1
|
Zhang X, Wang X, Yin L, Wang D, Jiao H, Liu X, Zheng J. HACE1 exerts a neuroprotective role against oxidative stress in cerebral ischemia-reperfusion injury by activating the PI3K/AKT/Nrf2 pathway. Neuroscience 2024; 559:249-262. [PMID: 39244008 DOI: 10.1016/j.neuroscience.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
HECT domain and Ankyrin repeat-containing E3 ubiquitin protein ligase 1 (HACE1) is an E3 ubiquitin ligase involving oxidative stress, an important contributor in cerebral ischemia-reperfusion injury (CIRI). It was proposed to be associated with the PI3K/AKT pathway and Nrf2 nuclear translocation, which are important players of oxidative stress. Therefore, we supposed that HACE1 might affect CIRI by regulating the PI3K/AKT/Nrf2 pathway. Here, we used the transient middle cerebral artery occlusion-reperfusion (tMCAO/R) model to induce CIRI in rats and found lower HACE1 expression in ischemic rats compared with the control. To explore the exact role of HACE1, the lentivirus vector carrying the HACE1 sequence was administrated to rats by intracerebroventricular injection (1 × 109 TU/mL, 9 μL) one week before tMCAO/R operation. HACE1 overexpression alleviated tMCAO/R-induced brain damage in rats. Further studies revealed that it reduced oxidative stress via activating the PI3K/AKT/Nrf2 pathway, thereby inhibiting neuronal apoptosis in the ischemic penumbra of rats with CIRI. Then, differentiated PC12 cells were cultured in oxygen-glucose deprivation-reoxygenation (OGD/R) conditions (OGD: 1 % O2, 94 % N2, and 5 % CO2; R: normal atmosphere) to simulate CIRI in vitro. Similarly, HACE1 overexpression inhibited neuronal apoptosis caused by OGD/R treatment. The PI3K inhibitor LY294002 reversed the inhibitory effects of HACE1 overexpression on oxidative stress in OGD/R-injured cells, accompanied by the inactivated AKT/Nrf2 pathway. Altogether, our results suggest that HACE1 protects against oxidative stress-induced neuronal apoptosis in CIRI by activating the PI3K/AKT/Nrf2 pathway, providing a new insight into the CIRI treatment.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xiao Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Le Yin
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Dan Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hong Jiao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xiaodan Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Xie J, Wang L, Tian S, Li R, Zhang L, Shi H, Liu Z, Ma T, Hu H, She Z, Wang L. The Protective Role of Transcript-Induced in Spermiogenesis 40 in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2024; 49:2519-2534. [PMID: 38884889 DOI: 10.1007/s11064-024-04170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Prompt reperfusion after cerebral ischemia is important to maintain neuronal survival and reduce permanent disability and death. However, the resupply of blood can induce oxidative stress, inflammatory response and apoptosis, further leading to tissue damage. Here, we report the versatile biological roles of transcript-induced in spermiogenesis 40 (Tisp40) in ischemic stroke. We found that the expression of Tisp40 was upregulated in ischemia/reperfusion-induced brain tissues and oxygen glucose deprivation/returned -stimulated neurons. Tisp40 deficiency increased the infarct size and neurological deficit score, and promoted inflammation and apoptosis. Tisp40 overexpression played the opposite role. In vitro, the oxygen glucose deprivation/returned model was established in Tisp40 knockdown and overexpression primary cultured cortical neurons. Tisp40 knockdown can aggravate the process of inflammation and apoptosis, and Tisp40 overexpression ameliorated the aforementioned processes. Mechanistically, Tisp40 protected against ischemic stroke via activating the AKT signaling pathway. Tisp40 may be a new therapeutic target in brain ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jing Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Ruyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| | - Zhen Liu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Tengfei Ma
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Heng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Institute of Model Animal of Wuhan University, Wuhan, China.
| | - Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Li H, Zhao Y, Wang J, Peng C, Tang K, Sun M, Yang Y, Liu Q, Liu F. Screening of potential antioxidant bioactive Q-markers of paeoniae radix rubra based on an integrated multimodal strategy. Front Pharmacol 2024; 15:1447959. [PMID: 39211775 PMCID: PMC11357914 DOI: 10.3389/fphar.2024.1447959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Paeoniae Radix Rubra (PRR) has been used widely to promote blood circulation and eliminate blood stasis in China clinical practice owing to its extensive pharmacological effects. However, the "quality markers" (Q-markers) of the antioxidant effects remains unknown. Object To explore the Q-markers of antioxidant activity based on multiple strategies, which would provide reference for the quality evaluation of PRR based on specific pharmacodynamic-oriented. Methods Firstly, the "fingerprint" profiles of 15 batches of PRR were acquired and identified by ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS/MS) and the common peaks extracted. Meanwhile, the MTT assay was used to evaluate the effect of 15 batches of PRR on H2O2-induced oxidative stress in HT-22 cells. The antioxidant activity of PRR was investigated simultaneously by superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) commercial kits. The relationship between common peaks and antioxidant indexes were constructed by grey relational analysis (GRA) and partial least squares-discriminant analysis (PLS-DA) for the identification of preselected Q-markers. Secondly, experimental verification was conducted to investigate the protective effect of the preliminary components on HT-22 cells undergoing oxidative stress. Finally, for the further validation of effectiveness of antioxidant Q-markers, network pharmacology was applied to explore potential targets, and the molecular docking technology was used to value the binding ability of the potential active components of PRR to the antioxidant targets. Results Thirty-seven common peaks from 15 batches of PRR were identified qualitatively by UHPLC-Q-TOF MS/MS. The MTT assay showed that PRR could reduce the oxidative damage induced by H2O2 upon HT-22 cells according to the index of MDA, SOD and GSH. Eight potential antioxidant components were screened by spectrum-effect correlation analysis: paeoniflorin, galloylpaeoniflorin, albiflorin, 1,2,3,4,6-o-pentagalloylglucose, benzoylpaeoniflorin, pinocembrin, oleanic acid, and isorhamnetin-3-o-nehesperidine. Each of these preliminary components showed significant protections on cellular oxidative stress (P < 0.05). Interleukin-6 (IL-6), protein kinase B (AKT1), and tumor necrosis factor (TNF) were predicted to be the major potential targets of PRR, and the good binding ability were presented between the potential active components of PRR and each target as a whole. Conclusion Eight components were identified as the antioxidant Q-markers of PRR based on an integrated multimodal strategy.
Collapse
Affiliation(s)
- Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yu Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiaqi Wang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Keyan Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mu Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
| | - Qingping Liu
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
4
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
5
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
6
|
Yuan J, Meng H, Liu Y, Wang L, Zhu Q, Wang Z, Liu H, Zhang K, Zhao J, Li W, Wang Y. Bacillus amyloliquefaciens attenuates the intestinal permeability, oxidative stress and endoplasmic reticulum stress: transcriptome and microbiome analyses in weaned piglets. Front Microbiol 2024; 15:1362487. [PMID: 38808274 PMCID: PMC11131103 DOI: 10.3389/fmicb.2024.1362487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is related to oxidative stress (OS) and leads to intestinal injury. Bacillus amyloliquefaciens SC06 (SC06) can regulate OS, but its roles in intestinal ER stress remains unclear. Using a 2 × 2 factorial design, 32 weaned piglets were treated by two SC06 levels (0 or 1 × 108 CFU/g), either with or without diquat (DQ) injection. We found that SC06 increased growth performance, decreased ileal permeability, OS and ER stress in DQ-treated piglets. Transcriptome showed that differentially expressed genes (DEGs) induced by DQ were enriched in NF-κB signaling pathway. DEGs between DQ- and SC06 + DQ-treated piglets were enriched in glutathione metabolism pathway. Ileal microbiome revealed that the SC06 + DQ treatment decreased Clostridium and increased Actinobacillus. Correlations were found between microbiota and ER stress genes. In conclusion, dietary SC06 supplementation increased the performance, decreased the permeability, OS and ER stress in weaned piglets by regulating ileal genes and microbiota.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Li Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qizhen Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhengyu Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Zhang L, Liu Y, Zhang Q, Yao W, Zhao Z, Wang X, Bao Y, Shi W. Salvia miltiorrhiza polysaccharide mitigates AFB1-induced liver injury in rabbits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116344. [PMID: 38636259 DOI: 10.1016/j.ecoenv.2024.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 μg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.
