1
|
Amer N, Hesham D, Al-Shehaby N, Elshoky HA, Amer M, Magdeldin S, Mansour M, Abou-Aisha K, El-Naggar S. LC3A-mediated autophagy elicits PERK-eIF2α-ATF4 axis activation and mitochondrial dysfunction: Exposing vulnerability in aggresome-positive cancer cells. J Biol Chem 2024; 300:107398. [PMID: 38777145 PMCID: PMC11227016 DOI: 10.1016/j.jbc.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The unfolded protein response pathways (UPR), autophagy, and compartmentalization of misfolded proteins into inclusion bodies are critical components of the protein quality control network. Among inclusion bodies, aggresomes are particularly intriguing due to their association with cellular survival, drug resistance, and aggresive cancer behavior. Aggresomes are molecular condensates formed when collapsed vimentin cages encircle misfolded proteins before final removal by autophagy. Yet significant gaps persist in the mechanisms governing aggresome formation and elimination in cancer cells. Understanding these mechanisms is crucial, especially considering the involvement of LC3A, a member of the MAP1LC3 family, which plays a unique role in autophagy regulation and has been reported to be epigenetically silenced in many cancers. Herein, we utilized the tetracycline-inducible expression of LC3A to investigate its role in choroid plexus carcinoma cells, which inherently exhibit the presence of aggresomes. Live cell imaging was employed to demonstrate the effect of LC3A expression on aggresome-positive cells, while SILAC-based proteomics identified LC3A-induced protein and pathway alterations. Our findings demonstrated that extended expression of LC3A is associated with cellular senescence. However, the obstruction of lysosomal degradation in this context has a deleterious effect on cellular viability. In response to LC3A-induced autophagy, we observed significant alterations in mitochondrial morphology, reflected by mitochondrial dysfunction and increased ROS production. Furthermore, LC3A expression elicited the activation of the PERK-eIF2α-ATF4 axis of the UPR, underscoring a significant change in the protein quality control network. In conclusion, our results elucidate that LC3A-mediated autophagy alters the protein quality control network, exposing a vulnerability in aggresome-positive cancer cells.
Collapse
Affiliation(s)
- Nada Amer
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt; Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Dina Hesham
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt; Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Hisham A Elshoky
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - May Amer
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Manar Mansour
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Shahenda El-Naggar
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt.
| |
Collapse
|
2
|
Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci 2023; 136:jcs260631. [PMID: 37199330 PMCID: PMC10214848 DOI: 10.1242/jcs.260631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Autophagy is a catabolic cellular process that targets and eliminates superfluous cytoplasmic components via lysosomal degradation. This evolutionarily conserved process is tightly regulated at multiple levels as it is critical for the maintenance of homeostasis. Research in the past decade has established that dysregulation of autophagy plays a major role in various diseases, such as cancer and neurodegeneration. However, modulation of autophagy as a therapeutic strategy requires identification of key players that can fine tune the induction of autophagy without complete abrogation. In this Review, we summarize the recent discoveries on the mechanism of regulation of ATG (autophagy related) gene expression at the level of transcription, post transcription and translation. Furthermore, we briefly discuss the role of aberrant expression of ATG genes in the context of cancer.
Collapse
Affiliation(s)
- Shree Padma Metur
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Liu Z, Zhang K, Zhao Z, Qin Z, Tang H. Prognosis-related autophagy genes in female lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e28500. [PMID: 35029906 PMCID: PMC8735786 DOI: 10.1097/md.0000000000028500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
To screen the prognosis-related autophagy genes of female lung adenocarcinoma by the transcriptome data and clinical data from The Cancer Genome Atlas (TCGA) database.In this study, screen meaningful female lung adenocarcinoma differential genes in TCGA, use univariate Cox proportional regression model to select genes related to prognosis, and establish the best risk model. In this study, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were applied for carrying out bioinformatics analysis of gene function.The gene expression and clinical data of 264 female lung adenocarcinoma patient samples were downloaded from TCGA. Twelve down-regulated genes: NRG3, DLC1, NLRC4, DAPK2, HSPB8, PPP1R15A, FOS, NRG1, PRKCQ, GRID1, MAP1LC3C, GABARAPL1. Up-regulated 15 genes: PARP1, BNIP3, P4HB, ATIC, IKBKE, ITGB4, VMP1, PTK6, EIF4EBP1, GAPDH, ATG9B, ERO1A, TMEM74, CDKN2A, BIRC5. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were significantly associated with autophagy and mitochondria (animals). Multifactor Cox analysis of autophagy-related genes showed that ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as independent prognostic indicators. According to the multivariate Cox proportional hazard regression model, there was a significant difference in the survival rate observed between the high-risk group (n = 124) and the low-risk group (n = 126) during the 10-year follow-up (P < .05). Univariate Cox analysis showed that tumor stage, T, M, and N stages, and risk score were all related to the survival rate of female lung adenocarcinoma patients. Multivariate Cox analysis found that autophagy-related risk scores were independent predictors, with an area under curve (AUC) value of 0.842. At last, there is autophagy genes differentially expressed among various clinicopathological parameters: ATG4A, BAK1, CCR2, DLC1, ERO1A, FKBP1A, ITGA6.The risk score can be used as an independent prognostic indicator for female patients with lung adenocarcinoma. The autophagy genes ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as prognostic genes in female lung adenocarcinoma, which may be the targets of treatment in the future.
