1
|
Lei L, Feng S. Immune interplay from circulation to local lesion in pemphigus pathogenesis. J Autoimmun 2024; 147:103261. [PMID: 38797047 DOI: 10.1016/j.jaut.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Pemphigus, a potentially lethal autoimmune skin disease, is mediated by desmoglein-specific antibodies, manifesting cutaneous and mucosal blisters and erosions. The interaction between multiple immune counterparts contributes to the progress of pemphigus. Currently, the emergence of bioinformatic analysis enables investigators to gain a global picture of the pemphigus immune network, based on the exhaustive pedigree annotation of multiple subsets. T helper subsets dominate the landscape as mentioned previously, and innate immune cells have been involved as well. Of particular interests is which phenotype of T cells orchestrates the autoimmune process and chronic inflammation in a certain condition. In this review, the circulatory and peripheral immune cells and cytokine components constituting the immune microenvironment are separately discussed to provide a perspective on pemphigus pathogenesis, with particular reference to insights provided by the bioinformation technique.
Collapse
Affiliation(s)
- Li Lei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - SuYing Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
2
|
Fakhfakh R, Zian Z, Elloumi N, Abida O, Bouallegui E, Houssaini H, Volpe E, Capone A, Hachicha H, Marzouk S, Bahloul Z, Masmoudi H. Th17 and Th1 cells in systemic lupus erythematosus with focus on lupus nephritis. Immunol Res 2022; 70:644-653. [PMID: 35666434 DOI: 10.1007/s12026-022-09296-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by T cells imbalance. Indeed, a correlation between levels of Th17 cells and disease activity has been reported. Our work aimed to study the functional association of subpopulations of Th cells and SLE with (lupus nephritis, LN) or without (lupus erythematosus, LE) renal involvement in Tunisian patients through the detection of intracellular cytokines and surface marker expression. The IL23R and RORC mRNA expression levels were evaluated. The level of Th17 and Th1 cells was higher in LE and LN patients compared to healthy controls (HC) (p = 0.007 and p = 0.018, respectively), while Th1/17 cells were increased only in LN patients compared to HC (p = 0.011). However, no significant difference was described in the mRNA expression levels of RORC and IL-23R between SLE and HC. Our findings suggest that the Th1/Th17 differentiation mechanisms are altered in SLE and that this imbalance should have an important influence on the development and severity of the disease.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia.
| | - Zeineb Zian
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Nesrine Elloumi
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
| | - Olfa Abida
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
| | - Emna Bouallegui
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
| | - Hana Houssaini
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessia Capone
- Molecular Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Hend Hachicha
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Zouhir Bahloul
- Internal Medicine Department, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hatem Masmoudi
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, 3029, Sfax, Tunisia
| |
Collapse
|
3
|
Huang ZX, Qu P, Wang KK, Zheng J, Pan M, Zhu HQ. Transcriptomic profiling of pemphigus lesion infiltrating mononuclear cells reveals a distinct local immune microenvironment and novel lncRNA regulators. J Transl Med 2022; 20:182. [PMID: 35449056 PMCID: PMC9027862 DOI: 10.1186/s12967-022-03387-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/09/2022] [Indexed: 12/07/2022] Open
Abstract
Pemphigus is an autoimmune skin disease. Ectopic lymphoid-like structures (ELSs) were found to be commonly present in the pemphigus lesions, presumably supporting in situ desmoglein (Dsg)-specific antibody production. Yet functional phenotypes and the regulators of Lymphoid aggregates in pemphigus lesions remain largely unknown. Herein, we used microarray technology to profile the gene expression in skin lesion infiltrating mononuclear cells (SIMC) from pemphigus patients. On top of that, we compared SIMC dataset to peripheral blood mononuclear cells (PBMC) dataset to characterize the unique role of SIMC. Functional enrichment results showed that mononuclear cells in skin lesions and peripheral blood both had over-represented IL-17 signaling pathways while neither was characterized by an activation of type I Interferon signaling pathways. Cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) results showed that naïve natural killer cells (NK cells) were significantly more abundant in pemphigus lesions, and their relative abundance positively correlated with B cells abundance. Meanwhile, plasma cells population highly correlated with type 1 macrophages (M1) abundance. In addition, we also identified a lncRNA LINC01588 which might epigenetically regulate T helper 17 cells (Th17)/regulatory T cells (Treg) balance via the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Here, we provide the first transcriptomic characterization of lesion infiltrating immune cells which illustrates a distinct interplay network between adaptive and innate immune cells. It helps discover new regulators of local immune response, which potentially will provide a novel path forward to further uncover pemphigus pathological mechanisms and develop targeted therapy.
