1
|
Ahmed IA, Sun J, Kong MJ, Khosrotehrani K, Shafiee A. Generating Skin-Derived Precursor-Like Cells From Human-Induced Pluripotent Stem Cell-Derived Skin Organoids. Exp Dermatol 2024; 33:e70017. [PMID: 39582396 DOI: 10.1111/exd.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Skin-derived precursor (SKPs) cells are multipotent stem cells found in the dermis that contribute to wound healing and induce hair follicle neogenesis when transplanted. The clinical application of adult human SKPs, however, is hindered by their loss of potency after in vitro expansion. To overcome this challenge, we aimed to isolate SKPs from human-induced pluripotent stem cell-derived skin organoids (SKOs), to enable mass production of these cells for therapeutics. We developed a protocol to isolate skin-derived precursor-like cells (SKP-like cells) from human SKOs. SKP-like cells derived from SKOs exhibited characteristic spheroid morphology and were capable of self-renewal in defined SKP growth medium. Immunofluorescence analysis confirmed the expression of key markers, including SOX2, fibronectin and S100β, within the SKP-like cells. The findings of this pilot study shed light on the potential of SKO-derived SKP-like cells for future hair regenerative applications. Furthermore, this research highlights the application of human SKOs as a valuable source for isolating progenitor cells, aiming to advance hair regeneration and restore skin function.
Collapse
Affiliation(s)
- Imaan A Ahmed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Min Jie Kong
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abbas Shafiee
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Queensland Health, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
3
|
Llamas-Molina JM, Carrero-Castaño A, Ruiz-Villaverde R, Campos A. Tissue Engineering and Regeneration of the Human Hair Follicle in Androgenetic Alopecia: Literature Review. Life (Basel) 2022; 12:117. [PMID: 35054510 PMCID: PMC8779163 DOI: 10.3390/life12010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/26/2022] Open
Abstract
Androgenetic alopecia (AGA) is an androgen-dependent process and represents the most frequent non-scarring alopecia. Treatments for AGA do not always achieve a satisfactory result for the patient, and sometimes cause side effects that lead to discontinuation of treatment. AGA therapeutics currently includes topical and oral drugs, as well as follicular unit micro-transplantation techniques. Tissue engineering (TE) is postulated as one of the possible future solutions to the problem and aims to develop fully functional hair follicles that maintain their cyclic rhythm in a physiological manner. However, despite its great potential, reconstitution of fully functional hair follicles is still a challenge to overcome and the knowledge gained of the key processes in hair follicle morphogenesis and biology has not yet been translated into effective replacement therapies in clinical practice. To achieve this, it is necessary to research and develop new approaches, techniques and biomaterials. In this review, present and emerging hair follicle bioengineering strategies are evaluated. The current problems of these bioengineering techniques are discussed, as well as the advantages and disadvantages, and the future prospects for the field of TE and successful hair follicle regeneration.
Collapse
Affiliation(s)
| | | | - Ricardo Ruiz-Villaverde
- Department of Dermatology, Hospital Universitario San Cecilio, 18016 Granada, Spain;
- Instituto Biosanitario de Granada, Ibs, 18016 Granada, Spain;
| | - Antonio Campos
- Instituto Biosanitario de Granada, Ibs, 18016 Granada, Spain;
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
4
|
Kossard S. Eruptive Necrotizing Infundibular Crystalline Folliculitis: An Expression of an Abortive Sebaceous Follicular Repair Pathway Linked to Committed Infundibular Stem Cells? Am J Dermatopathol 2021; 43:867-870. [PMID: 34735106 PMCID: PMC8601669 DOI: 10.1097/dad.0000000000002022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Necrotizing infundibular crystalline folliculitis is a rare entity, which is a distinctive clinical and histopathological entity. Eruptive yellow waxy umbilicated folliculocentric plugs clinically correspond to pale crystalline filaments embedded in an amorphous sebum-rich material. Remarkably, only the superficial infundibular ostia remain, and the distended cavity is devoid of a follicular or sebaceous gland remnant. The pathogenesis of this enigmatic event remains to be established. The emergence of necrotizing infundibular crystalline folliculitis (NICF) as a paradoxical side effect of antitumor inhibitors epidermal growth factor receptor vascular endothelial growth factor and more recently programmed death-1 represents the expression of altered molecular pathways that underpin the pathogenesis of NICF. To explore these pathways, it is necessary to explore the hierarchy of follicular stem cells, particularly the potential role of committed infundibular stem cells that play a key role in wound healing. Committed infundibular stem cells are closely linked to the sebaceous gland stem cell axis, and this has relevance in the process of homeostatic repair of sebaceous follicles in the wake of folliculitis. The unscheduled modulation of this infundibular homeostatic sebaceous repair axis by epidermal growth factor receptor vascular endothelial growth factor, and programmed death-1 may lead to an aberrant outcome with metaplasia of infundibular keratinocytes to sebocytes. In the absence of sebaceous gland differentiation, these metaplastic infundibular sebocyte cells would lead to the consumption and loss of the infundibulum as a result of holocrine sebum production. This conceptual pathogenic pathway for NICF is constructed by incorporating recent advances in the fields of follicular stem cells, wound repair, follicular homeostasis, regulatory T cells, and molecular pathways linked to the biologicals inducing NICF.
