1
|
Li Y, Li M, Zheng J, Ma Z, Yu T, Zhu Y, Li P, Nie F. Ultrasound-Responsive Nanocarriers Delivering siRNA and Fe 3O 4 Nanoparticles Reprogram Macrophages and Inhibit M2 Polarization for Enhanced NSCLC Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56634-56652. [PMID: 39378273 DOI: 10.1021/acsami.4c10036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lung cancer has emerged as the second most common type of malignant tumor worldwide, and it has the highest mortality rate. The overall 5-year survival rate stands at less than 20%, which is primarily related to the limited therapeutic options and the complexity of the tumor immune microenvironment. In the tumor microenvironment, M1 macrophages are known for their tumor-killing capabilities. Although they are less numerous, they play an important role in tumor immunity. Therefore, increasing M1 macrophages' presence is considered a strategy to enhance targeted phagocytosis and antitumor efficacy in nonsmall cell lung cancer (NSCLC). This study introduces the development of folic acid (FA)-conjugated liposomal nanobubbles for precise delivery of PFH, STAT3 siRNA, and Fe3O4 to the tumor microenvironment. These encapsulated PFH liposomal nanobubbles exhibit significant visualization potential and underwent phase transition when exposed to low-intensity focused ultrasound (LIFU). The release of Fe3O4 activates the IRF5 signaling pathway, converting M2-like macrophages to M1. In addition, STAT3 siRNA effectively interrupts the JAK-STAT3 pathway, inhibiting the polarization of M2-like macrophages in tumor-associated macrophages (TAMs). This dual-action therapy facilitates T-cell activation and proliferation, thereby enhancing the immune response against NSCLC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jun Zheng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing 100191, China
| | - Tingting Yu
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Pan Li
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou 730000, China
| |
Collapse
|
2
|
Li D, Xie Z, Shaikh SB, Rahman I. Abnormal expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. RESEARCH SQUARE 2024:rs.3.rs-3877316. [PMID: 38343804 PMCID: PMC10854321 DOI: 10.21203/rs.3.rs-3877316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Exposure to electronic cigarette (e-cigarette) aerosol has been linked to several health concerns, including DNA damage, elevated oxidative stress, the release of inflammatory cytokine, and dysfunctions in epithelial barriers. However, little is known about the effect of exclusive e-cigarette use on expression profiles of exosomal miRNAs, which play critical regulatory roles in many inflammatory responses and disease processes including cancer. We aim to compare the exosomal microRNA expression profile between exclusive e-cigarette users and normal controls without any tobacco product use (non-users). Methods Using plasma samples from 15 exclusive e-cigarette users and 15 non-users in the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014), we examined exosomal microRNAs expression levels through Illumina NextSeq 500/550 sequencing. The differential analyses between exclusive e-cigarette users and non-users were examined using the generalized linear model approach in the DESeq2 package in R/Bioconductor after adjusting the significant confounding effect from race. Gene enrichment analyses were conducted on target genes regulated by significant microRNAs in the differential analyses. Further, molecular-based techniques using the micro RNA mimics and inhibitors were applied for the validation of the expressions of the micro RNAs in vitro. Results We identified four microRNAs that have significantly higher expression levels in exclusive e-cigarette users than non-users including hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p. GO enrichment analysis on the target genes regulated by the four microRNAs showed that dysregulation of the four microRNAs in exclusive e-cigarette users involved in multiple cell processes such as protein kinase binding and miRNA metabolic process. KEGG pathway enrichment analysis found the four upregulated miRNAs in exclusive e-cigarette users involved in many cancer pathways such as the non-small cell lung cancer, small cell lung cancer, pancreatic cancer, p53 signaling pathway, Hippo signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway. Overexpression of miRNA hsa-miR-125b-5p was shown to promote DNA damage in bronchial epithelia cells. Conclusions Four plasma exosomal microRNAs involved in cancer development had higher expression levels in exclusive e-cigarette users than non-users, which might indicate a potentially elevated risk of cancer among exclusive e-cigarette users.
Collapse
|
3
|
Cherchi R, Cusano R, Orrù S, Ferrari PA, Massidda M, Fotia G, De Matteis S, Cocco P. Next Generation Sequencing for miRNA Detection on the Exhaled Breath Condensate: A Pilot Study. Epigenet Insights 2023; 16:25168657231160985. [PMID: 37025420 PMCID: PMC10070752 DOI: 10.1177/25168657231160985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Exhaled breath condensate (EBC) sampling has been suggested as a less-invasive and cost-effective method to detect biological macromolecules, including miRNA. To explore the feasibility of its use as a biomarker of early effects of asbestos exposure, we conducted a preliminary test on male volunteers by comparing the miRNA profile in the EBC and the plasma using 2 different sequencing platforms. Methods: Six male volunteers, all retired and unexposed to dust or fumes, participated in the test. RNA was extracted from 200 μL EBC samples and same-size plasma samples. Sample aliquots were processed in 2 laboratories using 2 different sequencing platforms: a MiSeq Illumina® platform and a more performing HiSeq Illumina® platform. Results: The HiSeq3000® sequencing platform identified twice as many unique molecular indexes (UMI)-validated miRNA as the MiSeq® platform. The Spearman’s correlation coefficient between EBC counts and plasma counts was significant in 5/6 subjects with either platform (MiSeq® = 0.128-0.508, P = .026-<.001; HiSeq® = 0.156-0.412, P = .001-<.001). The intraclass correlation coefficient confirmed the consistency of the miRNA profile over the 6 participants with both biospecimens. Exploring the agreement between the EBC and plasma samples with Bland-Altman plots showed that using the HiSeq3000® platform substantially improved the EBC miRNA detection rate. Conclusion: Our preliminary study confirms that, when using the HiSeq® sequencing platform, EBC sampling is a suitable, non-invasive method to detect the miRNA profile in healthy subjects.
