1
|
Mary SJ, Veeravarmal V, Thankappan P, Arumugam P, Augustine PI, Franklin R. Anti-cancer effects of green synthesized gold nanoparticles using leaf extract of Annona muricata. L against squamous cell carcinoma cell line 15 through apoptotic pathway. Dent Res J (Isfahan) 2024; 21:14. [PMID: 38476717 PMCID: PMC10929727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 03/14/2024] Open
Abstract
Background Oral cancer remains one of the most dreadful diseases in developing nations. Currently, there has been a rise in the prevalence of tongue squamous cell carcinoma (SCC), with a poor prognosis. The use of standard treatment approaches against oral cancer patients brings about several side effects. In recent years, nanomedicine has provided a versatile platform for developing new targeted therapeutic modalities. However, safety remains a concern in the synthesis of nanoparticles (NPs). Therefore, the present study aims to synthesize safer phytoconstituent-mediated gold NPs (AuNPs) utilizing leaf extracts of Annona muricata, where the biochemical components of the plant leaf act as the reducing and capping agents in the synthesis of NPs, and to evaluate its anti-cancer activity against SCC. Materials and Methods In this in vitro experimental study, AuNPs were synthesized through an effective, simple, and ecologically sound green synthesis method. After characterization of these synthesized AuNPs, in vitro assays such as 3-(4, 5-dimethylthiazole2-yl)-2, 5-biphenyl tetrazolium bromide, wound healing, and clonogenic assays were carried out to investigate the anti-cancer potential of green synthesized AuNPs in the human tongue SCC cell line (SCC-15), and the possible mechanism of action was evaluated through gene and protein expression analysis of Bax, Bcl-2, and p53 genes. The results were expressed as mean ± standard deviation using Statistical Package for Social Sciences (SPSS) 20.0 software and Student's t-test was performed for experimental data. P ≤0.05 were considered statistically significant. Results The in vitro assays demonstrated that the synthesized AuNPs are exhibiting anti-cancer activity by apoptosis of SCC-15 cells in a dose-dependent manner. Further, it also revealed a highly significant decrease in anti-apoptotic Bcl-2 gene expression, whereas pro-apoptotic genes p53 and Bax revealed a highly significant increase, which is statistically significant compared to the control (P < 0.05). Conclusion Our findings demonstrated that the AuNPs synthesized from A. muricata leaf extract could act as a novel anticancer agent, particularly against SCC, after further scrutiny.
Collapse
Affiliation(s)
- S. Jeslin Mary
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kanyakumari, Tamil Nadu, India
| | - Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Government Dental College, Cuddalore, Tamil Nadu, India
| | - Prasanth Thankappan
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kanyakumari, Tamil Nadu, India
| | - Paramasivam Arumugam
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Percy Ida Augustine
- Consultant, Oral and Maxillofacial Pathologist, Joannas Dental Care, Tamil Nadu, India
| | - R. Franklin
- Department of Oral and Maxillofacial Pathology, Sree Mookambika Institute of Dental Sciences, Kanyakumari, Tamil Nadu, India
| |
Collapse
|
2
|
A Review on Annona muricata and Its Anticancer Activity. Cancers (Basel) 2022; 14:cancers14184539. [PMID: 36139697 PMCID: PMC9497149 DOI: 10.3390/cancers14184539] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is becoming more prevalent, raising concerns regarding how well current treatments work. Cancer patients frequently seek alternative treatments to surgery, chemotherapy, and radiation therapy. The use of medicinal plants in both preventative and curative healthcare is widely acknowledged. The compounds of graviola have shown promise as possible cancer-fighting agents and could be used to treat cancer. This review discusses bioactive metabolites present in graviola and their role in affecting the growth and death of different cancer cell types and the molecular mechanism of how it works to downregulate anti-apoptotic genes and the genes involved in pro-cancer metabolic pathways. Also, it reviews how simultaneously increasing the expression of genes promotes apoptosis and causes cancer cells to die so that the active phytochemicals found in graviola could be used as a promising anti-cancer agent. Abstract The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