Collapse
Affiliation(s)
- Lu Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qiongyi Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Weiyu Yao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Zenghui Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Veterinary Biotechnology Innovation Center, Baoding 071001, China.
| |
Collapse
|
8
|
Xu SY, Cao HY, Yang RH, Xu RX, Zhu XY, Ma W, Liu XB, Yan XY, Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155483. [PMID: 38432036 DOI: 10.1016/j.phymed.2024.155483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Genus Paeonia, which is the main source of Traditional Chinese Medicine (TCM) Paeoniae Radix Rubra (Chishao in Chinese), Paeoniae Radix Alba (Baishao in Chinese) and Moutan Cortex (Mudanpi in Chinese), is rich in active pharmaceutical ingredient such as monoterpenoid glycosides (MPGs). MPGs from Paeonia have extensive pharmacological effects, but the pharmacological effects and molecular mechanisms of MPGs has not been comprehensively reviewed. PURPOSE MPGs compounds are one of the main chemical components of the genus Paeonia, with a wide variety of compounds and strong pharmacological activities, and the structure of the mother nucleus-pinane skeleton is similar to that of a cage. The purpose of this review is to summarize the pharmacological activity and mechanism of action of MPGs from 2012 to 2023, providing reference direction for the development and utilization of Paeonia resources and preclinical research. METHODS Keywords and phrases are widely used in database searches, such as PubMed, Web of Science, Google Scholar and X-Mol to search for citations related to the new compounds, extensive pharmacological research and molecular mechanisms of MPGs compounds of genus Paeonia. RESULTS Modern research confirms that MPGs are the main compounds in Paeonia that exert pharmacological effects. MPGs with extensive pharmacological characteristics are mainly concentrated in two categories: paeoniflorin derivatives and albiflflorin derivatives among MPGs, which contains 32 compounds. Among them, 5 components including paeoniflorin, albiflorin, oxypaeoniflorin, 6'-O-galloylpaeoniflorin and paeoniflorigenone have been extensively studied, while the other 28 components have only been confirmed to have a certain degree of anti-inflammatory and anticomplementary effects. Studies of pharmacological effects are widely involved in nervous system, endocrine system, digestive system, immune system, etc., and some studies have identified clear mechanisms. MPGs exert pharmacological activity through multilateral mechanisms, including anti-inflammatory, antioxidant, inhibition of cell apoptosis, regulation of brain gut axis, regulation of gut microbiota and downregulation of mitochondrial apoptosis, etc. CONCLUSION: This systematic review delved into the pharmacological effects and related molecular mechanisms of MPGs. However, there are still some compounds in MPGs whose pharmacological effects and pharmacological mechanisms have not been clarified. In addition, extensive clinical randomized trials are needed to verify the efficacy and dosage of MPGs.
Collapse
Affiliation(s)
- Shi-Yi Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hui-Yan Cao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rui-Hong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Rong-Xue Xu
- The Health Center of Longjiang Airlines, Harbin 150000, China; Qiqihar Medical University, Qiqihar 161003, China
| | - Xing-Yu Zhu
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiu-Bo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China
| | - Xue-Ying Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Peng Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
9
|
Chen J, Zhao T, Zheng X, Kang L, Wang J, Wei Y, Wu Y, Shen L, Long C, Wei G, Wu S. Protective effects of melatonin on DEHP-induced apoptosis and oxidative stress in prepubertal testes via the PI3K/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:952-964. [PMID: 37975621 DOI: 10.1002/tox.24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.
Collapse
Affiliation(s)
- Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangqin Zheng
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Junke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Fu H, Sen L, Zhang F, Liu S, Wang M, Mi H, Liu M, Li B, Peng S, Hu Z, Sun J, Li R. Mesenchymal stem cells-derived extracellular vesicles protect against oxidative stress-induced xenogeneic biological root injury via adaptive regulation of the PI3K/Akt/NRF2 pathway. J Nanobiotechnology 2023; 21:466. [PMID: 38049845 PMCID: PMC10696851 DOI: 10.1186/s12951-023-02214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.
Collapse
Affiliation(s)
- Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Lin Sen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Fangqi Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Sirui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Meiyue Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hongyan Mi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Mengzhe Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Zelong Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
11
|
Chen B, Dong X, Zhang J, Wang W, Song Y, Sun X, Zhao K, Sun Z. Effects of oxidative stress regulation in inflammation-associated gastric cancer progression treated using traditional Chinese medicines: A review. Medicine (Baltimore) 2023; 102:e36157. [PMID: 37986311 PMCID: PMC10659735 DOI: 10.1097/md.0000000000036157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Gastric cancer (GC) is a global public health concern that poses a serious threat to human health owing to its high morbidity and mortality rates. Due to the lack of specificity of symptoms, patients with GC tend to be diagnosed at an advanced stage with poor prognosis. Therefore, the development of new treatment methods is particularly urgent. Chronic atrophic gastritis (CAG), a precancerous GC lesion, plays a key role in its occurrence and development. Oxidative stress has been identified as an important factor driving the development and progression of the pathological processes of CAG and GC. Therefore, regulating oxidative stress pathways can not only intervene in CAG development but also prevent the occurrence and metastasis of GC and improve the prognosis of GC patients. In this study, PubMed, CNKI, and Web of Science were used to search for a large number of relevant studies. The review results suggested that the active ingredients of traditional Chinese medicine (TCM) and TCM prescriptions could target and improve inflammation, pathological status, metastasis, and invasion of tumor cells, providing a potential new supplement for the treatment of CAG and GC.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yujiao Song
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
12
|
Zhang Y, Zhang J, Zhao Y, Zhang Y, Liu L, Xu X, Wang X, Fu J. ChemR23 activation attenuates cognitive impairment in chronic cerebral hypoperfusion by inhibiting NLRP3 inflammasome-induced neuronal pyroptosis. Cell Death Dis 2023; 14:721. [PMID: 37932279 PMCID: PMC10628255 DOI: 10.1038/s41419-023-06237-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Neuroinflammation plays critical roles in vascular dementia (VaD), the second leading cause of dementia, which can be induced by chronic cerebral hypoperfusion (CCH). NLRP3 inflammasome-induced pyroptosis, the inflammatory programmed cell death, has been reported to contribute to the development of VaD. ChemR23 is a G protein-coupled receptor that has emerging roles in regulating inflammation. However, the role of ChemR23 signalling in NLRP3 inflammasome-induced pyroptosis in CCH remains elusive. In this study, a CCH rat model was established by permanent bilateral common carotid artery occlusion (BCCAO) surgery. Eight weeks after the surgery, the rats were intraperitoneally injected with the ChemR23 agonist Resolvin E1 (RvE1) or chemerin-9 (C-9). Additionally, primary rat hippocampal neurons and SH-SY5Y cells were adopted to mimic CCH injury in vitro. Our results showed that the levels of ChemR23 expression were decreased from the 8th week after BCCAO, accompanied by significant cognitive impairment. Further analysis revealed that CCH induced neuronal damage, synaptic injury and NLRP3-related pyroptosis activation in hippocampal neurons. However, pharmacologic activation of ChemR23 with RvE1 or C-9 counteracted these changes. In vitro experiments also showed that ChemR23 activation prevented primary neuron pyroptosis induced by chronic hypoxia. In addition, manipulating ChemR23 expression markedly regulated NLRP3 inflammasome-induced neuronal pyroptosis through PI3K/AKT/Nrf2 signalling in SH-SY5Y cells under hypoglycaemic and hypoxic conditions. Collectively, our data demonstrated that ChemR23 activation inhibits NLRP3 inflammasome-induced neuronal pyroptosis and improves cognitive function via the PI3K/AKT/Nrf2 signalling pathway in CCH models. ChemR23 may serve as a potential novel therapeutic target to treat CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Yaxuan Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yao Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Lan Liu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
13
|
Zhang M, Zheng H, He J, Zhang M. Network pharmacology and in vivo studies reveal the neuroprotective effects of paeoniflorin on Alzheimer's disease. Heliyon 2023; 9:e21800. [PMID: 38027768 PMCID: PMC10661068 DOI: 10.1016/j.heliyon.2023.e21800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that has still not been effectively treated. Paeoniflorin is a traditional Chinese medicine with potential neuroprotective effects against brain injury; however, the beneficial effects and mechanisms of action in AD have not been clarified. We aimed to explore the mechanisms of action of paeoniflorin in AD using network pharmacology and experimental validation. Network pharmacology analysis revealed 30 candidate targets through the intersection of the targets of paeoniflorin and related genes in AD, which were mainly enriched in oxidative stress and inflammation. Moreover, key targets of paeoniflorin against AD, namely Nrf2 (encoded by NFE2L2) and TLR4, were screened and found to be closely related to oxidative stress and inflammation. Subsequent in vivo experiments revealed that paeoniflorin treatment improved the cognition of APP/PS1 mice by ameliorating oxidative stress and neuroinflammation, which were associated with the upregulation of Nrf2 and HO1, and the downregulation of TLR4. Collectively, the present study demonstrates that paeoniflorin alleviates cognitive impairment in AD by regulating oxidative stress and neuroinflammation, and that Nrf2, HO1, and TLR4 could be key targets.