Collapse
Affiliation(s)
- Roberto Cherchi
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | - Roberto Cusano
- CRS4-NGS Core, POLARIS Research Park, Pula—Cagliari, Italy
| | - Sandro Orrù
- Operative Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato—Cagliari, Italy
- Orrù S, Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Via Is Guadazzonis 3, Cagliari 09126, Italy.
| | - Paolo A Ferrari
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | | | - Giorgio Fotia
- CRS4-NGS Core, POLARIS Research Park, Pula—Cagliari, Italy
| | - Sara De Matteis
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato—Cagliari, Italy
| | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
ALREHAILI AMANIA, GHARIB AMALF, ALGHAMDI SALEHALI, ALHAZMI AYMAN, AL-SHEHRI SAADS, HAGAG HOWAIDAM, ALSAEEDI FOUZEYYAHALI, ALHUTHALI HAYAAM, RAAFAT NERMIN, ETEWA RASHAL, ELSAWY WAELH. Evaluation of TET Family Gene Expression and 5-Hydroxymethylcytosine as Potential Epigenetic Markers in Non-small Cell Lung Cancer. In Vivo 2023; 37:445-453. [PMID: 36593050 PMCID: PMC9843776 DOI: 10.21873/invivo.13098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM DNA methylation is the most studied epigenetic modification in cancer. Ten-eleven translocation enzymes (TET) catalyze the oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) in the DNA. In the current research, we aimed to evaluate the role of 5-hmC and TET enzymes in non-small cell lung cancer (NSCLC) patients and their possible association with outcomes. PATIENTS AND METHODS ELISA was used to measure the 5-hmC levels in genomic DNA and qRT-PCR was used to evaluate TET1, TET2, and TET3 mRNAs expression levels in NSCLC tissues and their paired normal controls. RESULTS The levels of 5-hmC were significantly lower in NSCLC tissues than in normal tissues, with a mean ±SD of 0.28±0.37 vs. 1.84±0.58, respectively (t=22.77, p<0.0001), and this reduction was correlated with adverse clinical features. In addition, all TET genes were significantly down-regulated in NSCLC tissues in comparison to their matched normal tissues. The mean±SD level of TET1-mRNA was 38.48±16.38 in NSCLC vs. 80.65±11.25 in normal tissues (t=21.33, p<0.0001), TET2-mRNA level in NSCLC was 5.25±2.78 vs. 9.52±1.01 in normal tissues (t=14.48, p<0.0001), and TET3-mRNA level in NSCLC was 5.21±2.8 vs. 9.51±0.86 in normal tissues (t=14.75, p<0.0001). Downregulation of TET genes was correlated with poor clinical features. CONCLUSION 5-HmC levels as well as TET1, TET2, and TET3 mRNA levels were reduced in NSCLC tissues. The reduced levels of 5-hmC and TET mRNAs were associated with adverse clinical features, suggesting that the level of 5-hmC may serve as a valuable prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- AMANI A. ALREHAILI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - AMAL F. GHARIB
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - SALEH ALI ALGHAMDI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - AYMAN ALHAZMI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - SAAD S. AL-SHEHRI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - HOWAIDA M. HAGAG
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia,Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - FOUZEYYAH ALI ALSAEEDI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - HAYAA M. ALHUTHALI
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - NERMIN RAAFAT
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - RASHA L. ETEWA
- Pathology Department, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - WAEL H. ELSAWY
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Zou X, Zhang Y, Wang N, Shi J, Li Q, Hao W, Zhu W, Han W. HEG1 as a novel potential biomarker for the prognosis of lung adenocarcinoma. Cancer Med 2022; 12:3288-3298. [PMID: 35950222 PMCID: PMC9939152 DOI: 10.1002/cam4.5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/15/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heart development protein with EGF-like domains 1 (HEG1), generally related to angiogenesis and embryonic development, was reported to participate in the occurrence and progression of some tumors recently. However, the role of HEG1 in lung adenocarcinoma (LUAD) is unclear. PATIENTS AND METHODS To explore the effect of HEG1 on LUAD, GEPIA platform and UALCAN database, as well as Kaplan-Meier plotter were adopted to analyze the association of HEG1 with clinicopathological characteristics and survival outcomes for LUAD firstly. And then the HEG1 in LUAD tissues, blood and cell lines were detected by qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and ELISA. Gene set enrichment analysis (GSEA) was conducted to identify pathways that might be affected by HEG1 in LUAD. RESULTS In this study, HEG1 in lung tissues and cell lines of LUAD were significantly downregulated compared to benign pulmonary disease tissues and alveolar epithelial cells (p < 0.05). Moreover, compared with other groups, patients with advanced tumor stage had lower HEG1 mRNA expression levels (p = 0.025), which were negatively correlated with Ki67 index in tumor tissues (r = -0.427, p = 0.033). On the other hand, the LUAD patients with lower HEG1 had shorter overall survival (OS) (HR = 0.51, 95% CI: 0.40-0.65, p < 0.001) according to Kaplan-Meier plotter. In addition, HEG1 in serum of LUAD patients was negatively associated with CEA (r = -0.636, p < 0.001). GSEA showed that HEG1 was enriched in various metabolic-related pathways, including glucose metabolism, lipid metabolism, and nucleotide metabolism signaling. CONCLUSIONS HEG1 was downregulated in LUAD patients and associated with poor prognosis, which indicating HEG1 may serve as a potential biomarker for diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xin Zou
- Department of Pathology, Qingdao Municipal HospitalDalian Medical UniversityQingdaoChina,Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina
| | - Yue Zhang
- Department of RespiratoryJilin Provincial People's HospitalJilinChina
| | - Ning Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| | - Jie Shi
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese MedicineQingdaoChina