Collapse
Affiliation(s)
- Steven Kossard
- Laverty Pathology, Kossard Dermatopatholgists, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Yu M, Gu G, Cong M, Du M, Wang W, Shen M, Zhang Q, Shi H, Gu X, Ding F. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomater 2021; 134:190-203. [PMID: 34289422 DOI: 10.1016/j.actbio.2021.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Our previous studies have shown that extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth of sensory and motor neurons in vitro. This study was aimed at generating an artificial nerve graft incorporated with SKP-SC-EVs to examine in vivo effects of SKP-SC-EVs on peripheral nerve regeneration. Here SKP-SC-EVs were isolated and then identified by morphological observation and phenotypic marker expression. Following co-culture with SCs or motoneurons, SKP-SC-EVs were internalized, showing the capability to enhance SC viability or motoneuron neurite outgrowth. In vitro, SKP-SC-EVs released from Matrigel could maintain cellular uptake property and neural activity. Nerve grafts were developed by incorporating Matrigel-encapsulated SKP-SC-EVs into silicone conduits. Functional evaluation, histological investigation, and morphometric analysis were performed to compare the nerve regenerative outcome after bridging the 10-mm long sciatic nerve defect in rats with our developed nerve grafts, silicone conduits (filled with vehicle), and autografts respectively. Our developed nerve grafts significantly accelerated the recovery of motor, sensory, and electrophysiological functions of rats, facilitated outgrowth and myelination of regenerated axons, and alleviated denervation-induced atrophy of target muscles. Collectively, our findings suggested that incorporation of SKP-SC-EVs into nerve grafts might represent a promising paradigm for peripheral nerve injury repair. STATEMENT OF SIGNIFICANCE: Nerve grafts have been progressively developed to meet the increasing requirements for peripheral nerve injury repair. Here we reported a design of nerve grafts featured by incorporation of Matrigel-encapsulated extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs), because SKP-SC-EVs were found to possess in vitro neural activity, thus raising the possibility of cell-free therapy. Our developed nerve grafts yielded the satisfactory outcome of nerve grafting in rats with a 10-mm long sciatic nerve defect, as evaluated by functional and morphological assessments. The promoting effects of SKP-SC-EVs-incorporating nerve grafts on peripheral nerve regeneration might benefit from in vivo biological cues afforded by SKP-SC-EVs, which had been released from Matrigel and then internalized by residual neural cells in sciatic nerve stumps.