Collapse
Affiliation(s)
| | | | - Jiale He
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Anhui, China
| | - Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Anhui, China
| |
Collapse
|
14
|
Xie X, Wang F, Ge W, Meng X, Fan L, Zhang W, Wang Z, Ding M, Gu S, Xing X, Sun X. Scutellarin attenuates oxidative stress and neuroinflammation in cerebral ischemia/reperfusion injury through PI3K/Akt-mediated Nrf2 signaling pathways. Eur J Pharmacol 2023; 957:175979. [PMID: 37611841 DOI: 10.1016/j.ejphar.2023.175979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) seriously threatens human life and health. Scutellarin (Scu) exhibits neuroprotective effects, but little is known about its underlying mechanism. Therefore, we explored its protective effect on CIRI and the underlying mechanism. Our results demonstrated that Scu rescued HT22 cells from cytotoxicity induced by oxygen and glucose deprivation/reoxygenation (OGD/R). Scu also showed antioxidant activity by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, upregulating heme oxygenase-1 (HO-1) expression, increasing superoxide dismutase (SOD) activity, and inhibiting reactive oxygen species (ROS) generation in vitro. Additionally, Scu reduced nuclear factor-kappa B (NF-κB) activity and the levels of pro-inflammatory factors. Interestingly, these effects were abolished by Nrf2 inhibition. Furthermore, Scu reduced infarct volume and blood-brain barrier (BBB) permeability, improved sensorimotor functions and depressive behaviors, and alleviated oxidative stress and neuroinflammation in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Mechanistically, Scu-induced Nrf2 nuclear accumulation and inactivation of NF-κB were accompanied by an enhanced level of phosphorylated protein kinase B (p-AKT) both in vitro and in vivo. Pharmacologically inhibiting the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway blocked Scu-induced Nrf2 nuclear translocation and inactivation of NF-κB, as well as its antioxidant and anti-inflammatory activities. In summary, these results suggest that Scu exhibits antioxidant, anti-inflammatory, and neuroprotective effects in CIRI through Nrf2 activation mediated by the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Wenxiu Ge
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, 150076, China
| | - Xiangbao Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Lijuan Fan
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Wei Zhang
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
15
|
Zhang Y, Zhang Y, Zang J, Li Y, Wu X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:303. [PMID: 37504559 PMCID: PMC10380972 DOI: 10.3390/jcdd10070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease morbidity/mortality are increasing due to an aging population and the rising prevalence of diabetes and obesity. Therefore, innovative cardioprotective measures are required to reduce cardiovascular disease morbidity/mortality. The role of necroptosis in myocardial ischemia-reperfusion injury (MI-RI) is beyond doubt, but the molecular mechanisms of necroptosis remain incompletely elucidated. Growing evidence suggests that MI-RI frequently results from the superposition of multiple pathways, with autophagy, ferroptosis, and CypD-mediated mitochondrial damage, and necroptosis all contributing to MI-RI. Receptor-interacting protein kinases (RIPK1 and RIPK3) as well as mixed lineage kinase domain-like pseudokinase (MLKL) activation is accompanied by the activation of other signaling pathways, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII), NF-κB, and JNK-Bnip3. These pathways participate in the pathological process of MI-RI. Recent studies have shown that inhibitors of necroptosis can reduce myocardial inflammation, infarct size, and restore cardiac function. In this review, we will summarize the molecular mechanisms of necroptosis, the links between necroptosis and other pathways, and current breakthroughs in pharmaceutical therapies for necroptosis.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yantao Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Jinlong Zang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
16
|
Zhang MY, Ma LJ, Jiang L, Gao L, Wang X, Huang YB, Qi XM, Wu YG, Liu XQ. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116422. [PMID: 36972781 DOI: 10.1016/j.jep.2023.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Juan Ma
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-Bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-Ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China; The Center for Scientific Research of Anhui Medical University, Hefei, China.
| | - Xue-Qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Yuan Y, Sheng P, Ma B, Xue B, Shen M, Zhang L, Li D, Hou J, Ren J, Liu J, Yan BC, Jiang Y. Elucidation of the mechanism of Yiqi Tongluo Granule against cerebral ischemia/reperfusion injury based on a combined strategy of network pharmacology, multi-omics and molecular biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154934. [PMID: 37393828 DOI: 10.1016/j.phymed.2023.154934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Ischemic stroke is caused by local lesions of the central nervous system and is a severe cerebrovascular disease. A traditional Chinese medicine, Yiqi Tongluo Granule (YQTL), shows valuable therapeutic effects. However, the substances and mechanisms remain unclear. PURPOSE We combined network pharmacology, multi-omics, and molecular biology to elucidate the mechanisms by which YQTL protects against CIRI. STUDY DESIGN We innovatively created a combined strategy of network pharmacology, transcriptomics, proteomics and molecular biology to study the active ingredients and mechanisms of YQTL. We performed a network pharmacology study of active ingredients absorbed by the brain to explore the targets, biological processes and pathways of YQTL against CIRI. We also conducted further mechanistic analyses at the gene and protein levels using transcriptomics, proteomics, and molecular biology techniques. RESULTS YQTL significantly decreased the infarction volume percentage and improved the neurological function of mice with CIRI, inhibited hippocampal neuronal death, and suppressed apoptosis. Fifteen active ingredients of YQTL were detected in the brains of rats. Network pharmacology combined with multi-omics revealed that the 15 ingredients regulated 19 pathways via 82 targets. Further analysis suggested that YQTL protected against CIRI via the PI3K-Akt signaling pathway, MAPK signaling pathway, and cAMP signaling pathway. CONCLUSION We confirmed that YQTL protected against CIRI by inhibiting nerve cell apoptosis enhanced by the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Yuan
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China
| | - Peng Sheng
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Bo Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100730, China
| | - Bingjie Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengmeng Shen
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Ling Zhang
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Dan Li
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang 051430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang 051430, China
| | - Junguo Ren
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China
| | - Jianxun Liu
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China.
| | - Bing Chun Yan
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China.
| | - Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
19
|
Liu X, Wang Y, Li J, Wu B, Wang S, Guo Q, Liu Y. To study the protective effect of Huangqi Baihe Granules on Radiation brain injury based on network pharmacology and experiment. JOURNAL OF ETHNOPHARMACOLOGY 2023:116610. [PMID: 37150423 DOI: 10.1016/j.jep.2023.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi baihe Granules (HQBHG), which is a key Chinese medical prescription, has a remarkable efficacy in oxidative stress and inflammation. Nevertheless, the therapeutic effect on Radiation brain injury (RBI) has rarely been studied. AIM OF THE STUDY The study aimed to verify the effect of HQBHG against RBI and explore its potential mechanism. METHODS The potential targets and mechanisms of HQBHG against RBI were predicted by network pharmacology and verified by established rat model of RBI Firstly, the therapeutic effect of HQBHG in RBI was confirmed by water maze test, HE staining and Enzyme-linked immunosorbent assay (ELISA). Secondly, the potential critical anti-RBI pathway of HQBHG was further explored by water maze, HE staining, immunofluorescence assays, ELISA and western blot. RESULTS A total of 43 HQBHG anti-RBI targets were obtained. Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations showed that the treatment of HQBHG in RBI might be mainly related to oxidative stress, inflammation and PI3K/AKT pathway. Experimental studies have indicated that HQBHG can improve spatial learning and memory ability, alleviate pathological damage of brain tissue in RBI of rats. HQBHG also can down-regulate the levels of IL-1β, TNF-α, ROS and MDA, meanwhile, GSH was significantly up-regulated. In addition, the HQBHG can increase the protein expression phosphorylations PI3K (p-PI3K), phosphorylations AKT(p-AKT) and Nrf2 in the brain tissue of RBI. CONCLUSION HQBHG may alleviated RBI by regulated oxidative stress and inflammatory response through PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Bingbing Wu
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Siyu Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Qingyang Guo
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
20
|
Lei Y, Jin X, Sun M, Ji Z. RNF7 Induces Skeletal Muscle Cell Apoptosis and Arrests Cell Autophagy via Upregulation of THBS1 and Inactivation of the PI3K/Akt Signaling Pathway in a Rat Sepsis Model. Infect Immun 2023; 91:e0053522. [PMID: 36920202 PMCID: PMC10112135 DOI: 10.1128/iai.00535-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been highlighted for extensive functionality in sepsis. In this study, we aimed to explore the role of RNF7 in the progression of sepsis. We initially established a rat model of sepsis through cecal ligation and puncture induction, whereupon RNF7 expression was determined by RT-qPCR. Following adenovirus infection, the role of RNF7 in muscle injury, skeletal muscle protein metabolism, oxidative stress, and inflammation in sepsis rats was analyzed. Then, downstream mechanisms of RNF7 were identified and validated. Further, lipopolysaccharide was applied to treat myoblast to further demonstrate the in vitro role of RNF7. Our results showed that RNF7 expression was upregulated during sepsis. Overexpression of RNF7 worsened the sepsis-induced skeletal muscle injury, induced skeletal muscle protein metabolism, oxidative stress, and inflammation in sepsis rats. Meanwhile, overexpression of RNF7 elevated thrombospondin-1 (THBS1) expression. Silencing of RNF7 inhibited THBS1 and activated the PI3K/Akt signaling pathway, arresting the release of inflammatory factors and oxidative stress levels in skeletal muscle cells. Altogether, RNF7 may promote skeletal muscle cell apoptosis while simultaneously inhibiting cell autophagy through the promotion of THBS1 and inactivation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yu Lei
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaoyuan Jin
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Mingli Sun
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiyong Ji
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
21
|
Xu P, Kong L, Tao C, Zhu Y, Cheng J, Li W, Shen N, Li R, Zhang C, Wang L, Zhang Y, Wang G, Liu X, Sun W, Hu W. Elabela-APJ axis attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal ferroptosis. Free Radic Biol Med 2023; 196:171-186. [PMID: 36681202 DOI: 10.1016/j.freeradbiomed.2023.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Ferroptosis is a form of non-apoptotic cell death caused by iron-dependent peroxidation of lipids. It contributes to ischemic stroke-induced neuronal damage. Elabela (ELA), a novel endogenous ligand for Apelin receptor (APJ), regulates oxidative stress and exerts a protective role in cardiovascular disease. However, the effect of ELA-APJ axis on cellular ferroptosis in cerebral ischemia/reperfusion (I/R) remains elusive. The present study showed that ELA and APJ were expressed on neurons and increased after cerebral I/R injury. The I/R insult triggered typical molecular and morphological features of neuronal ferroptosis, including iron and MDA accumulation, mitochondrial shrink and membrane rupture, upregulation of positive ferroptosis regulators and downregulation of negative regulators. ELA-32 treatment reduced brain infarction and ameliorated neurobehavioral deficits and cognitive dysfunction. Moreover, ELA-32 administration alleviated neuronal ferroptosis, accompanied by reduced iron deposition, decreased mitochondrial damage, relived lipid peroxidation and glutathione reduction. Such effects of ELA-32 were abolished by AAV-APJ-RNAi or nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor ML385. Mechanistically, ELA was shown to bind to APJ and activate NRF2/ARE anti-oxidative signaling pathway via Gα13. Together, these findings suggested that ELA-APJ axis mitigates neuronal ferroptosis after ischemic stroke and that the ELA-32 peptide may be a putative therapeutic avenue for ischemic stroke.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuyou Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Juan Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chao Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Li Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
22
|
Moratilla-Rivera I, Sánchez M, Valdés-González JA, Gómez-Serranillos MP. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. Int J Mol Sci 2023; 24:ijms24043748. [PMID: 36835155 PMCID: PMC9967135 DOI: 10.3390/ijms24043748] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect the West due to the increase in life expectancy. Nervous cells accumulate oxidative damage, which is one of the factors that triggers and accelerates neurodegeneration. However, cells have mechanisms that scavenge reactive oxygen species (ROS) and alleviate oxidative stress (OS). Many of these endogenous antioxidant systems are regulated at the gene expression level by the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In the presence of prooxidant conditions, Nrf2 translocates to the nucleus and induces the transcription of genes containing ARE (antioxidant response element). In recent years, there has been an increase in the study of the Nrf2 pathway and the natural products that positively regulate it to reduce oxidative damage to the nervous system, both in in vitro models with neurons and microglia subjected to stress factors and in vivo models using mainly murine models. Quercetin, curcumin, anthocyanins, tea polyphenols, and other less studied phenolic compounds such as kaempferol, hesperetin, and icariin can also modulate Nrf2 by regulating several Nrf2 upstream activators. Another group of phytochemical compounds that upregulate this pathway are terpenoids, including monoterpenes (aucubin, catapol), diterpenes (ginkgolides), triterpenes (ginsenosides), and carotenoids (astaxanthin, lycopene). This review aims to update the knowledge on the influence of secondary metabolites of health interest on the activation of the Nrf2 pathway and their potential as treatments for NDs.
Collapse
|
23
|
FTO inhibits oxidative stress by mediating m6A demethylation of Nrf2 to alleviate cerebral ischemia/reperfusion injury. J Physiol Biochem 2023; 79:133-146. [PMID: 36327034 DOI: 10.1007/s13105-022-00929-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Current therapies are of limited efficacy in cerebral ischemia/reperfusion (I/R) injury. Based on the important role of oxidative stress in cerebral I/R injury, this study aimed to explore how the N6-adenosine methylation (m6A) demethylase FTO affects oxidative stress. Middle cerebral artery occlusion/reperfusion (MCAO/R)-induced rat model and oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced SH-SY5Y cells were established as in vivo and in vitro model, respectively. The neurological score of rats was measured, and the volume of cerebral infarction was measured by TTC staining. The levels of FTO, nuclear factor-erythroid 2-related factor (Nrf2), and the activity of m6A demethylase FTO were detected. The m6A methylation level of Nrf2 mRNA was detected by MeRIP experiment. Flow cytometry and MTT assay were used to detect apoptosis and proliferation in vitro. TUNEL assay was used to detect apoptosis in brain tissues. FTO and Nrf2 expressions were decreased in the MCAO/R rat brain tissues and OGD/R SH-SY5Y cells, while the m6A methylation level of Nrf2 mRNA was significantly increased. Overexpression of FTO upregulated Nrf2 expression by decreasing the m6A methylation level of Nrf2 mRNA. m6A binding protein YT521-B homology (YTH) domain family protein 2 (YTHDF2) promoted the degradation of Nrf2 by promoting the m6A methylation level of Nrf2 mRNA. Furthermore, SH-SY5Y cell apoptosis was increased and cell viability was decreased after the addition of methyltransferases METTL 3/14, thus blocking FTO to protect SH-SY5Y cells from oxidative stress injury. In vivo, overexpression of FTO decreased the area of cerebral ischemia infarction and the extent of cell apoptosis. In conclusion, FTO increases Nrf2 expression by mediating m6A demethylation of Nrf2 mRNA, thereby inhibiting oxidative stress response and ultimately alleviating cerebral I/R injury.
Collapse
|
24
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
25
|
Zhang Q, Cheng S, Xin Z, Deng H, Wang Y, Li Q, Wu G, Chen W. 1,2,3,4,6-O-Pentagalloylglucose Protects against Acute Lung Injury by Activating the AMPK/PI3K/Akt/Nrf2 Pathway. Int J Mol Sci 2022; 23:ijms232214423. [PMID: 36430900 PMCID: PMC9699101 DOI: 10.3390/ijms232214423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
An acute lung injury (ALI) is a serious lung disease with a high mortality rate, warranting the development of novel therapies. Previously, we reported that 1,2,3,4,6-O-pentagalloylglucose (PGG) could afford protection against ALI, however, the PGG-mediated protective effects remain elusive. Herein, PGG (60 and 30 mg/kg) markedly inhibited the lung wet/drug weight ratio and attenuated histological changes in the lungs (p < 0.05). A pretreatment with PGG (60 and 30 mg/kg) reduced the number of total leukocytes and the production of pro-inflammatory cytokines IL-6 and IL-1β in bronchoalveolar lavage fluid (p < 0.05). In addition, PGG (60 and 30 mg/kg) also attenuated oxidative stress by reducing the formation of formation and the depletion of superoxide dismutase to treat an ALI (p < 0.05). To further explore the PGG-induced mechanism against an ALI, we screened the PGG pathway using immunohistochemical analysis, immunofluorescence assays, and Western blotting (WB). WB revealed that the expression levels of adenosine monophosphate-activated protein kinase phosphorylation (p-AMPK), phosphoinositide 3-kinase (PI3K), protein kinase B phosphorylation (P-Akt), and nuclear factor erythroid 2-related factor (Nrf2) were significantly higher in the PGG group (60 and 30 mg/kg) than in the lipopolysaccharide group (p < 0.05); these findings were confirmed by the immunohistochemical and immunofluorescence results. Accordingly, PGG could be effective against an ALI by inhibiting inflammation and oxidative stress via AMPK/PI3K/Akt/Nrf2 signaling, allowing for the potential development of this as a natural drug against an ALI.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Sai Cheng
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhiming Xin
- Fujian Research Center of Drug’s Non-Clinical Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Haohua Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Gangwei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350122, China
- Correspondence: (G.W.); (W.C.)