| | - Qinghai Li
- Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina,Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| | - Wanming Hao
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| | - Wenjing Zhu
- Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina,NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese MedicineQingdaoChina,Clinical Research Center, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Wei Han
- Respiratory Disease Key Laboratory of QingdaoQingdao Municipal HospitalQingdaoChina,Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
6
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
7
|
Mulcahy EQX, Zhang Y, Colόn RR, Cain SR, Gibert MK, Dube CJ, Hafner M, Abounader R. MicroRNA 3928 Suppresses Glioblastoma through Downregulation of Several Oncogenes and Upregulation of p53. Int J Mol Sci 2022; 23:3930. [PMID: 35409289 PMCID: PMC8998958 DOI: 10.3390/ijms23073930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and lethal primary malignant brain tumor. Despite decades of research, therapeutic advances that significantly prolong life are non-existent. In recent years, microRNAs (miRNAs) have been a focus of study in the pathobiology of cancer because of their ability to simultaneously regulate multiple genes. The aim of this study was to determine the functional and mechanistic effects of miR-3928 in GBM both in vitro and in vivo. To the best of our knowledge, this is the first article investigating the role of miR-3928 in GBM. We measured endogenous miR-3928 expression levels in a panel of patient-derived GBM tissue samples and cell lines. We found that GBM tissue samples and cell lines express lower levels of miR-3928 than normal brain cortex and astrocytes, respectively. Therefore, we hypothesized that miR-3928 is a tumor suppressive microRNA. We verified this hypothesis by showing that exogenous expression of miR-3928 has a strong inhibitory effect on both cell growth and invasiveness of GBM cells. Stable ex vivo overexpression of miR-3928 in GBM cells led to a reduction in tumor size in nude mice xenografts. We identified many targets (MDM2, CD44, DDX3X, HMGA2, CCND1, BRAF, ATOH8, and BMI1) of miR-3928. Interestingly, inhibition of the oncogene MDM2 also led to an upregulation of wild-type p53 expression and phosphorylation. In conclusion, we find that miR-3928, through the downregulation of several oncogenes and upregulation and activation of wild-type p53, is a strong tumor suppressor in GBM. Furthermore, the fact that miR-3928 can target many important dysregulated proteins in GBM suggests it might be a "master" regulatory microRNA that could be therapeutically exploited.
Collapse
Affiliation(s)
- Elizabeth Q. X. Mulcahy
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Ying Zhang
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Rossymar R. Colόn
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Shelby R. Cain
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Myron K. Gibert
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Collin J. Dube
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Markus Hafner
- National Institutes of Health (NIH), Bethesda, MD 20894, USA;
| | - Roger Abounader
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
9
|
Dezfuli NK, Alipoor SD, Dalil Roofchayee N, Seyfi S, Salimi B, Adcock IM, Mortaz E. Evaluation Expression of miR-146a and miR-155 in Non-Small-Cell Lung Cancer Patients. Front Oncol 2021; 11:715677. [PMID: 34790566 PMCID: PMC8591170 DOI: 10.3389/fonc.2021.715677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Non−small-cell lung cancer (NSCLC) is the major type of lung cancer. MicroRNAs (miRNAs) are novel markers and targets in cancer therapy and can act as both tumor suppressors and oncogenes and affect immune function. The aim of this study was to investigate the expression of miR146a and miR155 in linked to blood immune cell phenotypes and serum cytokines in NSCLC patients. Methods Thirty-three NSCLC patients and 30 healthy subjects were enrolled in this study. The allele frequencies of potential DNA polymorphisms were studied using polymerase chain reaction (PCR)–restriction fragment length polymorphism (PCR-RFLP) analysis in peripheral blood samples. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of miR-146a and miR-155 in peripheral blood mononuclear cells (PBMCs). Serum cytokine (IL-1β, IL-6, TNF-α, TGF-β, IL-4, IFN-γ) levels were determined by ELISA. The frequency of circulating CD3+CTLA-4+ and CD4+CD25+FOXP3+ (T regulatory cells/Treg) expression was measured by flow cytometry. Results miR-146a was significantly downregulated in PBMC of NSCLC patients (P ≤ 0.001). Moreover, IL-6 and TGF-β levels were elevated in NSCLC patients (P ≤ 0.001, P ≤ 0.018, respectively). CD3+ CTLA-4+ and Treg cells frequencies were higher in patients than in control subjects (P ≤ 0.0001, P ≤ 0.0001, respectively). There was a positive correlation between miR-155 and IL-1β levels (r=0.567, p ≤ 0.001) and a negative correlation between miR-146a and TGF-β levels (r=-0.376, P ≤ 0.031) in NSCLC patients. No significant differences were found in the relative expression of miR-146a and miR-155, cytokine levels or immune cell numbers according to miR-146a and miR-155 (GG/GC/CC, TT/AT/AA) genotypes. However, there was a positive correlation between miR-146a and IL-1β levels (r=0.74, P ≤ 0.009) in GG subjects and a positive correlation between miR-146a expression and CD3+CTLA4+ cell frequency (r=0.79, P ≤ 0.01) in CC genotyped subjects. Conversely, a negative correlation between miR-146a expression and Treg cell frequency (r=−0.87, P ≤ 0.05) was observed with the GG genotype. A positive correlation between miR-155 and IL-1β expression (r=0.58, p ≤ 0.009) in the TT genotype and between miR-155 expression and CD3+CTLA-4 cell frequency (r=0.75, P ≤ 0.01) was observed in the AT genotype. Conclusions The current data suggest that the miR-146a expression in PBMC and serum TGF-β and IL-1β levels may act as blood markers in NSCLC patients. Further study is needed to elucidate the link between immune cells and serum miR146 at early disease stages.