Collapse
|
3
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
4
|
Yu BB, Yuan H, Chen YC, Zhou DX, Gan ZJ, Wang J, Li JX, Yao ZJ. Annonaceous Acetogenin Mimic AA005 Inhibits the Growth of TNBC MDA-MB-468 Cells by Altering Cell Energy Metabolism. Chembiochem 2022; 23:e202200250. [PMID: 35676240 DOI: 10.1002/cbic.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is a serious health issue for women worldwide and there is still no suitable treatment option. AA005, a structurally simplified mimic of natural Annonaceous acetogenins, presents outstanding properties with impressive cytotoxicity and cell-type selective actions. The present study was aimed at evaluating the potential of AA005 as a therapeutic agent for TNBC. AA005 potently inhibited the growth of TNBC cells at 50 nM level. Inspired by the finding of the phosphatase and tensin homologue (PTEN) tumor suppressor, the effect of AA005 on aerobic glycolysis was investigated in TNBC MDA-MB-468 cells. A short-term AA005 exposure markedly suppressed mitochondrial function in MDA-MB-468 cells, thus activating the aerobic glycolysis to lessen the risk of decreased ATP generation in mitochondria. Prolonging the incubation time of AA005 clearly weakened the aerobic glycolysis in the cells. This was in part attributed to the PI3K-AKT pathway inactivation and subsequent declined glucose uptake. As a consequence, the energy supply was completely cut from the two major energy-producing pathways. Further experiments showed that AA005 resulted in irreversible damage on cell activity including cell cycle and growth, inducing mitochondrial oxidative stress and ultimately leading to cell death. In addition, the in vivo therapeutic efficacy of AA005 was proved on 4T1 xenograft tumor mice model. Our data demonstrate that AA005 exhibited a great potential for future clinical applications in TNBC therapy.
Collapse
Affiliation(s)
- Bao-Bao Yu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yun-Cong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dan-Xia Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, P. R. China
| | - Zhen-Ji Gan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, P. R. China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210023, P. R. China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Dewi C, Fristiohady A, Amalia R, Khairul Ikram NK, Ibrahim S, Muchtaridi M. Signaling Pathways and Natural Compounds in Triple-Negative Breast Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123661. [PMID: 35744786 PMCID: PMC9227697 DOI: 10.3390/molecules27123661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, having a poor prognosis and rapid metastases. TNBC is characterized by the absence of estrogen, progesterone, and human epidermal growth receptor-2 (HER2) expressions and has a five-year survival rate. Compared to other breast cancer subtypes, TNBC patients only respond to conventional chemotherapies, and even then, with limited success. Shortages of chemotherapeutic medication can lead to resistance, pressured index therapy, non-selectivity, and severe adverse effects. Finding targeted treatments for TNBC is difficult owing to the various features of cancer. Hence, identifying the most effective molecular targets in TNBC pathogenesis is essential for predicting response to targeted therapies and preventing TNBC cell metastases. Nowadays, natural compounds have gained attention as TNBC treatments, and have offered new strategies for solving drug resistance. Here, we report a systematic review using the database from Pubmed, Science Direct, MDPI, BioScince, Springer, and Nature for articles screening from 2003 to 2022. This review analyzes relevant signaling pathways and the prospect of utilizing natural compounds as a therapeutic agent to improve TNBC treatments in the future.
