatory activity in vivo are relatively limited. This study evaluated the analgesic activity for the first time and the acute anti-inflammatory effect of phillygenin from F. suspensa leaves by fermentation, which indicated phillygenin is a potential therapeutic candidate for managing pain and inflammation-mediated disorders.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Jian-Kai Tang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Bai-Fang Wang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Wen-Rui Yan
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ting Li
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xue-Jian Guo
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Lei Zhang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Tao Wang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.,Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Li-Wei Zhang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
9
|
Wang C, Ma C, Fu K, Liu Y, Gong L, Peng C, Li Y. Hepatoprotective effect of phillygenin on carbon tetrachloride-induced liver fibrosis and its effects on short chain fatty acid and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115478. [PMID: 35716920 DOI: 10.1016/j.jep.2022.115478] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae fructus, the dried fruit of Oleaceae plant Forsythia suspensa (Thunb.) Vahl, is a traditional Chinese medicine widely used in clinical practice and has a variety of pharmacological activities, such as anti-inflammation, antioxidation, and hepatoprotection. AIM OF THE STUDY Phillygenin (PHI), an important fingerprint lignan component of Forsythiae fructus, has prominent hepatoprotective, anti-inflammatory and antioxidant effects. Previously, it was shown that PHI could exert anti-fibrotic effects by modulating inflammation and gut microbiota. Therefore, given the important roles of SCFAs and BAs in the development of liver fibrosis, as well as their close links with gut microbiota, we aimed to determine the protective effects of PHI on carbon tetrachloride (CCl4)-induced liver fibrosis and its effects on the metabolism of SCFAs and BAs based on metabolomics. MATERIALS AND METHODS In C57BL/6J mice, liver fibrosis model was established by intraperitoneal injection of olive oil containing 10% CCl4 for 4 weeks. Firstly, the mouse liver tissues were subjected to histological analysis and biochemical index assay to evaluate the protective effect of PHI on CCl4-induced liver fibrosis. Subsequently, the effects of PHI on the metabolism of SCFAs and BAs in CCl4-induced liver fibrosis mice were determined using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) for metabolomics analysis. Finally, the levels of the closely related proteins and genes were detected by immunohistochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) to explore the underlying mechanisms of the protective effect of PHI on CCl4-induced liver fibrosis. RESULTS The histological analysis and the determination of relevant biochemical indexes of liver tissues showed that PHI could attenuate CCl4-induced liver fibrosis. The metabolomic analysis on SCFAs showed that PHI could promote SCFA production in the gut of mice with CCl4-induced liver fibrosis, especially acetic acid, propionic acid and butyric acid. It has been reported that the increased production of SCFAs was possibly beneficial to health. The metabolomic analysis on BAs found that PHI could restore the disturbance of BA metabolism in mice with CCl4-induced liver fibrosis. The immunohistochemistry and RT-qPCR results confirmed that PHI could ameliorate intestinal epithelial barrier disruption, and reverse the expression of BA metabolism-related genes in mice with CCl4-induced liver fibrosis. CONCLUSIONS Promoting the production of SCFAs in the gut and restoring the disturbance of BA metabolism may be the potential mechanisms by which PHI alleviated CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Guo J, Yan WR, Tang JK, Jin X, Xue HH, Wang T, Zhang LW, Sun QY, Liang ZX. Dietary phillygenin supplementation ameliorates aflatoxin B 1-induced oxidative stress, inflammation, and apoptosis in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113481. [PMID: 35405527 DOI: 10.1016/j.ecoenv.2022.113481] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin contaminating food and feed, can trigger liver immune toxicity and threaten the poultry industry. Phillygenin (PHI) is a natural lignan derived primarily from Forsythia suspensa with hepatoprotective pharmacological and medicinal properties. This research aimed to investigate the preventive effects of PHI on the toxicity of AFB1 in the liver of chickens. Chickens were administered with AFB1 (2.8 mg/kg) and/or treated with PHI (24 mg/kg) for 33 days. The histopathological changes, serum biochemical indices, oxidative damage, inflammatory mediators, apoptosis, and activation of the NF-κB and Nrf2 signaling pathways were measured. Results revealed that dietary PHI ameliorated liver function indicators, reduced the malondialdehyde and inflammatory mediator production and the apoptotic cell number, and increased the antioxidant enzyme contents and Bcl-2 level. The quantitative realtime PCR and Western blot results revealed that PHI reduced p53, cytochrome c, Bax, caspase-9, and caspase-3 levels, normalized the NF-κB p65 phosphorylation, and upregulated the Nrf2 and its downstream genes expression in chicken liver. These results indicated that PHI has beneficial effects on AFB1-induced liver damage, oxidative damage, inflammatory response, apoptosis, and immunotoxicity by inhibiting NF-κB and activating the Nrf2 signaling pathway in chickens. This study provides new insight into the therapeutic uses of PHI.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Wen-Rui Yan
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jian-Kai Tang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiang Jin
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Huan-Huan Xue
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Tao Wang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li-Wei Zhang
- Institute of Molecular Science, Mordern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China.