Collapse
Affiliation(s)
- Neda K Dezfuli
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology and Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Neda Dalil Roofchayee
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seyfi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Salimi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang Y, Ma M, Li C, Yang Y, Wang M. GAS6-AS1 Overexpression Increases GIMAP6 Expression and Inhibits Lung Adenocarcinoma Progression by Sponging miR-24-3p. Front Oncol 2021; 11:645771. [PMID: 34513660 PMCID: PMC8426347 DOI: 10.3389/fonc.2021.645771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
GAS6 antisense RNA 1 (GAS6-AS1) is a long non-coding RNA involved in hepatocellular carcinoma and gastric cancer. However, the functional role of GAS6-AS1 in lung adenocarcinoma (LUAD) remains unclear. In the present study, qRT-PCR was used to measure the levels of GAS6-AS1, GIMAP6 and miR-24-3p expression in LUAD samples and cell lines. CCK-8 and colony formation assays were used to determine cell proliferation. Cell migration and invasion were evaluated using wound healing and transwell assays, respectively. The potential interactions between molecules were assessed using RNA immunoprecipitation and luciferase reporter assays. Western blot analysis was used to quantify protein expression. The anti-tumor effect of over-expressed GAS6-AS1 on LUAD was also examined in vivo in xenograft tumor experiments. The expression of GAS6-AS1 was notably downregulated in LUAD samples and cell lines and associated with a poor prognosis. GAS6-AS1 overexpression inhibited the migration and invasion of A549 and H1650 cells. Down-expressed GAS6-AS1 acted as a sponge for miR-24-3p and down-regulated the expression of its target, GTPase IMAP Family Member 6. These findings suggested that GAS6-AS1 might represent a potential diagnostic biomarker for LUAD.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Minge Ma
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan Li
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maolong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Xie Z, Rahman I, Goniewicz ML, Li D. Perspectives on Epigenetics Alterations Associated with Smoking and Vaping. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab022. [PMID: 35330676 PMCID: PMC8788872 DOI: 10.1093/function/zqab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
Epigenetic alterations, including DNA methylation, microRNA, and long noncoding RNA, play important roles in the pathogenesis of numerous respiratory health conditions and diseases. Exposure to tobacco smoking has been found to be associated with epigenetic changes in the respiratory tract. Marketed as a less harmful alternative to combustible cigarettes, electronic cigarette (e-cigarette) has rapidly gained popularity in recent years, especially among youth and young adults. Accumulative evidence from both animal and human studies has shown that e-cigarette use (vaping) is also linked to similar respiratory health conditions as observed with cigarette smoking, including wheezing, asthma, and COPD. This review aims to provide an overview of current studies on associations of smoking and vaping with epigenetic alterations in respiratory cells and provide future research directions in epigenetic studies related to vaping.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Address correspondence to D.L. (e-mail: )
| |
Collapse
|
12
|
Li Y, Dong R, Lu M, Cheng C, Feng Z, Zhao R, Liang J, Han J, Jiang J, Xu-Welliver M, Renaud S, Tian H. Let-7b-3p inhibits tumor growth and metastasis by targeting the BRF2-mediated MAPK/ERK pathway in human lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:1841-1856. [PMID: 34012797 PMCID: PMC8107730 DOI: 10.21037/tlcr-21-299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung cancer is a malignant tumor with the highest morbidity and mortality rates worldwide, of which lung adenocarcinoma (LUAD) is the most common subtype. Overall, current treatments of LUAD are not satisfactory; therefore, novel targets need to be explored. Let-7b-3p is an important member of the let-7 family of microRNAs (miRNAs), and has not been studied separately in LUAD. This study aimed to investigate the role and molecular mechanism of let-7b-3p in LUAD. Methods Herein, let-7b-3p expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH) assays. MTT, colony formation assay, flow cytometry analysis, wound-healing, Transwell and in vivo experiments were conducted to assess let-7b-3p’s function in LUAD. The downstream target TFIIB-related factor 2 (BRF2) was predicted using bioinformatics analyses and confirmed by dual-luciferase reporter assay and rescue experiments. Additionally, BRF2 was found to affect the MAPK/ERK pathway through transcriptome sequencing analysis and western blot (WB) assay. Results Let-7b-3p is downregulated in LUAD cells and tissue samples and low let-7b-3p expression is correlated with a poor prognosis in LUAD patients. Let-7b-3p suppresses the proliferation and metastasis of LUAD cells both in vivo and in vitro by directly targeting the BRF2-mediated MAPK/ERK pathway. Conclusions Let-7b-3p inhibits the development of LUAD and is an ideal novel therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Dong
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Lu