Collapse
Affiliation(s)
- Citra Dewi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Pharmacy Department, Faculty of Science and Technology, Mandala Waluya University, Kendari 93561, Indonesia
| | - Adryan Fristiohady
- Faculty of Pharmacy, Halu Oleo University, Kampus Hijau Bumi Tridharma, Kendari 93232, Indonesia;
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sugeng Ibrahim
- Department of Molecular Biology, Faculty of Medicine, Universitas Katolik Soegijapranata, Semarang 50234, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence:
| |
Collapse
|
6
|
Mutakin M, Fauziati R, Fadhilah FN, Zuhrotun A, Amalia R, Hadisaputri YE. Pharmacological Activities of Soursop ( Annona muricata Lin.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041201. [PMID: 35208993 PMCID: PMC8878098 DOI: 10.3390/molecules27041201] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Soursop (Annona muricata Lin.) is a plant belonging to the Annonaceae family that has been widely used globally as a traditional medicine for many diseases. In this review, we discuss the traditional use, chemical content, and pharmacological activities of A.muricata. From 49 research articles that were obtained from 1981 to 2021, A.muricata’s activities were shown to include anticancer (25%), antiulcer (17%), antidiabetic (14%), antiprotozoal (10%), antidiarrhea (8%), antibacterial (8%), antiviral (8%), antihypertensive (6%), and wound healing (4%). Several biological activities and the general mechanisms underlying the effects of A.muricata have been tested both in vitro and in vivo. A.muricata contains chemicals such as acetogenins (annomuricins and annonacin), alkaloids (coreximine and reticuline), flavonoids (quercetin), and vitamins, which are predicted to be responsible for the biological activity of A.muricata.
Collapse
Affiliation(s)
- Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (M.M.); (Y.E.H.); Tel.: +62-22-84288888 (M.M. & Y.E.H.)
| | - Rizky Fauziati
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Fahrina Nur Fadhilah
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (R.F.); (F.N.F.); (A.Z.)
- Correspondence: (M.M.); (Y.E.H.); Tel.: +62-22-84288888 (M.M. & Y.E.H.)
| |
Collapse
|
7
|
Chaudhry GES, Jan R, Akim A, Zafar MN, Sung YY, Muhammad TST. Breast Cancer: A Global Concern, Diagnostic and Therapeutic Perspectives, Mechanistic Targets in Drug Development. Adv Pharm Bull 2021; 11:580-594. [PMID: 34888205 PMCID: PMC8642807 DOI: 10.34172/apb.2021.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a complex multifactorial process, unchecked and abrupt division, and cell growth—conventional chemotherapy, along with radiotherapy, is used to treat breast cancer. Due to reduce efficacy and less survival rate, there is a particular need for the discovery of new active anticancer agents. Natural resources such as terrestrial/marine plants or organisms are a promising source for the generation of new therapeutics with improving efficacy. The screening of natural plant extracts and fractions, isolations of phytochemicals, and mechanistic study of those potential compounds play a remarkable role in the development of new therapeutic drugs with increased efficacy. Cancer is a multistage disease with complex signaling cascades. The initial study of screening whole extracts or fractions and later the isolation of secondary compounds and their mechanism of action study gives a clue of potential therapeutic agents for future drug development. The phytochemicals present in extracts/fractions produce remarkable effects due to synergistically targeting multiple signals. In this review, the molecular targets of extracts/ fractions and isolated compounds highlighted. The therapeutic agent's mechanistic targets in drug development focused involves; i) Induction of Apoptosis, ii) modulating cell cycle arrest, iii) Inhibition or suppression of invasion and metastasis and iv) various other pro-survival signaling pathways. The phytochemicals and their modified analogs identified as future potential candidates for anticancer chemotherapy.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Rehmat Jan
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Yeong Yik Sung
- Institute of Marine Biotechnology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
8
|
Cárdenas C, Torres-Vargas JA, Cárdenas-Valdivia A, Jurado N, Quesada AR, García-Caballero M, Martínez-Poveda B, Medina MÁ. Non-targeted metabolomics characterization of Annona muricata leaf extracts with anti-angiogenic activity. Biomed Pharmacother 2021; 144:112263. [PMID: 34626933 DOI: 10.1016/j.biopha.2021.112263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022] Open
Abstract
The tropical plant Annona muricata has been widely used for traditional ethnobotanic and pharmacologic applications. Extracts from different parts of this plant have been shown to have a wide range of biological activities. In the present study, we carry out a metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves that has allowed us to identify 33 bioactive compounds. Furthermore, we have shown that aqueous extracts are able to inhibit endothelial cell migration and both aqueous and DMSO extracts inhibit the formation of tubule-like structures by endothelial cells cultured on Matrigel. We conclude that extracts of Annona muricata leaves have great potential as anti-angiogenic natural combinations of bioactive compounds.