Collapse
Affiliation(s)
- Zi-Xuan Huang
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Qu
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kan-Kan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai-Qin Zhu
- Department of Dermatology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Lim YL, Bohelay G, Hanakawa S, Musette P, Janela B. Autoimmune Pemphigus: Latest Advances and Emerging Therapies. Front Mol Biosci 2022; 8:808536. [PMID: 35187073 PMCID: PMC8855930 DOI: 10.3389/fmolb.2021.808536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pemphigus represents a group of rare and severe autoimmune intra-epidermal blistering diseases affecting the skin and mucous membranes. These painful and debilitating diseases are driven by the production of autoantibodies that are mainly directed against the desmosomal adhesion proteins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). The search to define underlying triggers for anti-Dsg-antibody production has revealed genetic, environmental, and possible vaccine-driven factors, but our knowledge of the processes underlying disease initiation and pathology remains incomplete. Recent studies point to an important role of T cells in supporting auto-antibody production; yet the involvement of the myeloid compartment remains unexplored. Clinical management of pemphigus is beginning to move away from broad-spectrum immunosuppression and towards B-cell-targeted therapies, which reduce many patients’ symptoms but can have significant side effects. Here, we review the latest developments in our understanding of the predisposing factors/conditions of pemphigus, the underlying pathogenic mechanisms, and new and emerging therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Yen Loo Lim
- Department of Dermatology, National Skin Centre, Singapore
| | - Gerome Bohelay
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Sho Hanakawa
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Philippe Musette
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Baptiste Janela
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology network, Agency for Science, Technology and Research (A*STAR), Singapore
- *Correspondence: Baptiste Janela,
| |
Collapse
|
5
|
Ziadi W, Boussetta S, Elkamel S, Pakstis AJ, Kidd KK, Medimegh I, Ben Ammar Elgaaied A, Cherni L. STAT3 polymorphisms in North Africa and its implication in breast cancer. Mol Genet Genomic Med 2021; 9:e1744. [PMID: 34251094 PMCID: PMC8404238 DOI: 10.1002/mgg3.1744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Only a few studies have investigated the association of single nucleotide polymorphisms in STAT3 gene with the susceptibility to cancer and response to chemotherapy. Our aim was to determine the allele frequencies of rs3869550, rs957971, and rs7211777 at the STAT3 gene in North African populations and compare them to 1000 genomes populations, and to investigate their relation with cancer. METHODS The targeted SNPs have been analyzed in six Tunisian populations and a sample of Libyans using TaqMan® Assay. The results were compared to 1000 Genomes Project population samples. Targeting of the regions encompassing the three SNPs by micro-ARN was assessed using miR databases. RESULTS The analysis of the 3 SNPs showed that North African populations were close to South Asians. As expected, African populations presented a significant frequency of the ancestral CCG haplotype in contrast to other populations where the fully derived TGA haplotype was more frequent. The presence and diversity of rare haplotypes at STAT3 in North African populations could have been generated by recombination between the two major haplotypes. A screening of the micro-RNA databases showed that the STAT3 region with the mutated allele of rs7211777 (G>A) could be targeted by miR hsa-miR-3606-5p, which also targets genes involved in breast cancer.