Collapse
Affiliation(s)
- Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guohao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingzhi Du
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
6
|
Höving AL, Windmöller BA, Knabbe C, Kaltschmidt B, Kaltschmidt C, Greiner JFW. Between Fate Choice and Self-Renewal-Heterogeneity of Adult Neural Crest-Derived Stem Cells. Front Cell Dev Biol 2021; 9:662754. [PMID: 33898464 PMCID: PMC8060484 DOI: 10.3389/fcell.2021.662754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells of the neural crest (NC) vitally participate to embryonic development, but also remain in distinct niches as quiescent neural crest-derived stem cell (NCSC) pools into adulthood. Although NCSC-populations share a high capacity for self-renewal and differentiation resulting in promising preclinical applications within the last two decades, inter- and intrapopulational differences exist in terms of their expression signatures and regenerative capability. Differentiation and self-renewal of stem cells in developmental and regenerative contexts are partially regulated by the niche or culture condition and further influenced by single cell decision processes, making cell-to-cell variation and heterogeneity critical for understanding adult stem cell populations. The present review summarizes current knowledge of the cellular heterogeneity within NCSC-populations located in distinct craniofacial and trunk niches including the nasal cavity, olfactory bulb, oral tissues or skin. We shed light on the impact of intrapopulational heterogeneity on fate specifications and plasticity of NCSCs in their niches in vivo as well as during in vitro culture. We further discuss underlying molecular regulators determining fate specifications of NCSCs, suggesting a regulatory network including NF-κB and NC-related transcription factors like SLUG and SOX9 accompanied by Wnt- and MAPK-signaling to orchestrate NCSC stemness and differentiation. In summary, adult NCSCs show a broad heterogeneity on the level of the donor and the donors' sex, the cell population and the single stem cell directly impacting their differentiation capability and fate choices in vivo and in vitro. The findings discussed here emphasize heterogeneity of NCSCs as a crucial parameter for understanding their role in tissue homeostasis and regeneration and for improving their applicability in regenerative medicine.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre North Rhine-Westphalia (NRW), Ruhr University Bochum, Bad Oeynhausen, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Bielefeld, Germany
| |
Collapse
|
7
|
Faye PA, Poumeaud F, Chazelas P, Duchesne M, Rassat M, Miressi F, Lia AS, Sturtz F, Robert PY, Favreau F, Benayoun Y. Focus on cell therapy to treat corneal endothelial diseases. Exp Eye Res 2021; 204:108462. [PMID: 33493477 DOI: 10.1016/j.exer.2021.108462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
The cornea is a multi-layered structure which allows fine refraction and provides both resistance to external insults and adequate transparency. The corneal endothelium ensures stromal hydration, failure of which, such as in Fuchs endothelial corneal dystrophy, after trauma or in aging, may lead to loss of corneal transparency and induce blindness. Currently, no efficient therapeutic alternatives exist except for corneal grafting. Thus corneal tissue engineering represents a valuable alternative approach, which may overcome cornea donor shortage. Several studies describe protocols to isolate, differentiate, and cultivate corneal endothelial cells (CEnCs) in vitro. Two main in vitro strategies can be described: expansion of eye-native cell populations, such as CEnCs, or the production and expansion of CEnCs from non-eye native cell populations, such as induced Pluripotent Stem Cells (iPSCs). The challenge with these cells is to obtain a monolayer of CEnCs on a biocompatible carrier, with a specific morphology (flat hexagonal cells), and with specific functions such as programmed cell cycle arrest. Another issue for this cell culture methodology is to define the adapted protocol (media, trophic factors, timeframe) that can mimic physiological development. Additionally, contamination by other cell types still represents a huge problem. Thus, purification methods, such as Fluorescence Activated Cell Sorting (FACS), Magnetic Ativated Cell Sorting (MACS) or Sedimentation Field Flow Fractionation (SdFFF) are useful. Animal models are also crucial to provide a translational approach for these therapies, integrating macro- and microenvironment influences, systemic hormonal or immune responses, and exogenous interactions. Non-eye native cell graft protocols are constantly improving both in efficacy and safety, with the aim of being the most suitable candidate for corneal therapies in future routine practice. The aim of this work is to review these different aspects with a special focus on issues facing CEnC culture in vitro, and to highlight animal graft models adapted to screen the efficacy of these different protocols.
Collapse
Affiliation(s)
- Pierre Antoine Faye
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France.
| | - François Poumeaud
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Pauline Chazelas
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Mathilde Duchesne
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU de Limoges, Laboratoire de Neurologie, F-87000, Limoges, France; CHU de Limoges, Service d'Anatomie Pathologique, F-87000, Limoges, France
| | - Marion Rassat
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Federica Miressi
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Anne Sophie Lia
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU Limoges, UF de Bioinformatique, F-87000, Limoges France
| | - Franck Sturtz
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | | | - Frédéric Favreau
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Yohan Benayoun
- Chénieux Ophtalmologie, Polyclinique de Limoges ELSAN, F-87000, Limoges, France
| |
Collapse
|
8
|
Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells 2020; 9:E1990. [PMID: 32872454 PMCID: PMC7565191 DOI: 10.3390/cells9091990] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Functional recovery after neurotmesis, a complete transection of the nerve fiber, is often poor and requires a surgical procedure. Especially for longer gaps (>3 mm), end-to-end suturing of the proximal to the distal part is not possible, thus requiring nerve graft implantation. Artificial nerve grafts, i.e., hollow fibers, hydrogels, chitosan, collagen conduits, and decellularized scaffolds hold promise provided that these structures are populated with Schwann cells (SC) that are widely accepted to promote peripheral and spinal cord regeneration. However, these cells must be collected from the healthy peripheral nerves, resulting in significant time delay for treatment and undesired morbidities for the donors. Therefore, there is a clear need to explore the viable source of cells with a regenerative potential similar to SC. For this, we analyzed the literature for the generation of Schwann cell-like cells (SCLC) from stem cells of different origins (i.e., mesenchymal stem cells, pluripotent stem cells, and genetically programmed somatic cells) and compared their biological performance to promote axonal regeneration. Thus, the present review accounts for current developments in the field of SCLC differentiation, their applications in peripheral and central nervous system injury, and provides insights for future strategies.