Collapse
Affiliation(s)
- Casimiro Cárdenas
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; Research Support Central Services (SCAI) of the University of Málaga, Spain
| | - José Antonio Torres-Vargas
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Abel Cárdenas-Valdivia
- Department of Physical Chemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Nuria Jurado
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Melissa García-Caballero
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
9
|
Ata FK, Yalcin S. The Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine Treatment in Resistant 2D and 3D Model Triple Negative Breast Cancer Cell Line: ABCG2 Expression Data. Anticancer Agents Med Chem 2021; 22:371-377. [PMID: 34315389 DOI: 10.2174/1871520621666210727105431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemotherapeutics have been commonly used in cancer treatment. OBJECTIVE In this study, the effects of Cisplatin, 5-fluorouracil, Irinotecan, and Gemcitabine have been evaluated on two-dimensional (2D) (sensitive and resistance) cell lines and three dimensional (3D) spheroid structure of MDA-MB-231. The 2D cell culture lacks a natural tissue-like structural so, using 3D cell culture has an important role in the development of effective drug testing models. Furthermore, we analyzed the ATP Binding Cassette Subfamily G Member 2 (ABCG2) gene and protein expression profile in this study. We aimed to establish a 3D breast cancer model that can mimic the in vivo 3D breast cancer microenvironment. METHODS The 3D spheroid structures were multiplied (globally) using the three-dimensional hanging drop method. The cultures of the parental cell line MDA-MB-231 served as the controls. After adding the drugs in different amounts we observed a clear and well-differentiated spheroid formation for 24 h. The viability and proliferation capacity of 2D (sensitive and resistant) cell lines and 3D spheroid cell treatment were assessed by the XTT assay. RESULTS Cisplatin, Irinotecan, 5-Fu, and Gemcitabine-resistant MDA-MB-231 cells were observed to begin to disintegrate in a three-dimensional clustered structure at 24 hours. Additionally, RT-PCR and protein assay showed overexpression of ABCG2 when compared to the parental cell line. Moreover, MDA-MB-231 cells grown in 3D showed decreased sensitivity to chemotherapeutics treatment. CONCLUSION More resistance to chemotherapeutics and altered gene expression profile was shown in 3D cell cultures when compared with the 2D cells. These results might play an important role to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR in the 3D spheroid forms.