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (G.W.); (W.C.)
| |
Collapse
|
26
|
Tan SW, Xie T, Malik TH, Gao Y. Advances of neurovascular protective potential of 3-N-butylphthalide and its derivatives in diabetic related diseases. J Diabetes Complications 2022; 36:108335. [PMID: 36240669 DOI: 10.1016/j.jdiacomp.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/20/2022]
Abstract
3-N-butylphthalide (NBP) is a component isolated from seeds of Chinese celery, and it was firstly approved for the treatment of ischemic stroke. With the gradual in-depth understanding of its pharmacological action, it was found that it may have potential effects on treating diabetes and its complications. This review aims to illustrate the researches on the properties of NBP and its therapeutic efficacy in diabetic related diseases. This review will discuss the results of experiments in vitro and in vivo to make progress in understanding the beneficial effects of NBP and its derivatives on diabetic complications including diabetic vascular diseases, diabetic peripheral neuropathy, diabetic brain related diseases and diabetic cataract. We will also demonstrate NBP's numerous molecular targets and interactions with multiple cellular signaling pathways such as oxidative stress, inflammatory responses, apoptosis and autophagy. NBP is proved to be a potential therapeutic approach for treating diabetic complications.
Collapse
Affiliation(s)
- Shu-Wen Tan
- Department of Endocrinology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | | | - Ying Gao
- Department of Endocrinology, The First Hospital of Jilin University, Jilin, China.
| |
Collapse
|
27
|
Shan X, Zhang J, Wei X, Tao W, Peng K, Liu H, Wang Y, Liu H, Meng X, Ji F. Dexmedetomidine attenuates renal ischemia-reperfusion injury through activating PI3K/Akt-eNOS signaling via α 2 adrenoreceptors in renal microvascular endothelial cells. FASEB J 2022; 36:e22608. [PMID: 36250975 DOI: 10.1096/fj.202101626rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
Renal microvascular endothelial cells (RMECs), which are closely related to regulation of vascular reactivity and modulation of inflammation, play a crucial role in the process of renal ischemia and reperfusion (I/R) injury. Previous studies have reported the protective effects of dexmedetomidine (DEX) against renal I/R injury, but little is known about the role of DEX on RMECs. This study aimed to investigate whether DEX alleviated renal I/R injury via acting on the RMECs. Mice underwent bilateral renal artery clamping for 45 min followed by reperfusion for 48 h, and the cultured neonatal mice RMECs were subjected to hypoxia for 1 h followed by reoxygenation (H/R) for 24 h. The results suggest that DEX alleviated renal I/R injury in vivo and improved cell viability of RMECs during H/R injury in vitro. Gene sequencing revealed that the PI3K/Akt was the top enriched signaling pathway and the endothelial cells were widely involved in renal I/R injury. DEX activated phosphorylation of PI3K and Akt, increased eNOS expression, and attenuated inflammatory responses. In addition, the results confirmed the distribution of α2 adrenoreceptor (α2 -AR) in RMECs. Furthermore, the protective effects of DEX against renal I/R injury were abolished by α2 -AR antagonist (atipamezole), which was partly reversed by the PI3K agonist (740 Y-P). These findings indicated that DEX protects against renal I/R injury by activating the PI3K/Akt-eNOS pathway and inhibiting inflammation responses via α2 -AR in RMECs.
Collapse
Affiliation(s)
- Xisheng Shan
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Jiaxin Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Wei
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenhui Tao
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Huayue Liu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Yiqing Wang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California, USA
| | - Xiaowen Meng
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| | - Fuhai Ji
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Anesthesiology, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Zhang Y, Wang M, Zhang K, Zhang J, Yuan X, Zou G, Cao Z, Zhang C. 6'-O-Galloylpaeoniflorin attenuates Helicobacter pylori-associated gastritis via modulating Nrf2 pathway. Int Immunopharmacol 2022; 111:109122. [PMID: 35964411 DOI: 10.1016/j.intimp.2022.109122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
As a common disease of the digestive system, chronic gastritis is inflammation of the gastric mucosa caused by various factors. Helicobacter pylori (H. pylori) is one of the main causes of chronic gastritis, which can lead to gastric mucosal damage and gland atrophy, thereby promoting gastrocarcinogenesis. Oxidative stress and the inflammatory response are important mechanisms of H. pylori-induced gastritis. 6'-O-Galloylpaeoniflorin (GPF) is a substance isolated from peony root with antioxidant and anti-inflammatory activities. However, its role and mechanism in the pathogenesis of H. pylori-induced chronic gastritis remain unclear. This study explored the effects of GPF on H. pylori-induced gastric mucosal oxidative stress and inflammation using flow cytometry, western blotting, real-time quantitative PCR, and immunohistochemistry. We found that H. pylori infection increased oxidative stress and expression of inflammatory cytokines in vitro and in vivo and that these outcomes were inhibited by GPF. Furthermore, GPF activated nuclear factor erythroid-related factor-2 (Nrf2) and its downstream target genes in H. pylori-infected GES-1 cells and mice. The anti-inflammatory and antioxidant effects of GPF on H. pylori-infected cells were attenuated by an Nrf2 inhibitor. Taken together, these data suggest that GPF reduces H. pylori-induced gastric mucosa injury by activating Nrf2 signaling and that GPF is a potential candidate for the treatment of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Junze Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Xinpu Yuan
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Guijun Zou
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China
| | - Zhen Cao
- Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China.
| | - Chaojun Zhang
- Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of General Surgery, The First Medical Center of Chinese, PLA General Hospital, Beijing 100853, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
29
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
30
|
Lysionotin Induces Ferroptosis to Suppress Development of Colorectal Cancer via Promoting Nrf2 Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1366957. [PMID: 35993016 PMCID: PMC9385354 DOI: 10.1155/2022/1366957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022]
Abstract
Extensive use of substances derived from natural sources has been documented in the treatment of colorectal cancer (CRC). Lysionotin (Lys) is a flavonoid present in the flowers and leaves of Gesneriaceae family plants. Despite its various pharmacological properties, which include neuroprotective, pro, antimalarial, and anticancer effects, the therapeutic advantages of Lys for CRC remain uncertain. In this present study, we demonstrated that Lys treatment successfully inhibited cell proliferation, migration, and invasion in HCT116 and SW480 CRC cells in vitro. Intriguingly, significant ferroptosis and reactive oxygen species (ROS) accumulation in CRC cells were induced by Lys treatment, whereas antagonism of ferroptosis by Liproxstatin-1 (Lip1) pretreatment retarded the anti-CRC effects of Lys. In addition, Lys reduced the amount of Nrf2 protein in CRC cells by increasing the rate at which it is degraded. Overexpression of Nrf2 rescued Lys reduced ferroptosis, suggesting the Nrf2 signaling is a crucial determinant of whether Lys induces ferroptosis in CRC cells. We also revealed that Lys suppressed tumor growth in vivo without obvious adverse effects on the main organs of mice. In conclusion, our results discovered that Lys treatment induced ferroptosis to exert antitumor effects in HCT116 and SW480 CRC cells by modulating Nrf2 signaling, providing a potential therapeutic approach for the prevention of colorectal cancer.