Collapse
Affiliation(s)
- Wafa Ziadi
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Imen Medimegh
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| |
Collapse
|
6
|
Elevated Serum Interleukin-23 Levels in Patients with Oral and Cutaneous Lichen Planus. Mediators Inflamm 2021; 2021:5578568. [PMID: 34335090 PMCID: PMC8289569 DOI: 10.1155/2021/5578568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Lichen planus is considered a chronic inflammatory disease which affects different sites, such as the skin, mucous membranes, hair, and nails. Based on the evidence, a complex cytokine network plays a crucial role in lichen planus pathogenesis. The study was aimed at assessing the serum IL-23 levels in the patients with cutaneous and oral lichen planus compared to healthy controls. Method. The study included 30 cutaneous lichen planus patients, 20 oral lichen planus patients, and 33 control subjects. Five milliliters of peripheral blood was obtained from each patient, and the serum was separated. IL-23 levels were determined using the ELISA kit, and the data were analyzed using the Mann–Whitney test. Results. IL-23 levels in the patient serum with oral lichen planus (P value ≤ 0.001) were significantly higher than in controls. Furthermore, there were significant differences in IL-23 serum levels in the patients with cutaneous lichen planus compared to the healthy controls (P value ≤ 0.001). Moreover, IL-23 serum levels were statistically different between patients with cutaneous lichen planus and patients with oral lichen planus (P value ≤ 0.001). Based on the mean concentration of interleukin-23, IL-23 levels were higher in the patients with oral lichen planus than in the patients with cutaneous lichen planus. Conclusions. Elevated serum IL-23 levels in the patients with oral lichen planus may indicate that IL-23 plays a crucial role in the pathogenesis of oral lichen planus. However, more research is needed with a larger sample size.
Collapse
|
7
|
Tabatabaei-Panah PS, Moravvej H, Aghaei S, Akbari M, Rajabi S, Kia A, Ebrahimi E, Sadaf Z, Atoon A, Behravesh N, Ludwig RJ, Akbarzadeh R. TH17/IL23 cytokine gene polymorphisms in bullous pemphigoid. Mol Genet Genomic Med 2020; 8:e1519. [PMID: 33340282 PMCID: PMC7767565 DOI: 10.1002/mgg3.1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/07/2022] Open
Abstract
Background TH17/IL‐23 immune axis is considered to be involved in the pathogenesis of autoimmune and chronic inflammatory diseases. Bullous pemphigoid (BP) is the most frequent autoimmune blistering disease, characterized by the presence of autoantibodies against the components of the dermal‐epidermal junction. Animal studies and characterization of patient samples point toward a contribution of TH17 cells in BP pathogenesis. However, genetic polymorphisms in the genes of TH17/IL‐23 cytokines have not yet been well investigated in BP. Methods Detection of polymorphisms in IL‐17A (rs2275913 and rs3819025), IL‐17F (rs2397084 and rs763780), IL‐17RA (rs2229151), and IL‐23R (rs2201841, rs7530511, rs11209026, and rs10889677) genes were performed following the collection of blood samples and DNA extraction from BP patients and controls. Gene expression of IL‐23R was determined by quantitative RT‐PCR analysis. Results The prevalence of IL‐23R rs7530511 genotypes and alleles, as well as IL‐23R rs2201841 alleles, is significantly different between the BP patients and controls. While the minor C‐allele of IL‐23R rs7530511 is highly present in the patients, the G‐allele distribution of IL‐23R rs2201841 is significantly more prevalent in the control individuals compared to the BP patients. Genotypes and alleles of other SNPs in IL‐17A, IL‐17F, and IL‐17RA were similarly distributed in patients and controls. Conclusions No alteration was found in the gene expression between wild and polymorphic genotypes of IL‐23R (rs2201841 and rs7530511) variations, indicating they do not contribute to altering the levels of gene expression in blood. In summary, our data show that the alleles of two SNPs in IL‐23R rs2201841 and rs7530511 are associated with BP.