Collapse
Affiliation(s)
- Fatma Kubra Ata
- Department of Genetics and Bioengineering, Kırsehir Ahi Evran University, TR-40100, Turkey
| | - Serap Yalcin
- Department of Molecular Biology and Genetics, Kırsehir Ahi Evran University, TR-40100 , Turkey
| |
Collapse
|
10
|
Hadisaputri YE, Habibah U, Abdullah FF, Halimah E, Mutakin M, Megantara S, Abdulah R, Diantini A. Antiproliferation Activity and Apoptotic Mechanism of Soursop ( Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer Cells. BREAST CANCER-TARGETS AND THERAPY 2021; 13:447-457. [PMID: 34295188 PMCID: PMC8291383 DOI: 10.2147/bctt.s317682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022]
Abstract
Introduction Breast cancer is the second most common cancer in women globally, and the incidence rate has increased annually. Traditional medicine is frequently used as a cancer treatment, and soursop or Annona muricata L (A. muricata) is a traditional medicinal plant that has been widely used as an anticancer treatment and requires more thorough study. Methods In this research, we prepared ethanol extract and three solvents, ie, ethyl acetate, n-hexane and water fractions of A. muricata leaves and assessed their antiproliferation and cytotoxic activity on MCF7 breast cancer cells compared with that on CV1 normal kidney cells; observation of cell morphology by stained with mixture of propidium iodide and 4',6-diamidino-2-phenylindole indicated that this treatment induced an ongoing process of apoptotic cell death in MCF7 cells. To clarify the cell death mechanism via apoptosis, we assessed the mRNA expression in the caspase cascade of caspase-9, caspase-3, and PARP-1, and anti-apoptotic, Bcl-2 which mediated cytotoxic activity of extracts and ethyl acetate fractions of A. muricata leaves against MCF7 cells. Results The ethanol extract, ethyl acetate, n-hexane, and water fractions of A. muricata leaves had IC50 values of 5.3, 2.86, 3.08, and 48.31 µg/mL, respectively, in MCF7 cells but had no activity in CV1 cells. The high cytotoxic activity of A. muricata leaves was reflected by changes in the morphology of cancer cells that appeared after 6 h exposure to A. muricata leaf extract and ethyl acetate fraction; the membrane and nucleus of cells undergoing apoptosis were characterized by the rupture and loss of membranes and nuclei. The mechanism that mediates this cytotoxic activity in MCF7 cells was mediated through a decrease in the expression of Bcl-2 mRNA and an increase in caspase-9 and caspase-3 mRNA expression. Conclusion Therefore, the leaves of the medicinal plant A. muricata contained compounds that on extraction exerted a highly effective activity as an anticancer treatment for breast cancer via induced apoptotic cell death.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia.,Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Ummi Habibah
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia.,Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Fajar Fauzi Abdullah
- Central Laboratory, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia.,Department of Chemistry, Faculty of Mathematic and Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Eli Halimah
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Mutakin Mutakin
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Sandra Megantara
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Rizky Abdulah
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Ajeng Diantini
- Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
11
|
Chen H, Yang J, Yang Y, Zhang J, Xu Y, Lu X. The Natural Products and Extracts: Anti-Triple-Negative Breast Cancer in Vitro. Chem Biodivers 2021; 18:e2001047. [PMID: 34000082 DOI: 10.1002/cbdv.202001047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Triple-negative breast cancer (TNBC) makes up 15 % to 20 % of all breast cancer (BC) cases, and represents one of the most challenging malignancies to treat. For many years, chemotherapy has been the main treatment option for TNBC. Natural products isolated from marine organisms and terrestrial organisms with great structural diversity and high biochemical specificity form a compound library for the assessment and discovery of new drugs. In this review, we mainly focused on natural compounds and extracts (from marine and terrestrial environments) with strong anti-TNBC activities (IC50 <100 μM) and their possible mechanisms reported in the past six years (2015-2021).
Collapse
Affiliation(s)
- Han Chen
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Jiaping Yang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Yanlong Yang
- School of Traditional Chinese Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Jianpeng Zhang
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Yao Xu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| | - Xiaoling Lu
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Xiangyin Road 800, Shanghai, 200433, P. R. China
| |
Collapse
|
12
|
Wijaya DA, Louisa M, Wibowo H, Taslim A, Permata TBM, Handoko H, Nuryadi E, Kodrat H, Gondhowiardjo SA. The future potential of Annona muricata L. extract and its bioactive compounds as radiation sensitizing agent: proposed mechanisms based on a systematic review. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite technological advances in cancer treatment, especially in radiotherapy, many efforts are being made in improving cancer cell radio-sensitivity to increase therapeutic ratio and overcome cancer cell radio-resistance. In the present review, we evaluated the anticancer mechanism of Annona muricata L. (AM) leaves extract and its bioactive compounds such as annonaceous acetogenins, annomuricin, annonacin, or curcumin; and further correlated them with the potential of the mechanism to increase or to reduce cancer cells radio-sensitivity based on literature investigation. We see that AM has a promising future potential as a radio-sensitizer agent.