Collapse
Affiliation(s)
- Alois Hopf
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
| | - Dirk J. Schaefer
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Srinivas Madduri
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland; (A.H.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (D.J.S.); (R.G.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031 Basel, Switzerland
| |
Collapse
|
9
|
Sukmawati D, Eryani A, Damayanti L. Silver Sulfadiazine's Effect on Keratin-19 Expression as Stem Cell Marker in Burn Wound Healing. Biomedicine (Taipei) 2020; 10:5-11. [PMID: 33854915 PMCID: PMC7608848 DOI: 10.37796/2211-8039.1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Burn wounds are one of the causes of cutaneous injury that involve both epidermal and dermal layers of skin. Silver sulfadiazine (SSD) has been widely used to treat burn wounds, however recent studies have found the treatment to have some drawbacks, such as cellular toxicity effects. Cutaneous wound regeneration is known to start from the basal layer of the epidermal epithelial cells, which are enriched with highly proliferative cells. Keratin-19 (K19) is one of the epidermal stem cell biomarkers found in the skin. This study aims to explore the expression of K19 in burn wound tissue and to investigate the effect of SSD on its expression. METHODS We created a burn wound model in Sprague Dawley rats and randomly divided them into control and SSD groups. Wound closure was evaluated (visitrak) overtime series followed by histological evaluation of K19 expression in the wound tissue (immunohistochemistry staining). RESULTS Our model successfully represents full-thickness damage caused by a burn wound. The SSD group showed a faster reduction of wound surface area (wound closure) compared to the control group with the peak at day 18 post wounding (p < 0.05). K19 expression was found in both groups and was distributed on epidermal layers, hair follicles and dermis of granulation tissue showing similar patterns. CONCLUSION Topical application of SSD on burn wounds showed superiority in wound closure and is likely to have no harmful effect on epidermal stem cells. However, further study is required to investigate the effect of silver species on cell viability and toxicity effects during long term treatment.
Collapse
Affiliation(s)
- Dewi Sukmawati
- Department of Histology, Faculty of Medicine Universitas Indonesia, Jln. Salemba Raya No. 6 Jakarta, 10430, Jakarta, Indonesia
| | - Astheria Eryani
- Department of Histology, Faculty of Medicine Tarumanagara University, Jln. Letjen S. Parman No.1, Tomang, Grogol Petamburan, Jakarta, 11440, Indonesia
| | - Lia Damayanti
- Department of Histology, Faculty of Medicine Universitas Indonesia, Jln. Salemba Raya No. 6 Jakarta, 10430, Jakarta, Indonesia
| |
Collapse
|
10
|
Dai R, Chen W, Hua W, Xiong L, Li Y, Li L. Comparative transcriptome analysis of transcultured human skin-derived precursors (tSKPs) from adherent monolayer culture system and tSKPs-derived fibroblasts (tFBs) by RNA-Seq. Biosci Trends 2020; 14:104-114. [PMID: 32321899 DOI: 10.5582/bst.2019.01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcultured human skin derived precursors (tSKPs) from adherent monolayer culture system have similar characteristics as traditional skin derived precursors (SKPs), making tSKPs a suitable candidate for regenerative medicine. tSKPs can differentiate into fibroblasts. However, little is known about the molecular mechanism of the transition from tSKPs to fibroblasts. Here, we compared the transcriptional profiles of human tSKPs and tSKPs-derived fibroblasts (tFBs) by RNA-Sequence aiming to determine the candidate genes and pathways involving in the differentiation process. A total of 1042 differentially expressed genes (DEGs) were identified between tSKPs and tFBs, with 490 genes up-regulated and 552 genes down-regulated. Our study showed that these DEGs were significantly enriched in tumor necrosis factor signaling pathway, focal adhesion, extracellular matrix-receptor interaction and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway. A further transcription factors (TFs) analysis of DEGs revealed the significantly down-expressed TFs (p21, Foxo1and Foxc1) in tFBs were mostly the downstream nodes of PI3K-Akt signaling pathway, which suggested PI3K-Akt signaling pathway might play an important role in tSKPs differentiation. The results of our study are useful for investigating the molecular mechanisms in tSKPs differentiation into tFBs, making it possible to take advantage of their potential application in regenerative medicine.