Collapse
Affiliation(s)
| | - Hamideh Moravvej
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahel Aghaei
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Akbari
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sakineh Rajabi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Atena Kia
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Ebrahimi
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Sadaf
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Atoon
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Behravesh
- Biology Department, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Reza Akbarzadeh
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Holstein J, Solimani F, Baum C, Meier K, Pollmann R, Didona D, Tekath T, Dugas M, Casadei N, Hudemann C, Polakova A, Matthes J, Schäfer I, Yazdi AS, Eming R, Hertl M, Pfützner W, Ghoreschi K, Möbs C. Immunophenotyping in pemphigus reveals a T H17/T FH17 cell-dominated immune response promoting desmoglein1/3-specific autoantibody production. J Allergy Clin Immunol 2020; 147:2358-2369. [PMID: 33221382 DOI: 10.1016/j.jaci.2020.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND TH2 cells were thought to be a pivotal factor for initiation of the autoimmune blistering disease pemphigus. However, the role of other T-cell subsets in pemphigus pathogenesis remained unclear. OBJECTIVE We aimed to characterize the exact phenotype of T cells responsible for the development of pemphigus. METHODS Whole transcriptome shotgun sequencing was performed to determine differential gene expression in pemphigus lesions and skin of healthy individuals. The cutaneous cytokine signature was further evaluated by real-time quantitative PCR. In peripheral blood, the distribution of TH cell and folliclular helper (TFH) cell subsets was analyzed by flow cytometry. Finally, the capacity of TH and TFH cell subsets to induce desmoglein (Dsg)-specific autoantibodies by memory B cells was evaluated in coculture experiments. RESULTS Transcriptome analysis of skin samples identified an IL-17A-dominated immune signature in patients with pemphigus, and Kyoto Encyclopedia of Genes and Genomes pathway analysis confirmed the dominance of the IL-17A signaling pathway. Increased expression of IL17A and associated cytokines was also detected by real-time quantitative PCR comparing lesional with perilesional or healthy skin. Interestingly, utilization of flow cytometry showed that patients with active pemphigus had elevated levels of circulating IL-17+, TH17, TFH17, and TFH17.1 cells. Notably, levels of TH17 and TFH17 cells correlated with levels of Dsg-specific CD19+CD27+ memory B cells, and patients with acute pemphigus showed higher levels of Dsg3-autoreactive TFH17 cells. Coculture experiments revealed TFH17 cells as primarily responsible for inducing Dsg-specific autoantibody production by B cells. CONCLUSION Our findings show that TFH17 cells are critically involved in the pathogenesis of pemphigus and offer novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Julia Holstein
- Department of Dermatology, University Medical Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Carolin Baum
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Alexandra Polakova
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Jakob Matthes
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Iris Schäfer
- Department of Dermatology, University Medical Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
9
|
Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, Qiao J, Fang H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front Immunol 2020; 11:594735. [PMID: 33281823 PMCID: PMC7705238 DOI: 10.3389/fimmu.2020.594735] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-17 (IL-17) is an essential proinflammatory cytokine, which is mainly secreted by the CD4+ helper T cells (Th17 cells) and subsets of innate lymphoid cells. IL-17A is associated with the pathogenesis of inflammatory diseases, including psoriasis, atopic dermatitis, hidradenitis suppurativa, alopecia areata, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Interleukin-23 (IL-23) plays a pivotal role in stimulating the production of IL-17 by activating the Th17 cells. The IL-23/IL-17 axis is an important pathway for targeted therapy for inflammatory diseases. Emerging evidence from clinical trials has shown that monoclonal antibodies against IL-23, IL-17, and tumor necrosis factor are effective in the treatment of patients with psoriasis, atopic dermatitis, hidradenitis suppurativa, pityriasis rubra pilaris, pemphigus, and systemic sclerosis. Here, we summarize the latest knowledge about the biology, signaling, and pathophysiological functions of the IL-23/IL-17 axis in inflammatory skin diseases. The currently available biologics targeting the axis is also discussed.