Collapse
Affiliation(s)
- David Andi Wijaya
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Heri Wibowo
- Laboratorium Terpadu, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Aslim Taslim
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Handoko Handoko
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Endang Nuryadi
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Henry Kodrat
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| | - Soehartati Argadikoesoema Gondhowiardjo
- Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital - Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia
| |
Collapse
|
13
|
Salsabila IA, Nugraheni N, Ahlina FN, Haryanti S, Meiyanto E. Synergistic Cotreatment Potential of Soursop ( Annona muricata L.) Leaves Extract with Doxorubicin on 4T1 Cells with Antisenescence and Anti-reactive-oxygen-species Properties. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:57-67. [PMID: 34567146 PMCID: PMC8457719 DOI: 10.22037/ijpr.2020.112485.13788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Annona muricata L. extract (AME) exhibits cytotoxic activities on various types of cancer cells. This study aims to unveil the anticancer activity of AME as a cotreatment agent with doxorubicin (dox) on 4T1 cells and AME's relation to senescence. AME was obtained by maceration using 96% ethanol. AME was then subjected to qualitative analysis using TLC compared to quercetin (hRf = 75). Spectrophotometry analysis of AME resulted in a total flavonoid content of 2.3% ± 0.05%. Cytotoxic evaluation using the MTT assay revealed that AME showed an IC50 value of 63 µg/mL, while its combination (25 µg/mL) with dox (10 nM) decreased the viability of 4T1 cells to 58 % (CI = 0.15). Flowcytometry using propidium iodide staining confirmed that AME (13 and 25 µg/mL) caused cell cycle arrest in the G1 phase as a single treatment and G2/M arrest in combination with dox. However, by using the dichloro dihydrofluorescein diacetate staining assay, it turned out that AME at concentrations of 13 and 25 µg/mL decreased intracellular reactive oxygen species (ROS) levels both as a single treatment and in combination with dox. Senescence-associated β - galactosidase assay showed that AME decreased dox-induced senescence. AME alone and in combination with dox (cotreatment) showed cytotoxic effect synergistically on 4T1 cells, but this was not caused by an increase in intracellular ROS levels as well as senescence induction. Therefore, AME showed its potential to be a cotreatment agent with antioxidant property on triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Irfani Aura Salsabila
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Nadzifa Nugraheni
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Faradiba Nur Ahlina
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Sari Haryanti
- Medicinal Plant and Traditional Medicinal Research and Development Centre, Ministry of Health, Republic of Indonesia, Tawangmangu, Central Java, Indonesia.
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Laboratory of Macromolecular Engineering Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Yogyakarta, Indonesia.