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanle Cheng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Jiang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Xu-Welliver
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stéphane Renaud
- Department of Thoracic Surgery, Institut Lorrain Du Coeur Et Des Vaisseaux Louis Mathieu, Nancy University Hospital, Nancy, France
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Serum Extracellular Vesicle-Derived miRNAs in Patients with Non-Small Cell Lung Cancer-Search for Non-Invasive Diagnostic Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11030425. [PMID: 33802346 PMCID: PMC7998231 DOI: 10.3390/diagnostics11030425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was a search for diagnostic and/or prognostic biomarkers in patients with non-small cell lung cancer (NSCLC) patients, based on circulating microRNAs (miRs: miR-23a, miR-361, miR-1228 and miR-let7i) in extracellular vesicles (EVs). Serum EVs were isolated from NSCLC patients (n = 31) and control subjects (n = 21). RNA was isolated from EVs and reverse transcription reaction was performed. Relative levels of miR-23a, miR-361, miR-1228 and miR-let7i were assessed in real-time qPCR using TaqMan probes. Analysis was based on the 2-ΔΔCT method. Statistically significant lower levels of miR-23a and miR-let7i were observed among NSCLC patients vs. control group: miR-23a, 0.054 vs. 0.107; miR-let7i, 0.193 vs. 0.369 (p = 0.003, p = 0.005, respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential of each individual serum EV-derived miRNA with an area under the curve AUC = 0.744 for miR-23a (p = 0.0003), 0.733 for miR-let7i (p = 0.0007). The decreased level of miR-23a in patients correlated with metastasis to lymph nodes and with AJCC tumor staging system. The results demonstrate that miR-23a and miR-let7i may prove clinically useful as significant, non-invasive markers in NSCLC diagnosis. Additionally, changing profile level of miR-23a that correlates with cancer development may be considered as an NSCLC progression marker.
Collapse
|
14
|
MicroRNAs: Emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in lung cancer. Cancer Lett 2021; 502:71-83. [PMID: 33453304 DOI: 10.1016/j.canlet.2020.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-related deaths, causing a devastating impact on human health. The clinical prognosis of lung cancer is usually restricted by delayed diagnosis and resistance to anticancer therapies. MicroRNAs, a range of small endogenous noncoding RNAs 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence reveals pivotal roles of microRNAs in regulating cell proliferation, migration, invasion and metastasis in lung cancer. An increasing number of preclinical and clinical studies have also explored the potential of microRNAs as promising biomarkers and new therapeutic targets for lung cancer. The current review summarizes the most recent progress on the functional mechanisms of microRNAs involved in lung cancer development and progression and further discusses the clinical application of miRNAs as putative therapeutic targets for molecular diagnosis and prognostic prediction in lung cancer.
Collapse
|
15
|
The miR-146a SNP Rs2910164 and miR-155 SNP rs767649 Are Risk Factors for Non-Small Cell Lung Cancer in the Iranian Population. Can Respir J 2020; 2020:8179415. [PMID: 33294082 PMCID: PMC7700047 DOI: 10.1155/2020/8179415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is one of the leading causes of death worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and may act as both tumor suppressors and as oncogenes. The presence of single nucleotide polymorphisms (SNPs) inside the miRNA genomic region could affect target miRNA maturation, expression, and binding to its target mRNA and contribute to cancer development. Previous studies on the SNPs Rs2910164 in miR-146a and Rs767649 in miR-155 showed association with non-small cell lung cancer (NSCLC) development. Thus, the aim of this study was to detect any correlation between those SNPs in Iranian NSCLC patients. Methods In a small cohort study, 165 NSCLC patients and 147 noncancer controls were enrolled between Apr 2015 and Sep 2019 at the Masih Daneshvari Hospital, Tehran, Iran. Allele frequencies from the genomic DNA of blood cells were studied using PCR-RFLP and their association with the risk of lung cancer was evaluated. Results The rs2910164C allele (OR = 1.56, 95% CI = 1.10–2.21, p = 0.012) and CC genotype (OR = 2.93, 95% CI = 1.07–7.9, p = 0.034, respectively) were associated with a significantly increased risk for lung cancer compared to that for the GG genotype. When patients were stratified according to smoking exposure, no association with rs2910164 variants was found. The AT genotype (OR = 0.57, 95% CI = 0.33–0.99, p = 0.048) and the A allele frequency (OR = 0.58, 95% CI = 0.35–0.98, p = 0.043) in rs767649 were lower in NSCLC patients in comparison with the control group. In addition, the rs767649 AT genotype frequency in smoking controls was higher than in smoking NSCLC patients (OR = 0.44, 95% CI = 0.21–0.90, p = 0.024). No association was found between rs2910164 and rs767649 variants and stage or type of NSCLC. Conclusion Our finding suggests that miR-146a rs2910164 and miR-155 rs767649 polymorphisms may be considered as genetic risk factors for the susceptibility to NSCLC in the Iranian population. However, a larger multicenter study across Iran is needed to confirm these findings.