Collapse
Affiliation(s)
- Taoming Liu
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuni Ying
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunli Tang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Ding
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yali Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Scarsella L, Pollmann R, Amber KT. Autoreactive T cells in pemphigus: perpetrator and target. Ital J Dermatol Venerol 2020; 156:124-133. [PMID: 33179878 DOI: 10.23736/s2784-8671.20.06706-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease, in which autoantibodies against epidermal cadherins, such as desmoglein (Dsg)1 and Dsg3, lead to the development of blisters and erosions on the skin and mucous membranes. Autoreactive CD4+ T cells are essential for the induction and perpetuation of the disease by interaction with B cells producing autoantibodies. PV has a strong genetic association with certain human leucocyte antigen (HLA) alleles with HLA-DRB1*04:02 and LA-DQB1*05:03 being the most prevalent in patients. Recently, genome-wide association studies have provided a new approach to identify single nucleotide polymorphisms, alongside the known association with HLA alleles. Loss of tolerance against Dsgs and other autoantigens is a critical event in the pathogenesis of PV. Epitope spreading contributes to the progression of PV, leading to an extension of the Dsg-specific autoimmune response to other molecular epitopes of autoantigens, such as desmocollins or muscarinic receptors. Alterations in CD4+CD25+ FoxP3+ regulatory T cells are thought to contribute to the development of PV representing a suitable target for therapeutic interventions. Several CD4+ T-cell subsets and cytokines are involved in the pathogenesis of PV, while Th2 cells are the extensively studied population. Recently, other T cell subsets like T follicular helper cells and Th17 have gained attention as new potential players in PV pathogenesis. The involvement of local autoantibody production in the lesional skin of PV patients in tertiary lymphoid organs is currently discussed but not yet clarified. In this study, we reviewed the current knowledge about the development, characteristics and function of autoreactive T cells in pemphigus and present current new T cell-targeted therapeutic approaches.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany -
| | - Kyle T Amber
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| |
Collapse
|
11
|
Petzl-Erler ML. Beyond the HLA polymorphism: A complex pattern of genetic susceptibility to pemphigus. Genet Mol Biol 2020; 43:e20190369. [PMID: 32639508 PMCID: PMC7341728 DOI: 10.1590/1678-4685-gmb-2019-0369] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Pemphigus is a group of autoimmune bullous skin diseases that result in
significant morbidity. As for other multifactorial autoimmune disorders,
environmental factors may trigger the disease in genetically susceptible
individuals. The goals of this review are to summarize the state of knowledge
about the genetic variation that may affect the susceptibility and pathogenesis
of pemphigus vulgaris and pemphigus foliaceus – both the endemic and the
sporadic forms –, to compare and discuss the possible meaning of the
associations reported, and to propose recommendations for new research
initiatives. Understanding how genetic variants translate into pathogenic
mechanisms and phenotypes remains a mystery for most of the polymorphisms that
contribute to disease susceptibility. However, genetic studies provide a strong
foundation for further developments in this field by generating testable
hypotheses. Currently, results still have limited influence on disease
prevention and prognosis, drug development, and clinical practice, although the
perspectives for future applications for the benefit of patients are
encouraging. Recommendations for the continued advancement of our understanding
as to the impact of genetic variation on pemphigus include these partially
overlapping goals: (1) Querying the functional effect of genetic variants on the
regulation of gene expression through their impact on the nucleotide sequence of
cis regulatory DNA elements such as promoters and enhancers, the splicing of
RNA, the structure of regulatory RNAs and proteins, binding of these regulatory
molecules to regulatory DNA elements, and alteration of epigenetic marks; (2)
identifying key cell types and cell states that are implicated in pemphigus
pathogenesis and explore their functional genomes; (3) integrating structural
and functional genomics data; (4) performing disease-progression longitudinal
studies to disclose the causal relationships between genetic and epigenetic
variation and intermediate disease phenotypes; (5) understanding the influence
of genetic and epigenetic variation in the response to treatment and the
severity of the disease; (6) exploring gene-gene and genotype-environment
interactions; (7) developing improved pemphigus-prone and non-prone animal
models that are appropriate for research about the mechanisms that link
genotypes to pemphigus. Achieving these goals will demand larger samples of
patients and controls and multisite collaborations.
Collapse
Affiliation(s)
- Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
12
|
Pathogenic and protective roles of cytokines in pemphigus: A systematic review. Cytokine 2020; 129:155026. [DOI: 10.1016/j.cyto.2020.155026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/02/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
|
13
|
Masmoudi H, Abida O, Masmoudi A, Turki H. Update on immunogenetics of Tunisian endemic pemphigus foliaceus. J Leukoc Biol 2018; 105:257-265. [DOI: 10.1002/jlb.mr0318-132r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Hatem Masmoudi
- Department of ImmunologyAutoimmunity and Immunogentics Resaerch UnitHabib Bourguiba HospitalUniversity of Sfax Sfax Tunisia
| | - Olfa Abida
- Department of ImmunologyAutoimmunity and Immunogentics Resaerch UnitHabib Bourguiba HospitalUniversity of Sfax Sfax Tunisia
| | | | - Hamida Turki
- Department of DermatologyHedi Chaker HospitalUniversity of Sfax Sfax Tunisia
| |
Collapse
|