| |
Collapse
|
14
|
Younes M, Ammoury C, Haykal T, Nasr L, Sarkis R, Rizk S. The selective anti-proliferative and pro-apoptotic effect of A. cherimola on MDA-MB-231 breast cancer cell line. BMC Complement Med Ther 2020; 20:343. [PMID: 33187495 PMCID: PMC7664056 DOI: 10.1186/s12906-020-03120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Background Herbal medicines have been a major target for numerous studies through the past years as an alternative treatment for cancer, mainly due to their minimal effects on normal healthy cells. Annona cherimola, popularly known as Cherimoya, is an edible natural fruit rich in phytochemical components and known to possess various biological activities. Previous studies have reported the anti-cancerous effect of A. cherimola ethanolic leaf extract (AELE) on leukemia. This study aims at studying the potential anti-cancer activity of this extract in vitro in two different breast cancer cell lines, namely MDA-MB-231 and MCF-7, in addition to investigating its toxicity on normal mesenchymal stem cells. Methods The anti-proliferative effect of AELE was evaluated via cell viability assay. Propidium iodide staining, Cell Death Detection ELISA and flow cytometry analysis of Annexin V binding were used to assess cell cycle progression, DNA fragmentation and apoptosis induction, respectively. Protein expression was determined via Western Blot analysis to decipher the underlying apoptotic molecular mechanism induced upon AELE treatment. Results The anti-proliferative effect of the extract was found to be selective on the triple-negative breast cancer cell line (MDA-MB-231) in a time- and dose-dependent manner with an IC50 of 390.2 μg/mL at 48 h, with no cytotoxic effects on normal murine mesenchymal stem cells. The pro-apoptotic effect was confirmed by the increase in cellular and DNA fragmentation, flipping of the phosphatidylserine moiety to the outer leaflet, and the increase in Annexin V binding. The underlying molecular mechanism revealed the involvement of the mitochondrial pathway, as shown by alterations in mitochondrial permeability and the upregulation of cytochrome c expression. Conclusion All the data presented in our study suggest that AELE exhibits a selective anti-proliferative and pro-apoptotic effect on the chemo-resistant MDA-MB-231 breast cancer cells, providing evidence for the anti-tumor effects of A. cherimola.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Carl Ammoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Leah Nasr
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.,Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
15
|
Leite DOD, de F. A. Nonato C, Camilo CJ, de Carvalho NKG, da Nobrega MGLA, Pereira RC, da Costa JGM. Annona Genus: Traditional Uses, Phytochemistry and Biological Activities. Curr Pharm Des 2020; 26:4056-4091. [DOI: 10.2174/1381612826666200325094422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/08/2020] [Indexed: 12/16/2022]
Abstract
Species from the Annona (Anonaceae) genus are used in traditional medicine for the treatment of various
diseases. Ethnobotanical studies provide information regarding the plant part and the preparation method
being used, while scientific studies such as in vitro, in vivo, and clinical tests can provide evidence supporting
ethnopharmacological reports, directing studies towards the isolation of compounds which may be active for
specific pathologies. Annona muricata and Annona squamosa were the most commonly reported species from
those studied, with Annona cherimola and Annona classiflora also standing out. Acetogenins were the most
commonly isolated metabolite class due to their cytotoxic properties, with flavonoids, alkaloids, steroids, and
peptides also being reported. Many species from the Annona genus have proven biological activities, such as
antitumor, antioxidant, antimicrobial and antifungal. The present review had as its objective to facilitate access to
ethnobotanical, chemical and biological information in order to direct future researches.
Collapse
Affiliation(s)
- Débora O. D. Leite
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Carla de F. A. Nonato
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Cicera J. Camilo
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Natália K. G. de Carvalho
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Mário G. L. A. da Nobrega
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - Rafael C. Pereira
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| | - José G. M. da Costa
- Departamento de Quimica Biologica, Laboratorio de Pesquisa de Produtos Naturais, Universidade Regional do Cariri, 63105-100, Crato, Brazil
| |
Collapse
|
16
|
Lee JJ, Saiful Yazan L, Kassim NK, Che Abdullah CA, Esa N, Lim PC, Tan DC. Cytotoxic Activity of Christia vespertilionis Root and Leaf Extracts and Fractions against Breast Cancer Cell Lines. Molecules 2020; 25:molecules25112610. [PMID: 32512700 PMCID: PMC7321190 DOI: 10.3390/molecules25112610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Christia vespertilionis, commonly known as 'Daun Rerama', has recently garnered attention from numerous sources in Malaysia as an alternative treatment. Its herbal decoction was believed to show anti-inflammatory and anti-cancer effects. The present study investigated the cytotoxicity of the extract of root and leaf of C. vespertilionis. The plant parts were successively extracted using the solvent maceration method. The most active extract was further fractionated to afford F1-F8. The cytotoxic effects were determined using MTT assay against human breast carcinoma cell lines (MCF-7 and MDA-MB-231). The total phenolic content (TPC) of the extracts were determined. The antioxidant properties of the extract were also studied using DPPH and β-carotene bleaching assays. The ethyl acetate root extract demonstrated selective cytotoxicity especially against MDA-MB-231 with the highest TPC and antioxidant properties compared to others (p < 0.05). The TPC and antioxidant results suggest the contribution of phenolic compounds toward its antioxidant strength leading to significant cytotoxicity. F3 showed potent cytotoxic effects while F4 showed better antioxidative strength compared to others (p < 0.05). Qualitative phytochemical screening of the most active fraction, F3, suggested the presence of flavonoids, coumarins and quinones to be responsible toward the cytotoxicity. The study showed the root extracts of C. vespertilionis to possess notable anti-breast cancer effects.