Collapse
|
31
|
Yin X, Fan X, Zhou Z, Li Q. Encapsulation of berberine decorated ZnO nano-colloids into injectable hydrogel using for diabetic wound healing. Front Chem 2022; 10:964662. [PMID: 36017170 PMCID: PMC9395667 DOI: 10.3389/fchem.2022.964662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic wound healing in diabetic patients had been considered a major clinical challenge, so there was an urgent need to establish more effective treatment methods. In this study, we prepared berberine-modified ZnO nano-colloids hydrogel (ZnO-Ber/H) and evaluated its wound healing performance in a diabetic rat. The prepared ZnO-Ber/H had excellent moisturizing, anti-inflammatory and anti-oxidative stress abilities. In vitro, ZnO-Ber/H could effectively up-regulate antioxidant stress factors (Nrf2, HO-1, NQO1) by 4.65-fold, 2.49-fold, 2.56-fold, respectively. In vivo experiments have shown that ZnO-Ber/H could effectively improve the wound healing rate (92.9%) after 15 days of treatment. Meanwhile, the ability of anti-oxidative stress had also been verified in vivo. ZnO-Ber/H down-regulated inflammatory factor (TNF-α, IL-1β, and IL-6) by 72.8%, 55% and 71% respectively, up-regulated vascular related factors VEGF and CD31 by 3.9-fold and 3.2-fold by Western blot. At the same time, ZnO-Ber/H could promote the expression of EGFR and FGFR, thereby affecting the generation of new epithelial tissue. Based on extensive characterization and biological evaluation, ZnO-Ber/H was expected to be a potential candidate for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Xuechen Yin
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xiangyi Fan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Qi Li,
| | - Qi Li
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Qi Li,
| |
Collapse
|
32
|
Knockdown of PVT1 Exerts Neuroprotective Effects against Ischemic Stroke Injury through Regulation of miR-214/Gpx1 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1393177. [PMID: 35978647 PMCID: PMC9377929 DOI: 10.1155/2022/1393177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Previous studies have reported that lncRNA PVT1 was closely related to ischemic stroke. Here, the role of PVT1 in ischemic stroke and the underlying mechanism were investigated. OGDR-stimulated PC12 cells were used to construct a cell model to mimic ischemic stroke. si-PVT1, miR-214 mimic, inhibitor, or the negative controls were transfected into PC12 cells prior to OGDR treatment. PVT1, miR-214, and Gpx1 expression was measured by qRT-PCR and western blotting assays. Cell proliferation and apoptosis were tested by CCK-8 assay and western blotting. The expression levels of inflammatory factors were determined by ELISA Kit. Results showed that PVT1 was increased significantly in OGDR PC12 cells. PVT1 knockdown significantly enhanced cell viability and attenuated cell apoptosis, ROS generation, and inflammation in OGDR PC12 cells. More importantly, PVT1 or Gpx1 was a target of miR-214. Mechanistically, PVT1 acted as a competing endogenous RNA of miR-214 to regulate the downstream gene Gpx1. In conclusion, PVT1 knockdown attenuated OGDR PC12 cell injury by modulating miR-214/Gpx1 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
Collapse
|
33
|
Qiu H, Liu X. Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice. Mol Neurobiol 2022; 59:4987-4999. [PMID: 35665898 PMCID: PMC9363339 DOI: 10.1007/s12035-022-02885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer's disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice treated with ECH in 50 mg/kg/day for 3 months. Morris water maze, nesting test, and immunofluorescence staining used to observe whether ECH could improve AD pathology. Western blot used to study the mechanism of ECH improving AD pathology. The results showed that ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/AKT/Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress, and inflammatory response in AD. Therefore, we suggest that ECH may considered as a potential drug for AD treatment.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xuemin Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
34
|
Bai X, Zhu Y, Jie J, Li D, Song L, Luo J. Maackiain protects against sepsis via activating AMPK/Nrf2/HO-1 pathway. Int Immunopharmacol 2022; 108:108710. [PMID: 35405595 DOI: 10.1016/j.intimp.2022.108710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening medical condition caused by infection-triggered aberrant immune responses, leading to host tissue and organ injury. Despite advances in medical interventions, the mortality rate for septic shock remains high. Recent studies highlight the role of oxidative stress in the occurrence and development of sepsis, providing a potential therapeutic target for preventing sepsis-associated organ injury. In this study, we showed that Maackiain, a natural compound isolated from Sophora flavescens, exerted a protective role in a cecal ligation and puncture (CLP)-induced murine model of sepsis. Maackiain treatment reduced organ injury, and mitigated systematic inflammation and oxidative stress in septic mice. Maackiain also reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in RAW264.7 macrophage cells stimulated with lipopolysaccharide (LPS). We further demonstrated that Maackiain initiated activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in RAW264.7 cells in an AMP-activated protein kinase (AMPK)-dependent way. Moreover, inhibition of AMPK/Nrf2 axis abrogated the anti-inflammatory and anti-oxidant effects of Maackiain both in vitro and in vivo. Collectively, our study indicates that Maackiain treatment inhibits inflammatory response and oxidative stress via activation of AMPK/Nrf2/HO-1 pathway, thus exerting a protective effect against sepsis, providing an alternative option for sepsis prevention.
Collapse
Affiliation(s)
- Xiaoxue Bai
- Department of General Practice, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Yingjie Zhu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Jie
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
35
|
Maackiain Prevents Amyloid-Beta–Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4243210. [PMID: 35782063 PMCID: PMC9242816 DOI: 10.1155/2022/4243210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Amyloid-beta (Aβ) peptide induces neurotoxicity through oxidative stress and inflammatory response. Brain deposition of a large amount of amyloid-beta (Aβ), in particular Aβ42, promotes the development of Alzheimer’s disease (AD). Maackiain is extracted from traditional Chinese medicine peony root and possesses antioxidative, antiosteoporosis, antitumor, and immunoregulatory effects. Whether Maackiain can reduce neurotoxicity caused by Aβ accumulation remains elusive. Herein, we found that Maackiain downregulated Aβ42-induced cell injury and apoptosis in PC12 cells. Moreover, Maackiain prevented Aβ42 stimulation-induced generation of oxidative stress and reduced Aβ42-caused impairment of mitochondrial membrane potential in PC12 cells. Maackiain increased the superoxide dismutase activity and decreased malondialdehyde content that was induced by Aβ42. Mechanistic studies showed that Maackiain increased intranuclear Nrf2 expression. Consistently, Nrf2 silencing by RNA interference weakened the protective role of Maackiain against Aβ exposure. In addition, calphostin C, a specific antagonist of protein kinase C, attenuated the promoting effects of Maackiain on Nrf2 nuclear translocation. Moreover, calphostin C attenuated the antioxidant and anti-inflammatory capabilities of Maackiain in PC12 cells. Collectively, Maackiain promoted Nrf2 activation through the PKC signaling pathway, thus preventing PC12 cells from Aβ-induced oxidative stress and cell injury, suggesting that Maackiain is a potential drug for AD treatment.
Collapse
|
36
|
miR-338-3p Plays a Significant Role in Casticin-Induced Suppression of Acute Myeloid Leukemia via Targeting PI3K/Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214130. [PMID: 35765408 PMCID: PMC9233736 DOI: 10.1155/2022/9214130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Objective Casticin is generally used in traditional herbal medicine for its anti-inflammatory and anticarcinogenic pharmacological properties. Also, microRNAs are indispensable oncogenes or cancer suppressors being dysregulated in various diseases. In this study, we aimed to elucidate the mechanisms underlying effects of casticin on the progression of acute myeloid leukemia (AML). Methods CCK-8 and flow cytometry were utilized to measure the proliferation and apoptosis of AML cell lines, respectively, after treatment with different concentrations of casticin. The alteration of several microRNA expressions in response to casticin treatment was detected by performing qRT-PCR, and the activity of PI3K/Akt pathways was evaluated through immunoblotting. Afterwards, the potential target gene of miR-338-3p was investigated by dual-luciferase reporter assay. In order to evaluate the role of miR-338-3p in the casticin-induced cellular phenotype changes, AML cells were transfected with miR-338-3p mimics or inhibitor and then subjected to proliferation and apoptosis analysis. Finally, a mouse xenograft model system was employed to investigate the role of casticin in AML progression in vivo. Results Suppressed cellular proliferation and enhanced apoptosis were observed in HL-60 and THP-1 cells after exposure to casticin, accompanied by remarkable upregulation of the miR-338-3p expression as well as a decline in the phosphorylation of PI3K and Akt proteins. RUNX2 was identified as a direct target molecular of miR-338-3p, which might account for the findings that miR-338-3p knockdown enhanced the PI3K/Akt pathway activity, whereas the miR-338-3p overexpression inactivated this signaling pathway. In addition, the inhibition of the miR-338-3p expression attenuated severe cell apoptosis and suppressions of PI3K/Akt pathway induced by casticin. Furthermore, casticin treatment retarded tumor growth rate in mouse models, whilst elevating miR-338 expression and repressing the activity of PI3K/Akt pathway in vivo. However, miR-338-3p depletion could also abolish the phenotypic alterations caused by casticin treatment. Conclusion Casticin promotes AML cell apoptosis but inhibits AML cell proliferation in vitro and tumor growth in vivo by upregulating miR-338-3p, which targets RUNX2 and thereafter inactivates PI3K-Akt signaling pathway. Our results provide insights into the mechanisms underlying the action of casticin in the control of AML progression.