Collapse
Affiliation(s)
- Ru Dai
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Dermatology, Ningbo First Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Wei Chen
- Department of Medical Cosmetology, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wei Hua
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lidan Xiong
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Chen Y, Shen J, Ma C, Cao M, Yan J, Liang J, Ke K, Cao M, Xiaosu G. Skin-derived precursor Schwann cells protect SH-SY5Y cells against 6-OHDA-induced neurotoxicity by PI3K/AKT/Bcl-2 pathway. Brain Res Bull 2020; 161:84-93. [PMID: 32360763 DOI: 10.1016/j.brainresbull.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023]
Abstract
Skin-derived precursors (SKPs) are self-renewing and pluripotent adult stem cell sources that have been successfully obtained and cultured from adult tissues of rodents and humans. Skin-derived precursor Schwann cells (SKP-SCs), derived from SKPs when cultured in a neuro stromal medium supplemented with some appropriate neurotrophic factors, have been reported to play a neuroprotective effect in the peripheral nervous system. This proves our previous studies that SKP-SCs' function to bridge sciatic nerve gap in rats. However, the function of SKP-SCs in Parkinson disease (PD) remains unknown. This study was aimed to investigate the possible neuroprotective effects of SKP-SCs in 6-OHDA-induced Parkinson's disease (PD) model. Our results showed that the treatment with SKP-SCs prevented SH-SY5Y cells from 6-OHDA-induced apoptosis, accompanied by modulation of apoptosis-related proteins (Bcl-2 and Bax) and the decreased expression of active caspase-3. Furthermore, we confirmed that SKP-SCs might exert protective effects and increase the mitochondrial membrane potential (MMP) through PI3K/AKT/Bcl-2 pathway. Taken together, our results demonstrated that SKP-SCs protect against 6-OHDA-induced cytotoxicity through PI3K/AKT/Bcl-2 pathway in PD model in vitro, which provides a new theoretical basis for the treatment of PD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianan Yan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jingjing Liang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Gu Xiaosu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Dai R, Hua W, Chen W, Xiong L, Li L, Li Y. Isolation, Characterization, and Safety Evaluation of Human Skin-Derived Precursors from an Adherent Monolayer Culture System. Stem Cells Int 2019; 2019:9194560. [PMID: 31531027 PMCID: PMC6721512 DOI: 10.1155/2019/9194560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Skin-derived precursors (SKPs) are promising candidates for regenerative medicine. Several studies have transcultured human SKPs (termed tSKPs) from fibroblasts (FBs) expanded in monolayer culture. Herein, we optimized the procedure by treating flasks with poly-2-hydroxyethyl methacrylate (poly-HEMA). METHODS tSKPs generated from our adherent monolayer culture system were investigated for protein expression and differentiation capacity. The aggregated cells and the proliferative cells within tSKP spheres were detected by mix-culturing FBs expressing two different fluorescent proteins and BrdU- or EdU-positive cells, respectively. To distinguish tSKPs from FBs, we compared their phenotypes and transcriptomes. The tumorigenicity of tSKPs and FBs was also assessed in our study. RESULTS tSKPs expressed Versican, Fibronectin, Vimentin, Sox2, and Nestin. Under appropriate stimuli, tSKPs could differentiate to mesenchymal or neural lineages. While these spheres were heterogeneous populations consisting of both proliferative and aggregated cells, the rate of proliferative cells correlated with a seeding density. tSKPs, isolated from FBs, were distinctive from FBs in cell cycle, marker expression, neural differentiation potential, and transcript profiles despite the two sharing partial similarity in certain properties. As for tumorigenesis, both tSKPs and FBs could be considered as nontumorigenic ex vivo and in vivo. CONCLUSION tSKPs were heterogeneous populations presenting similar characteristics as traditional SKPs, while being different from FBs. The potential mixture of FBs in spheres did not affect the biosafety of tSKPs, as both of which had normal karyotype and nontumorigenicity. Taken together, we suggested tSKPs had potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Ru Dai
- Department of Dermatology, Ningbo First Hospital, Zhejiang University, No. 59, Liuting Street, Ningbo, Zhejiang 315010, China
- Department of Dermatology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Wei Hua
- Department of Dermatology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Wei Chen
- Department of Dermatology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Lidan Xiong
- Department of Dermatology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yiming Li
- Department of Dermatology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan 610041, China
| |
Collapse
|