| | - Zhan-Xue Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
11
|
Feng H, He L, Wang Z, Pi B, Liu Z. Phillygenin Protects the Intestinal Barrier from Dysfunction via let-7b Signaling Pathway and Regulation of Intestinal Microbiota. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4769709. [PMID: 35340247 PMCID: PMC8942656 DOI: 10.1155/2022/4769709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 01/13/2023]
Abstract
The study investigates the positive effects of phillygenin on intestinal tight junction via the let-7b signaling pathway and the regulation of intestinal microbiota. The expression levels of tight junction proteins are determined through PCR and Western blot. DSS-induced mice colitis is used to verify the protective effects of phillygenin on intestinal barrier and tight junction. Fecal microbiota transplantation is used to verify the role intestinal microbiota. let-7b is detected in the colon tissues of patients with acute stercoral obstruction. Phillygenin could promote the expression of occludin, which might be inhibited by let-7b inhibitor. DSS-induced mice colitis showed that phillygenin could lower the colonic permeability and maintain the tight junction-associated proteins. The effects of phillygenin could be deprived by anti-let-7b and rescued by FMT of normal intestinal microbiota. Clinical samples verified a lower level of let-7b in stercoral obstruction patients. Phillygenin could protect the intestinal barrier from dysfunction via the signaling pathway of let-7b by regulating intestinal microbiota.
Collapse
Affiliation(s)
- Huiping Feng
- Department of Clinical Nutrition, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Ling He
- Department of AnoRectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Zihua Wang
- Department of Emergency, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Bin Pi
- Department of Emergency, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Zhihua Liu
- Department of AnoRectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| |
Collapse
|
12
|
Wang C, Ma C, Fu K, Gong LH, Zhang YF, Zhou HL, Li YX. Phillygenin Attenuates Carbon Tetrachloride-Induced Liver Fibrosis via Modulating Inflammation and Gut Microbiota. Front Pharmacol 2021; 12:756924. [PMID: 34621179 PMCID: PMC8490881 DOI: 10.3389/fphar.2021.756924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a chronic pathological process that various pathogenic factors lead to abnormal hyperplasia of hepatic connective tissue, and its main feature is the excessive deposition of extracellular matrix. However, there are currently no drugs approved for the treatment of liver fibrosis. Phillygenin (PHI), a lignan isolated from Forsythiae Fructus, showed potential anti-inflammatory and anti-fibrosis effects but the mechanisms remain unknown. In view of the vital role of gut microbiota in the development of liver fibrosis, this study aimed to explore whether PHI could protect intestinal epithelial barrier and attenuate liver fibrosis by maintaining the homeostasis of intestinal microbiota. Therefore, the liver fibrosis model was induced by intraperitoneal injection of olive oil containing 10% carbon tetrachloride (CCl4) for 4 weeks in C57BL/6J mice. Histological analysis including Hematoxylin-Eosin, Masson, Sirius red, and immunohistochemistry staining were carried out to detect the histopathology and collagen deposition of mice liver tissues. The biochemical indexes related to liver function (ALT, AST, AKP, γ-GT), fibrosis (HYP, HAase, LN, PC III, IV-C) and inflammation (TNF-α, MIP-1, LPS) were