Collapse
Affiliation(s)
- Joanna Jinling Lee
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43300, Malaysia; (J.J.L.); (N.E.)
| | - Latifah Saiful Yazan
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43300, Malaysia; (J.J.L.); (N.E.)
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43300, Malaysia
- Correspondence: ; Tel.: +603-8947-2308; Fax: +603-8943-6178
| | - Nur Kartinee Kassim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia; (N.K.K.); (P.C.L.); (D.C.T.)
| | | | - Nurulaidah Esa
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43300, Malaysia; (J.J.L.); (N.E.)
| | - Pei Cee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia; (N.K.K.); (P.C.L.); (D.C.T.)
| | - Dai Chuan Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43300, Malaysia; (N.K.K.); (P.C.L.); (D.C.T.)
| |
Collapse
|
17
|
Ammoury C, Younes M, El Khoury M, Hodroj MH, Haykal T, Nasr P, Sily M, Taleb RI, Sarkis R, Khalife R, Rizk S. The pro-apoptotic effect of a Terpene-rich Annona cherimola leaf extract on leukemic cell lines. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:365. [PMID: 31830975 PMCID: PMC6909458 DOI: 10.1186/s12906-019-2768-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The edible fruit Annona cherimola has previously shown many nutritional and medicinal properties. The current study evaluates the anti-cancer and anti-proliferative properties of Annona cherimola ethanolic leaf extract (AELE) on Acute Myeloid Leukemia (AML) cell lines cultured in vitro (Monomac-1 and KG-1). METHODS The anti-proliferative effect of A. cherimola ethanolic leaf extract was evaluated via cell viability assay. Its pro-apoptotic effect was assessed through Cell Death ELISA and dual Annexin V/PI staining. To further investigate the molecular mechanism by which the extract promoted apoptosis and inhibited the proliferation of the AML cells used, apoptotic protein expression was determined through western blots. Extract composition was elucidated by Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS Our results showed that the treatment with A. cherimola ethanolic leaf extract exhibited an inhibitory effect on the proliferation of both cancer cell lines used in a dose- and time-dependent manner, with no toxic effects on normal mononuclear cells (MNCs) isolated from human bone marrow. This effect was mediated by DNA fragmentation and apoptosis, as revealed by Cell Death ELISA and dual Annexin V/PI staining. Western blot analysis revealed a Bax/Bcl2 dependent mechanism of apoptosis, as well as PARP cleavage, confirming the apoptotic results observed previously. These effects may be attributed to the presence of terpenes which constitute a large component of the leafy extract, as revealed via GC-MS. CONCLUSION All the data presented in our study show that the terpene-rich A. cherimola ethanolic leaf extract exhibits an anti-proliferative and pro-apoptotic effect on the AML cell lines used.
Collapse
Affiliation(s)
- Carl Ammoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Marianne El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Mohammad H. Hodroj
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Peter Nasr
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Marilyne Sily
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Robin I. Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rana Khalife
- Biochemical Engineering Department, UCL, London, UK
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
18
|
Spencer P, Lagrange E, Camu W. ALS and environment: Clues from spatial clustering? Rev Neurol (Paris) 2019; 175:652-663. [DOI: 10.1016/j.neurol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
|