Collapse
|
16
|
Zhuo E, Cai C, Liu W, Li K, Zhao W. Downregulated microRNA-140-5p expression regulates apoptosis, migration and invasion of lung cancer cells by targeting zinc finger protein 800. Oncol Lett 2020; 20:390. [PMID: 33193850 PMCID: PMC7656116 DOI: 10.3892/ol.2020.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in the diagnosis and treatment in recent years, lung cancer is still one of the primary causes of cancer-associated morbidity and mortality in globally. Abnormally expressed microRNAs (miRNAs/miRs) in tumor tissues serve vital roles in the pathological mechanism of tumors and have become prospective biomarkers for cancer diagnosis. The present study aimed to investigate the effects of the miR-140-5p/zinc finger protein 800 (ZNF800) axis in lung carcinoma, and determine its potential underlying molecular mechanisms. The degree of cell proliferation was assessed via the MTT assay, while the migratory and invasive abilities of lung cancer cells were determined via the Transwell and Matrigel assays. The expression levels of miR-140-5p and ZNF800 were detected via reverse transcription-quantitative PCR and western blot analyses. The results demonstrated that miR-140-5p expression was notably higher in normal human bronchial epithelial cells compared with the respective lung cancer cell lines, H292, PC-9, CL1-5 and H460. Furthermore, miR-140-5p expression increased in the lung cancer cells compared with the control cells following transfection with miR-140-5p mimic. Overexpressing miR-140-5p significantly suppressed the proliferative, invasive and migratory abilities of H460 and PC-9 cells, and stimulated cell apoptosis by upregulating the expression of cleaved-caspase-3. Notably, these effects were reversed following transfection with miR-140-5p inhibitor. miR-140-5p was predicted as a negative regulator of ZNF800, and ZNF800 knockdown significantly suppressed the proliferative and metastatic abilities of lung adenocarcinoma (LUAD) cells, which was comparable to the effects of miR-140-5p mimic. Taken together, these results suggest that miR-140-5p may block the malignant phenotype of LUAD by negatively regulating ZNF800 expression. Thus, the miR-140-5p/ZNF800 axis may be used as an alternative therapeutic target for lung carcinoma in general, and LUAD in particular.
Collapse
Affiliation(s)
- Enqing Zhuo
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Changqing Cai
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wenzhe Liu
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Kunsong Li
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wenzhen Zhao
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
17
|
Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: The next frontier in precision cancer medicine. Semin Cancer Biol 2020; 84:50-59. [PMID: 32950605 DOI: 10.1016/j.semcancer.2020.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/16/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Transcriptomics, which encompasses assessments of alternative splicing and alternative polyadenylation, identification of fusion transcripts, explorations of noncoding RNAs, transcript annotation, and discovery of novel transcripts, is a valuable tool for understanding cancer mechanisms and identifying biomarkers. Recent advances in high-throughput technologies have enabled large-scale gene expression profiling. Importantly, RNA expression profiling of tumor tissue has been successfully used to determine clinically actionable molecular alterations. The WINTHER precision medicine clinical trial was the first prospective trial in diverse solid malignancies that assessed both genomics and transcriptomics to match treatments to specific molecular alterations. The use of transcriptome analysis in WINTHER and other trials increased the number of targetable -omic changes compared to genomic profiling alone. Other applications of transcriptomics involve the evaluation of tumor and circulating noncoding RNAs as predictive and prognostic biomarkers, the improvement of risk stratification by the use of prognostic and predictive multigene assays, the identification of fusion transcripts that drive tumors, and an improved understanding of the impact of DNA changes as some genomic alterations are silenced at the RNA level. Finally, RNA sequencing and gene expression analysis have been incorporated into clinical trials to identify markers predicting response to immunotherapy. Many issues regarding the complexity of the analysis, its reproducibility and variability, and the interpretation of the results still need to be addressed. The integration of transcriptomics with genomics, proteomics, epigenetics, and tumor immune profiling will improve biomarker discovery and our understanding of disease mechanisms and, thereby, accelerate the implementation of precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA.
| | - Elena Fountzilas
- Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
| | - Leonidas Bleris
- Bioengineering Department, The University of Texas at Dallas, Richardson, TX, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| |
Collapse
|
18
|
Tepus M, Yau TO. Non-Invasive Colorectal Cancer Screening: An Overview. Gastrointest Tumors 2020; 7:62-73. [PMID: 32903904 DOI: 10.1159/000507701] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) follows a protracted stepwise progression, from benign adenomas to malignant adenocarcinomas. If detected early, 90% of deaths are preventable. However, CRC is asymptomatic in its early-stage and arises sporadically within the population. Therefore, CRC screening is a public health priority. Summary Faecal immunochemical test (FIT) is gradually replacing guaiac faecal occult blood test and is now the most commonly used screening tool for CRC screening program globally. However, FIT is still limited by the haemoglobin degradation and the intermittent bleeding patterns, so that one in four CRC cases are still diagnosed in a late stage, leading to poor prognosis. A multi-target stool DNA test (Cologuard, a combination of NDRG4 and BMP3 DNA methylation, KRAS mutations, and haemoglobin) and a plasma SEPT9 DNA methylation test (Epi proColon) are non-invasive tools also approved by the US FDA, but those screening approaches are not cost-effective, and the detection accuracies remain unsatisfactory. In addition to the approved tests, faecal-/blood-based microRNA and CRC-related gut microbiome screening markers are under development, with work ongoing to find the best combination of molecular biomarkers which maximise the screening sensitivity and specificity. Key Message Maximising the detection accuracy with a cost-effective approach for non-invasive CRC screening is urgently needed to further reduce the incidence of CRC and associated mortality rates.