Collapse
|
37
|
Yao Z, Fu S, Ren B, Ma L, Sun D. Based on Network Pharmacology and Gut Microbiota Analysis to Investigate the Mechanism of the Laxative Effect of Pterostilbene on Loperamide-Induced Slow Transit Constipation in Mice. Front Pharmacol 2022; 13:913420. [PMID: 35652049 PMCID: PMC9148975 DOI: 10.3389/fphar.2022.913420] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Pterostilbene (PTE) is a natural polyphenol compound that has been proven to improve intestinal inflammation, but its laxative effect on slow transit constipation (STC) has never been studied. This study aims to investigate the laxative effect of PTE on loperamide (LOP)-induced STC mice and its influence on intestinal microbes through a combination of network pharmacological analysis and experimental verification.Material and Methods: PTE was used to treat LOP-exposed mice, and the laxative effect of PTE was evaluated by the total intestinal transit time and stool parameters. The apoptosis of Cajal interstitial cells (ICCs) was detected by immunofluorescence. The mechanism of PTE’s laxative effect was predicted by network pharmacology analysis. We used western blot technology to verify the predicted hub genes and pathways. Malondialdehyde (MDA) and GSH-Px were tested to reflect oxidative stress levels and the changes of gut microbiota were detected by 16S rDNA high-throughput sequencing.Results: PTE treatment could significantly improve the intestinal motility disorder caused by LOP. Apoptosis of ICCs increased in the STC group, but decreased significantly in the PTE intervention group. Through network pharmacological analysis, PTE might reduce the apoptosis of ICCs by enhancing PI3K/AKT and Nrf2/HO-1 signaling, and improve constipation caused by LOP. In colon tissues, PTE improved the Nrf2/HO-1 pathway and upregulated the phosphorylation of AKT. The level of MDA increased and GSH-Px decreased in the STC group, while the level of oxidative stress was significantly reduced in the PTE treatment groups. PTE also promoted the secretion of intestinal hormone and restored the microbial diversity caused by LOP.Conclusion: Pterostilbene ameliorated the intestinal motility disorder induced by LOP, this effect might be achieved by inhibiting oxidative stress-induced apoptosis of ICCs through the PI3K/AKT/Nrf2 signaling pathway.
Collapse
|
38
|
Wang L, An H, Yu F, Yang J, Ding H, Bao Y, Xie H, Huang D. The Neuroprotective Effects of Paeoniflorin Against MPP +-induced Damage to Dopaminergic Neurons via the Akt/Nrf2/GPX4 Pathway. J Chem Neuroanat 2022; 122:102103. [PMID: 35489613 DOI: 10.1016/j.jchemneu.2022.102103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
Paeoniflorin (PF), a water-soluble monoterpene glycoside extracted from the root of Paeonia lactiflora Pall, has been shown to exert neuroprotective effects against neurodegenerative diseases such as Parkinson's disease (PD). However, its underlying mechanisms remain unknown. Our results showed that at certain concentrations, PF alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced morphological damage and inhibited neuronal ferroptosis. Moreover, our research indicated that the neuroprotective effect of PF could be partially blocked by ML385 (a nuclear factor erythroid-2-related factor 2 (Nrf2) inhibitor) and LY29400 (an Akt inhibitor). These findings suggest that PF protects against MPP+-induced neurotoxicity by preventing ferroptosis via activation of the Akt/Nrf2/Gpx4 pathway in vitro.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hedi An
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Ding
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hongrong Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
40
|
Effects of Traditional Chinese Medicine Anticancer Decoction Combined with Basic Chemotherapy and Nursing Intervention on Oral Cancer Patients after Surgery and Its Effect on Tumor Markers and Immune Function. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6341381. [PMID: 35402612 PMCID: PMC8986392 DOI: 10.1155/2022/6341381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Objective To prospectively study the application effect of traditional Chinese medicine (TCM) anticancer decoction with basic chemotherapy and nursing intervention on oral cancer patients after surgery and the effect on tumor markers and immune function. Methods Eighty-four postoperative oral cancer patients in our hospital from May 2017 to February 2019 were selected and divided into observation group (42 cases) and control group (42 cases). The control group was treated with basic chemotherapy combined with basic nursing care, and the observation group was treated with TCM anticancer decoction and comprehensive nursing intervention on the basis of the control group. The clinical efficacy, the occurrence of adverse reactions, the satisfaction of nursing care, and the two-year cumulative survival rate of the two groups were compared. The immune function, tumor marker level, VAS score, QoR40 score, and survival quality score of the two groups were compared before and after nursing care. Results The total clinical treatment efficiency of the observation group (88.10%) was significantly higher than that of the control group (69.05%), and the differences between the two groups in oral cleanliness, aspiration frequency, and oral comfort were statistically significant (P < 0.05). The differences in the occurrence of halitosis, oral fungal infection, leukopenia, gastrointestinal reaction, and fever in the observation group were statistically significant compared with the control group (P < 0.05). The nursing satisfaction rate in the observation group (95.24%) was significantly higher than that in the control group (78.57%). The two-year cumulative survival rate of the observation group (92.86%) was significantly higher than that of the control group (73.81%). After nursing care, CD4+, CD4+/CD8+, VAS scores, QoR40 scores, and quality of survival scores in both groups all increased, and CD8+, CD56+, CEA level, NSE level, and CA19-9 level all decreased (all P < 0.05). Conclusion The clinical efficacy of TCM anticancer decoction with basic chemotherapy and nursing interventions in the treatment of postoperative oral cancer patients was remarkable, which could significantly improve patients' oral cleanliness and comfort, reduce the frequency of sputum aspiration, improve patients' immunity, reduce tumor marker levels, inhibit tumor activity, improve patients' nursing satisfaction, further improve patients' treatment compliance, reduce patients' pain level, improve patients' survival quality, and prolong patients' survival time with high safety. It could be used as a theoretical basis for subsequent clinical research.
Collapse
|
41
|
Pomiferin Exerts Antineuroinflammatory Effects through Activating Akt/Nrf2 Pathway and Inhibiting NF-κB Pathway. Mediators Inflamm 2022; 2022:5824657. [PMID: 35418806 PMCID: PMC9001093 DOI: 10.1155/2022/5824657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
Background Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are mainly characterized by progressive motor, sensory, or cognitive dysfunction in patients. Such diseases mostly occur in middle-aged and elderly people, and there is no effective cure. Studies have shown that neurodegenerative diseases are accompanied by neuroinflammation. The proinflammatory mediators produced neuroinflammation further damage neurons and aggravate the process of neurodegenerative diseases. Therefore, inhibiting neuroinflammation might be an effective way to alleviate neurodegenerative diseases. Pomiferin extracted from the fruit of the orange mulberry has a wide range of antioxidation and anti-inflammatory effects in peripheral tissues. However, it is not clear whether it plays a role on neuroinflammation. Methods In our experiment, we studied the effect of Pomiferin on BV2 cell inflammation and its mechanism with cck-8, LDH, quantitative PCR, and ELISA and methods. We then investigated the effect of Pomiferin on the classical inflammatory pathway by Western blot methods. Results The results showed that Pomiferin inhibited the production of ROS, NO, and proinflammatory mediators (IL-6, TNF-α, iNOS, and COX2) in BV2 cells. Further mechanism studies showed that Pomiferin activated the Akt/Nrf2 pathway and inhibited the NF-κB pathway. Conclusion Our study demonstrated that Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Collapse
|
42
|
Duan H, Li M, Liu J, Sun J, Wu C, Chen Y, Guo X, Liu X. An Integrated Approach Based on Network Analysis Combined With Experimental Verification Reveals PI3K/Akt/Nrf2 Signaling Is an Important Way for the Anti-Myocardial Ischemia Activity of Yi-Qi-Tong-Luo Capsule. Front Pharmacol 2022; 13:794528. [PMID: 35250556 PMCID: PMC8889021 DOI: 10.3389/fphar.2022.794528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Yiqi-Tongluo Capsule (YTC) is a Chinese traditional patent medicine that has been used in the treatment of myocardial ischemia (MI). However, its molecular mechanisms against MI have not been clear. Methods: Network analysis and experimental verification were used to explore the potential molecular mechanisms of YTC for MI treatment. Firstly, the main components in the capsules and the potential targets of these components were predicted by online databases. The MI related genes were collected from Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The drug targets and disease targets were intersected, and then the protein-protein interaction (PPI) and Drug-Molecular-Target-Disease Network (DMTD) were constructed, and GO enrichment analysis and KEGG pathway enrichment analysis were performed. Based on the H2O2-stimulated H9c2 cells, flow cytometry, western blot (WB) and immunofluorescence experiments were performed to verify the network analysis prediction. Results: A total of 100 active components and 165 targets of YTC were predicted, in which there were 109 targets intersected with the targets of MI. GO and KEGG analysis showed that these potential targets were related to a variety of biological processes and molecular mechanisms, including oxidative stress and PI3K/AKT pathway. Astragaloside IV (AS IV) and paeoniflorin (PAE) might be the main active components in YTC. The results of cell counting kit-8 (CCK-8) showed that YTC alleviated the damage of H2O2 to H9c2 cells. The results of flow cytometry, DAPI staining and JC-1 probe showed that YTC alleviated H2O2 induced apoptosis in H9c2 cells. In addition, YTC reduced the level of intracellular superoxide anion, increased the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA) in H2O2-induced H9c2 cells. The results of immunofluorescence and WB showed that the phosphorylation of PI3K and Akt were increased, the expression of Bcl-2 was up-regulated and the expression of cleaved caspase-3 and Bax were down-regulated. Besides, the nuclear translocation of Nrf2 were increased. Conclusion: In conclusion, the results of this study showed that YTC might alleviate MI by suppressing apoptosis induced by oxidative stress via the PI3K/Akt/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Huxinyue Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiyan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China.,Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Guangyuan Hospital of Traditional Chinese Medicine, Guangyuan, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglong Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