Collapse
Affiliation(s)
- Zhongxiang Liu
- Department of Pulmonary and Critical Care Medicine, Yancheng First People's Hospital, Yancheng, China
| | - Koudong Zhang
- Department of Pulmonary and Critical Care Medicine, Yancheng First People's Hospital, Yancheng, China
| | - Zhangyan Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhu Qin
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haicheng Tang
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Li D, He C, Ye F, Ye E, He H, Chen G, Zhang J. p62 Overexpression Promotes Bone Metastasis of Lung Adenocarcinoma out of LC3-Dependent Autophagy. Front Oncol 2021; 11:609548. [PMID: 34094898 PMCID: PMC8175982 DOI: 10.3389/fonc.2021.609548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
p62 protein has been implicated in bone metastasis and is a multifunctional adaptor protein usually correlated with autophagy. Herein, we investigated p62 expression and its prognostic significance in bone metastasis of lung adenocarcinoma, and analyzed whether the mechanism involved depends on autophagy. mRNA and protein expression of p62, LC3B and Beclin 1 were detected by reverse transcription-quantitative PCR and western blotting, respectively, in fresh bone metastasis tissues (n=6 cases) and normal cancellous bone tissues (n=3 cases). The association between p62 and LC3B expression and patient prognosis was subsequently analyzed in 62 paraffin-embedded bone metastasis specimens by immunohistochemistry assay. Small interfering RNA (siRNA) was employed to downregulate p62 expression in SPC-A-1 and A549 cells. Cell proliferation and migration ability were tested by CCK8, CCF and Transwell assays respectively. Autophagy was induced by Rapamycin or inhibited by Atg 7 knockout/Chloroquine in A549 cells and p62 and LC3II/I expression were analyzed. After subcutaneous inoculation or intracardial injection of A549 cells into nude mice, the effect of p62 downregulation in vivo was analyzed by histopathological examination. The results showed that p62, LC3B and Beclin 1 mRNA and protein were all overexpressed in bone metastasis tissues (all P<0.01). Patient samples with high p62 expression levels were significantly associated with more bone lesions (>3), shorter overall survival rates and shorter progression free survival rates compared with patients having lower p62 expression (P=0.014, P=0.003, P=0.048, respectively). Cox regression analysis identified p62 expression as an independent prognostic indicator of overall survival of patients with bone metastasis (P=0.007). In vitro p62 downregulation inhibited SPC-A-1 and A549 cells migration but had no effect on cell proliferation. After autophagy induction or inhibition, p62 expression involved in autophagy flux and changed inconsistently according to the switch of LC3I to LC3II in different autophagy conditions. In vivo p62 downregulation had no effect on growth of subcutaneous tumor. Lung or bone metastasis lesion was not found in all mice model. These findings suggested that p62 overexpression promotes tumor cell invasion out of LC3-dependent autophagy, which could be used a potential prognostic biomarker and therapeutic target for bone metastasis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Chuanchun He
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Fan Ye
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - En Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Hao He
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Gong Chen
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Jing Zhang
- Department of Orthopaedics, Bone and Soft Tissue Tumors Research Center of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Zhao R, Xiao H, Jin T, Xu F, Li Y, Li H, Zhang Z, Zhang Y. Naringenin promotes cell autophagy to improve high-fat-diet-induced atherosclerosis in ApoE-/- mice. ACTA ACUST UNITED AC 2021; 54:e9764. [PMID: 33624733 PMCID: PMC7894389 DOI: 10.1590/1414-431x20209764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022]
Abstract
Naringenin (NAR) is a major flavanone in citrus fruits that has multiple pharmacological attributes such as anticancer and antiatherogenic. This study aims to investigate the mechanism of NAR in high-fat-diet (HFD)-induced atherosclerosis (AS) in apolipoprotein E-knockout (ApoE-/-) mice. A HFD-induced AS ApoE-/- mouse model was established. The mice were treated with HFD, different doses of NAR and simvastatin (Simv). After drug treatment, the levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), superoxide dismutase (SOD), and alanine aminotransferase (ALT) were determined. The expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was detected using qRT-PCR and enzyme-linked immunosorbent assay. The plaque area of the aorta of AS mice was determined using oil red O staining. Western blot analysis was applied to measure the levels of autophagy-related proteins [protein 1 light chain 3B (LC3B), beclin 1, and p62]. The TC, TG, LDL-C, TNF-α, ALT, and MDA levels were significantly increased while the HDL-C, SOD, and GSH-Px levels were decreased in the HFD-induced AS ApoE-/- mice. NAR treatment reversed the expression of the above indicators in mice. After they were treated with different doses of NAR, the LC3B and beclin 1 levels were improved while the p62 protein level was decreased. This study suggested that NAR could promote cell autophagy to improve HFD-induced AS in ApoE-/- mice.