Collapse
Affiliation(s)
- Melanie Tepus
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
19
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
20
|
Chen JL, Han HN, Lv XD, Ma H, Wu JN, Chen JR. Clinical value of exhaled breath condensate let-7 in non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:163-171. [PMID: 32211096 PMCID: PMC7061795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common causes of tumor-associated mortality worldwide. Early diagnosis is the key focus for improving prognosis. In the present study, the association between exhaled breath condensate (EBC) let-7 and NSCLC diagnosis and clinicopathologic characteristics was investigated in order to explore non-invasive simple technological therapeutic methods. The expression levels of let-7 from 180 samples were analyzed using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), consisting of 30 patients with NSCLC (lung cancer and para-carcinoma tissues, serum and EBC) and 30 healthy volunteers (serum and EBC). The results revealed that the let-7 levels in tumor tissues, serum, and EBC in NSCLC were significantly decreased compared with the control group (all, P<0.001). The let-7 expression in lung cancer tissue, serum, and EBC in NSCLC decreased alongside the progression of disease (tumor-node-metastasis stage and lymph node metastasis; all P<0.05). No significant association between let-7 expression and other clinicopathologic characteristics (age, sex, smoking status and histopathologic classification) was identified. A receiver operating characteristic curve (ROC) was used to present data and the area under the curve (AUC) of lung cancer tissue let-7 was 0.894, and the specificity and sensitivity were 90% and 93.3%, respectively. The AUC of serum let-7 in NSCLC diagnosis was 0.771, and the specificity and sensitivity were 86.7% and 60%, respectively. The AUC of let-7 in EBC was 0.750, and the specificity and sensitivity were 76.7% and 66.7%, respectively. In addition, the let-7 expression in EBC was positively correlated with that in lung cancer tissue (r=0.6048, P<0.001) and positively correlated with that in serum (r=0.6454, P<0.001). Taken together, the results of the present study indicated that detection of let-7 was feasible in EBC and with the advantages associated with EBC, and let-7 in EBC may be a promising biomarker for the diagnosis and evaluation of NSCLC.
Collapse
Affiliation(s)
- Jin-Liang Chen
- Department of Respiraology, Second Affiliated Hospital of Nantong University Nantong, China
| | - Hui-Na Han
- Department of Respiraology, Second Affiliated Hospital of Nantong University Nantong, China
| | - Xue-Dong Lv
- Department of Respiraology, Second Affiliated Hospital of Nantong University Nantong, China
| | - Hang Ma
- Department of Respiraology, Second Affiliated Hospital of Nantong University Nantong, China
| | - Jin-Nan Wu
- Department of Respiraology, Second Affiliated Hospital of Nantong University Nantong, China
| | - Jian-Rong Chen
- Department of Respiraology, Second Affiliated Hospital of Nantong University Nantong, China
| |
Collapse
|
21
|
Circulating MicroRNAs as Prognostic Molecular Biomarkers in Human Head and Neck Cancer: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2019; 2019:8632018. [PMID: 31827646 PMCID: PMC6885815 DOI: 10.1155/2019/8632018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Background Circulating microRNAs (miRNAs) are potential molecular biomarkers for cancer detection; however, little is known about their prognostic role in head and neck cancer. This current study is aimed at evaluating the role of novel miRNAs in the survival of head and neck cancer patients. Materials and Methods We performed a systematic literature search using online databases for articles published between December 2006 and February 2019. A meta-analysis was conducted to assess the correlation between miRNA expressions and overall survival (OS) among the selected head and neck cancer studies. After multilevel screening by reviewers, meta-analysis was performed using hazard ratios (HR) and associated 95% confidence interval (CI) of survival to calculate a pooled effect size. Result A total of 1577 patients across 13 studies were included in the literature review, with 18 miRNAs upregulated and 4 miRNAs downregulated predicting a poor overall survival. The forest plot generated using cumulated survival data resulted in a pooled HR value of 2.943 (95% CI: 2.394-3.618) indicating a strong association of dysregulated miRNA expression with a poor outcome. Only 2 miRNAs—low levels of miR-9 and high levels of miR-483-5p—were observed in two studies, both showing a significant association with overall cancer survival. Conclusion To our knowledge, this is the first comprehensive systematic review and meta-analysis that examines the prognostic role of circulating miRNAs from blood in head and neck cancer patients. The combined effect estimates a HR across multiple studies and also supports the previous individual findings that an alteration in miRNA expression is highly associated with poor prognosis. This has the potential to use serum and/or plasma miRNAs as biomarkers and become novel tools for predicting the prognosis of head and neck cancer patients in the near future.