determined by specific commercial assay kits. In vivo experimental results showed that PHI could improve liver histopathological injury, abnormal liver function, collagen deposition, inflammation and fibrosis caused by CCl4. Moreover, PHI restored the intestinal epithelial barrier by promoting the expression of intestinal barrier markers, including ZO-1, Occludin and Claudin-1. More importantly, the corrective effect of PHI on the imbalance of gut microbiota was confirmed by sequencing of the 16 S rRNA gene. In particular, PHI treatment enriches the relative abundance of Lactobacillus, which is reported to alleviate inflammation and fibrosis of damaged liver. Collectively, PHI attenuates CCl4-induced liver fibrosis partly via modulating inflammation and gut microbiota.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Hong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Lin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yun-Xia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Lin Y, Yang P. Phillygenin inhibits the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulation of MMP8. Mol Med Rep 2021; 24:775. [PMID: 34490481 PMCID: PMC8441984 DOI: 10.3892/mmr.2021.12415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Acute lung injury (ALI) is often responsible for the high morbidity of critically ill patients. The present study aimed to investigate whether phillygenin (PHI) can inhibit inflammation and apoptosis of pulmonary epithelial cells by activating peroxisome proliferator-activated receptor γ (PPARγ) signaling. The in vitro model of ALI was established using lipopolysaccharide (LPS) and PHI was used to treat the LPS-induced cells. Cell viability was assessed using the MTT assay and the concentration levels of the inflammatory factors were detected by ELISA. Western blotting and reverse transcription-quantitative PCR were conducted to measure the expression levels of the inflammation- and apoptosis-associated proteins. The MMP8-overexpression plasmid was transfected into LPS-induced cells, which were treated with PHI treatment and the expression levels of PPARγ were detected via western blotting. PHI treatment suppressed the induction of inflammation and apoptosis of LPS-induced BEAS-2B cells. Furthermore, the expression levels of MMP8 in BEAS-2B cells induced by LPS were decreased following PHI treatment. Following transfection of the MMP8 overexpression plasmid into the LPS-induced BEAS-2B cells and subsequent treatment of these cells with PHI, the expression levels of PPARγ were decreased. In conclusion, it was shown that PHI inhibited the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulating MMP8. These data may provide valuable information for future studies exploring the therapeutic effects of PHI for ALI.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Pediatrics, Gaolangang Hospital of Zhuhai People's Hospital, Zhuhai, Guangdong 519050, P.R. China
| | - Peng Yang
- Department of PICU, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
14
|
Forsythia Fruit Prevents Fulminant Hepatitis in Mice and Ameliorates Inflammation in Murine Macrophages. Nutrients 2021; 13:nu13082901. [PMID: 34445058 PMCID: PMC8399229 DOI: 10.3390/nu13082901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice. Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of inflammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal macrophages. These results show that FF has potential worth as a candidate for the treatment of fulminant inflammatory reactions and subsequent liver injury.