Collapse
Affiliation(s)
- Ruifeng Zhao
- Department of Interventional Therapy, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Hanyan Xiao
- Department of Neurology, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Tao Jin
- Department of Neurology, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Feng Xu
- Department of Geriatrics, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan Li
- Department of Pain Management, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Haiyan Li
- Department of Pain Management, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zhouyi Zhang
- Department of Pain Management, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan Zhang
- Department of Neurology, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
6
|
Wu J, Wu Y, Lian X. Targeted inhibition of GRP78 by HA15 promotes apoptosis of lung cancer cells accompanied by ER stress and autophagy. Biol Open 2020; 9:bio053298. [PMID: 33115703 PMCID: PMC7673357 DOI: 10.1242/bio.053298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the pathophysiological role of GRP78 in the survival of lung cancer cells. Lung cancer patient data from public databases were used to analyze the expression of GRP78 and its influence on prognoses. In vivo, GRP78 protein expression was analyzed in an established urethane-induced lung tumor mouse model. In vitro, the effects of targeted inhibition of GRP78 by HA15 in lung cancer cells were assessed, with cell viability analyzed using a CCK-8 assay, cell proliferation using an EdU assay, apoptosis and cell cycle using flow cytometry, subcellular structure using electron microscopy, and relative mRNA and protein expression using RT-PCR, western blotting or immunofluorescence assays. The results showed that GRP78 was highly expressed in the lung tissue of lung cancer mice model or patients, and was associated with a poor prognosis. After inhibition of GRP78 in lung cancer cells by HA15, cell viability was decreased in a dose- and time-dependent manner, proliferation was suppressed and apoptosis promoted. Unfolded protein response signaling pathway proteins were activated, and the autophagy-related proteins and mRNAs were upregulated. Therefore, targeted inhibition of GRP78 by HA15 promotes apoptosis of lung cancer cells accompanied by ER stress and autophagy.
Collapse
Affiliation(s)
- Jingjing Wu
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Youqile Wu
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, P.R. China
- Department of Child Health Care, Mianyang Maternity and Child Healthcare Hospital, Sichuan 621000, P.R. China
| | - Xuemei Lian
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing 400016, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Wang L, Tian M, Hao Y. Role of p75 neurotrophin receptor in neuronal autophagy in intracerebral hemorrhage in rats through the mTOR signaling pathway. Cell Cycle 2020; 19:376-389. [PMID: 31924125 DOI: 10.1080/15384101.2019.1711318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rupture of weakened blood vessels could lead to severe intracerebral hemorrhage (ICH) and brain injuries. This study was designed to explore the roles of p75 neurotrophin receptor (p75NTR) in neuronal autophagy in ICH rats. An ICH rat model was established, and then gain and loss of functions of p75NTR in rat tissues were performed. Then, the pathologic morphology, water content, and inflammation in brain tissues were assessed. Western blot analysis was applied to detect the levels of inflammatory proteins, apoptosis- and autophagy-related proteins, and the mammalian target of rapamycin (mTOR) pathway-related proteins. Neuronal autophagy was further measured with mTOR activated. In vitro experiments were also performed on brain microvascular endothelial cells (BMECs) and astrocytes. Consequently, we found p75NTR knockdown improved the pathologic morphology with reduced neuron damage, water content, permeability of blood-brain barrier and inflammation in ICH rat brain tissues. Besides, Knockdown of p75NTR decreased neuronal apoptosis and inactivated mTOR signaling pathway, but it elevated the levels of autophagy-related proteins. In vivo results were reproduced in in vitro experiments. This study demonstrated that knockdown of p75NTR could promote neuronal autophagy and reduce neuronal apoptosis via inactivating the mTOR pathway. We hope these findings could provide new therapeutic options for ICH treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of emergency medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Meilei Tian
- Department of emergency medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Yugui Hao
- Department of emergency medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| |
Collapse
|
8
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|