Collapse
|
22
|
Shao C, Yang F, Qin Z, Jing X, Shu Y, Shen H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: a systematic review with meta-analysis. BMC Cancer 2019; 19:1103. [PMID: 31727002 PMCID: PMC6854776 DOI: 10.1186/s12885-019-6297-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, a growing number of studies have reported the coorelation between miR-155 and the diagnosis and prognosis of lung cancer, but results of these researches were still controversial due to insufficient sample size. Thus, we carried out the systematic review and meta-analysis to figure out whether miR-155 could be a screening tool in the detection and prognosis of lung cancer. METHODS A meta-analysis of 13 articles with 19 studies was performed by retrieving the PubMed, Embase and Web of Science. We screened all correlated literaters until December 1st, 2018. For the diagnosis analysis of miR-155 in lung cancer, sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the ROC curve (AUC) were pooled to evaluate the accuracy of miRNA-155 in the diagnosis of lung cancer. For the prognosis analysis of miR-155 in lung cancer, the pooled HRs and 95% CIs of miR-155 for overall survival/disease free survival/progression-free survival (OS/DFS/PFS) were calculated. In addition, Subgroup and meta-regression analyses were performed to distinguish the potential sources of heterogeneity between studies. RESULTS For the diagnostic analysis of miR-155 in lung cancer, the pooled SEN and SPE were 0.82 (95% CI: 0.72-0.88) and 0.78 (95% CI: 0.71-0.84), respectively. Besides, the pooled PLR was 3.75 (95% CI: 2.76-5.10), NLR was 0.23 (95% CI: 0.15-0.37), DOR was 15.99 (95% CI: 8.11-31.52) and AUC was 0.87 (95% CI: 0.84-0.90), indicating a significant value of miR-155 in the lung cancer detection. For the prognostic analysis of miR-155 in lung cancer, up-regulated miRNA-155 expression was not significantly associated with a poor OS (pooled HR = 1.26, 95% CI: 0.66-2.40) or DFS/PFS (pooled HR = 1.28, 95% CI: 0.82-1.97). CONCLUSIONS The present meta-analysis demonstrated that miR-155 could be a potential biomarker for the detection of lung cancer but not an effective biomarker for predicting the outcomes of lung cancer. Furthermore, more well-designed researches with larger cohorts were warranted to confirm the value of miR-155 for the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chuchu Shao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengming Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinming Jing
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Kang X, Kong F, Wu S, Liu Q, Yang C, Wu X, Zhang W. microRNA-612 suppresses the malignant development of non-small-cell lung cancer by directly targeting bromodomain-containing protein 4. Onco Targets Ther 2019; 12:4167-4179. [PMID: 31213835 PMCID: PMC6549771 DOI: 10.2147/ott.s204004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/06/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Aberrant expression of microRNAs (miRNAs) in non-small-cell lung cancer (NSCLC) has been reported. Dysregulation of miRNAs exerts tumor-suppressing or tumor-promoting actions on the pathology and biological behaviors of NSCLC. miR-612 is associated with many types of human cancer; however, the expression, potential roles, and regulatory mechanisms of miR-612 in NSCLC remain unclear. Material and methods: Here, the expression level of miR-612 in NSCLC tissue specimens and a panel of cell lines were evaluated by RT-qPCR. Cell-Counting Kit 8, flow cytometry, Transwell migration and invasion, and in vivo tumor growth assays were performed to determine the functional role of miR-612 in malignant phenotypes of NSCLC cells. The molecular mechanism underlying the tumor-suppressive roles of miR-612 in NSCLC was investigated. Results: miR-612 was expressed at low levels in NSCLC, and low miR-612 expression was significantly correlated with TNM stage and lymph node metastasis. NSCLC patients with low miR-612 expression had shorter overall survival rate than those with high levels. Exogenous miR-612 expression decreased proliferation, migration, and invasion, and promoted apoptosis of NSCLC cells in vitro. miR-612 upregulation hindered NSCLC tumor growth in vivo. Bromodomain-containing protein 4 (BRD4) was confirmed as a direct target gene of miR-612 in NSCLC cells. BRD4 was obviously overexpressed in human NSCLC tissues and inverse correlated with miR-612 expression. Inhibition of BRD4 expression simulated the tumor-suppressive functions of miR-612 overexpression in NSCLC cells. Reintroduction of miR-612 expression abrogated the miR-612-mediated suppressive effects on NSCLC cells. BRD4 upregulation inhibited activation of the PI3K/Akt pathway in NSCLC cells in vitro and in vivo. Conclusion: This study supports the first evidence that miR-612 exerts tumor-suppressive roles in the aggressive behaviors of NSCLC cells in vitro and in vivo through direct targeting BRD4 and deactivating the PI3K/Akt pathway. Thus, miR-612 might be a promising target for anticancer therapies in patients with NSCLC.
Collapse
Affiliation(s)
- Xiaowen Kang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Shijie Wu
- Department of Respiration, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163000, People's Republic of China
| | - Qiushuang Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Chengcheng Yang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Xiaomei Wu
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, People's Republic of China
| | - Wei Zhang
- Department of Respiration, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, People's Republic of China
| |
Collapse
|
24
|
Kong X, Qi J, Yan Y, Chen L, Zhao Y, Fang Z, Fan J, Liu M, Liu Y. Comprehensive analysis of differentially expressed profiles of lncRNAs, mRNAs, and miRNAs in laryngeal squamous cell carcinoma in order to construct a ceRNA network and identify potential biomarkers. J Cell Biochem 2019; 120:17963-17974. [PMID: 31127661 DOI: 10.1002/jcb.29063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xinru Kong
- Clinical Medical College Weifang Medical University Weifang P.R. China
| | - Jixia Qi
- Clinical Medical College Weifang Medical University Weifang P.R. China
| | - Yao Yan
- Clinical Medical College Weifang Medical University Weifang P.R. China
| | - Liwei Chen
- Hainan Hospital of Chinese PLA General Hospital Sanya P.R. China
| | - Yali Zhao
- Central Lab Hainan Hospital of Chinese PLA General Hospital Sanya P.R. China
| | - Zhongju Fang
- Clinical Medical College Weifang Medical University Weifang P.R. China
| | - Junda Fan
- Hainan Hospital of Chinese PLA General Hospital Sanya P.R. China
| | - Mingbo Liu
- Hainan Hospital of Chinese PLA General Hospital Sanya P.R. China
- Clinical Medical Research Center for Otolaryngology Head and Neck Diseases of Hainan Province Sanya P.R. China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery The First Affiliated Hospital of Anhui Medical University Hefei P.R. China
| |
Collapse
|