Collapse
|
15
|
Li H, Chen M, Yang Z, Wang Q, Wang J, Jin D, Yang X, Chen F, Zhou X, Luo K. Phillygenin, a MELK Inhibitor, Inhibits Cell Survival and Epithelial-Mesenchymal Transition in Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:2833-2842. [PMID: 32308417 PMCID: PMC7138621 DOI: 10.2147/ott.s238958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction Pancreatic cancer (PC) is one of the leading causes of cancer, with the lowest 5-year survival rate of all cancer types. Given the fast metastasis of PC and its resistance to surgery, radiotherapy, chemotherapy, and combinations thereof, it is imperative to develop more effective anti-PC drugs. Phillygenin (PHI) has been reported to exert anti-cancer, anti-bacterial, and anti‐inflammatory properties. However, the mechanism of PHI in the development of PC is still unclear. Methods The cytotoxicity of PHI in pancreatic cancer cells was evaluated by MTT assay, and clonogenic assay was used to test the anti-proliferation of PHI. The pro-apoptotic effect of PHI was detected by flow cytometry analysis. The changes of epithelial–mesenchymal transition (EMT) in pancreatic cancer cells treated with PHI were determined by Western blot. Transwell assay was used to test the migration and invasion of PC cells after treatment with PHI. Molecular docking was used to predict the potential binding site of candidate target with PHI. Results PHI could inhibit the proliferation, migration, and EMT of PC cells (PANC-1 and SW1990) and induce its apoptosis. Analysis of the Cancer Genome Atlas database indicated that elevated MELK levels correlated with poor overall survival (OS) and disease-free survival (DFS) of PC patients. In addition, molecular modeling showed that PHI may potentially target the catalytic domain of maternal embryonic leucine zipper kinase (MELK). Overexpression of MELK muted the anti-PC effects of PHI. Conclusion PHI holds promise as a potent candidate drug for the treatment of PC via targeted MELK.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Miao Chen
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Zhuying Yang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Qinxian Wang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Jiesheng Wang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Dong Jin
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiuyun Yang
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Fuxing Chen
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiumin Zhou
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Kexue Luo
- Department of Cadre Health, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, Peng C, Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112361. [PMID: 31683033 DOI: 10.1016/j.jep.2019.112361] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1β and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS The results showed that LPS could promote the expression of IL-6, IL-1β and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKβ, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lingyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
17
|
Wang L, Yan W, Tian Y, Xue H, Tang J, Zhang L. Self-Microemulsifying Drug Delivery System of Phillygenin: Formulation Development, Characterization and Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:E130. [PMID: 32028742 PMCID: PMC7076376 DOI: 10.3390/pharmaceutics12020130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 01/20/2023] Open
Abstract
Phillygenin, as an active ingredient of Forsythia suspensa, possesses a wide range of biological and pharmacological activity. However, its development and application are restricted due to its poor bioavailability and low solubility. Our work aimed to develop a self-microemulsifying drug delivery system to improve the oral bioavailability of phillygenin. The composition of the self-microemulsifying drug delivery system was preliminary screened by the pseudo-ternary phase diagram. Subsequently, the central composite design method was employed to optimize the prescription of the self-microemulsifying drug delivery system loaded with phillygenin. The prepared self-microemulsifying drug delivery system of phillygenin was characterized in terms of morphology, droplet size distribution, polydispersity index and stability. Then, the in vitro dissolution and the oral bioavailability were analyzed. The optimized self-microemulsifying drug delivery system of phillygenin consisted of 27.8% Labrafil M1944CS, 33.6% Cremophor EL, 38.6% polyethylene glycol 400 (PEG-400) and 10.2 mg/g phillygenin loading. The prepared self-microemulsifying drug delivery system of phillygenin exhibited spherical and uniform droplets with small size (40.11 ± 0.74 nm) and satisfactory stability. The in vitro dissolution experiment indicated that the cumulative dissolution rate of the self-microemulsifying drug delivery system of phillygenin was significantly better than that of free phillygenin. Furthermore, after oral administration in rats, the bioavailability of phillygenin was significantly enhanced by the self-microemulsifying drug delivery system. The relative bioavailability of the self-microemulsifying drug delivery system of phillygenin was 588.7% compared to the phillygenin suspension. These findings suggest that the self-microemulsifying drug delivery system of phillygenin can be a promising oral drug delivery system to improve the absorption of phillygenin.
Collapse
Affiliation(s)
- Lingzhi Wang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Wenrui Yan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
| | - Yurun Tian
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Huanhuan Xue
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Jiankai Tang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Liwei Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
| |
Collapse
|