Zhao Y, Wan H, Yang J, Huang Y, He Y, Wan H, Li C. Ultrasound-assisted preparation of 'Ready-to-use' extracts from Radix Paeoniae Rubra with natural deep eutectic solvents and neuroprotectivity evaluation of the extracts against cerebral ischemic/ reperfusion injury. ULTRASONICS SONOCHEMISTRY 2022; 84:105968. [PMID: 35272238 PMCID: PMC8908277 DOI: 10.1016/j.ultsonch.2022.105968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Natural deep eutectic solvent (NaDES) is widely applied in the extraction of nutrients from natural resources as a greener alternative for fossil solvent. In the present work, 27 different NaDESs were screened for the extraction of paeoniflorin (PF) and galloyl paeoniflorin (GPF) from Radix Paeoniae Rubra (RPR). After screening and extraction parameter optimization, the extraction yields of PF and GPF reached up to 182.8 mg/g and 77.4 mg/g with the selected NaDES, ChCl-Sor. Furthermore, the antioxidant activity in vitro and neuroprotectivity in vivo of the 'ready-to-use' extracts were evaluated comprehensively. Especially in vivo, the cerebral ischemic/ reperfusion injury model was established in rats and the protective effects of the RPR extracts were determined. The results not only proved that NaDES is a valuable green extraction media, but also indicated the safety and potential pharmaceutical application of NaDES based 'ready-to-use' extracts from medical plants.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yan Huang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| |
Collapse
|
44
|
Xin YY, Wang JX, Xu AJ. Electroacupuncture ameliorates neuroinflammation in animal models. Acupunct Med 2022; 40:474-483. [PMID: 35229660 DOI: 10.1177/09645284221076515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Neuroinflammation refers to a wide range of immune responses occurring in the brain or spinal cord. It is closely related to a variety of neurodegenerative diseases, for which it potentially represents a new direction for treatment. Electroacupuncture (EA) is one method of acupuncture treatment, which can be used as an adjuvant therapy for many diseases. This review focuses on molecular mechanisms of EA in the reduction of neuroinflammation, summarizes relevant basic research and outlines future directions for investigation. Findings: A growing body of basic research has shown that EA can ameliorate neuroinflammation centrally (in animal models of ischemic stroke, Alzheimer’s disease, traumatic brain injury, spinal cord injury, Parkinson’s disease and vascular dementia) and peripherally (e.g. after a surgical insult or injection of lipopolysaccharide) and that its effects involve different molecular mechanisms, including activation of the α7 nicotinic acetylcholine receptor signaling pathway and P2 type purinergic receptors, inhibition of nuclear factor κB, and mitigation of damage secondary to oxidative stress and NOD-like receptor protein 3 inflammasome activation. Conclusions: EA is capable of regulating multiple cell signal transduction pathways to alleviate neuroinflammation in animal models. Although the findings of animal studies are encouraging, further prospective clinical trials are needed to verify the efficacy of EA for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Yue-yang Xin
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-xu Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-jun Xu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Chrysin, which targets PLAU, protects PC12 cells from OGD/R-stimulated damage through repressing the NF-κB signaling pathway. Regen Ther 2022; 19:69-76. [PMID: 35097165 PMCID: PMC8761957 DOI: 10.1016/j.reth.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia reperfusion injury (CIRI) is a great challenge for the patients with brain ischemia, but its pathophysiological mechanism has not been clearly explored. This study aims to decipher the effect of chrysin and plasminogen activator urokinase (PLAU) in CIRI. The immune-related genes were collected from the ImmPort website, and the differentially expressed genes were determined based on the Gene Expression Omnibus (GEO) database. PC12 cells were used to establish an ischemic stroke model under the condition of oxygen-glucose deprivation and reoxygenation (OGD/R). Small interfering RNA strategy was employed to knock down the PLAU expression of PC12 cells. The proliferation and apoptosis rates of PC12 cells treated by OGD/R or/and chrysin were detected with Cell Counting Kit 8 (CCK-8) and flow cytometry. The protein and mRNA expressions were measured using western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). PLAU was identified as a candidate for CIRI treatment and expressed at higher levels in CIRI tissues compared with that in normal controls. Chrysin was determined as a crucial agent that could decrease the expression of PLAU. Chrysin significantly promoted the cell proliferation, inhibited the protein levels of PLAU, p–NF–κB, and p-IKκB in PC12 cells after OGD/R. Silencing of PLAU strengthened the protective effect of chrysin on PC12 cells treated by OGD/R, including the improvement of cell viability and suppression of apoptosis. Chrysin inactivated the NF-κB pathway via targeting PLAU in OGD/R-stimulated PC12 cells. Chrysin prevented PC12 cells from OGD/R-stimulated damage via decreasing PLAU expression and inactivating the NF-κB signaling pathway.
Collapse
|
46
|
Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, Xue Y, Li H, Ji W, Zhuang J, Lv P, Cheng K, Chen K. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)- N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules 2022; 27:1554. [PMID: 35268655 PMCID: PMC8911759 DOI: 10.3390/molecules27051554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
In this paper, we report the design, synthesis and biological evaluation of a novel S-allyl-l-cysteine (SAC) and gallic acid conjugate S-(4-fluorobenzyl)-N-(3,4,5-trimethoxybenzoyl)-l-cysteinate (MTC). We evaluate the effects on ischemia-reperfusion-induced PC12 cells, primary neurons in neonatal rats, and cerebral ischemic neuronal damage in rats, and the results showed that MTC increased SOD, CAT, GPx activity and decreased LDH release. PI3K and p-AKT protein levels were significantly increased by activating PI3K/AKT pathway. Mitochondrial pro-apoptotic proteins Bax and Bim levels were reduced while anti-apoptotic protein Bcl-2 levels were increased. The levels of cleaved caspase-9 and cleaved caspase-3 were also reduced in the plasma. The endoplasmic reticulum stress (ERS) was decreased, which in turns the survival rate of nerve cells was increased, so that the ischemic injury of neurons was protected accordingly. MTC activated the MEK-ERK signaling pathway and promoted axonal regeneration in primary neurons of the neonatal rat. The pretreatment of MEK-ERK pathway inhibitor PD98059 and PI3K/AKT pathway inhibitor LY294002 partially attenuated the protective effect of MTC. Using a MCAO rat model indicated that MTC could reduce cerebral ischemia-reperfusion injury and decrease the expression of proinflammatory factors. The neuroprotective effect of MTC may be due to inhibition of the over-activation of the TREK-1 channel and reduction of the current density of the TREK1 channel. These results suggested that MTC has a protective effect on neuronal injury induced by ischemia reperfusion, so it may have the potential to become a new type of neuro-ischemic drug candidate.
Collapse
Affiliation(s)
- Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Zhongwei Zhang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wenjing Shi
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Binyan Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Haipeng Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Wenjin Ji
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| |
Collapse
|
47
|
Zingerone Inhibits the Neutrophil Extracellular Trap Formation and Protects against Sepsis via Nrf2-Mediated ROS Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3990607. [PMID: 35126812 PMCID: PMC8816574 DOI: 10.1155/2022/3990607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/26/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022]
Abstract
Neutrophils release chromatin and antimicrobial proteins to trap and kill microbes, which is termed as neutrophil extracellular trap (NET) formation. NETs play a pivotal role in host defense against infection. However, emerging evidence indicated that NETs also contribute to an exaggerated inflammatory response and organic injuries in sepsis. Zingerone, a natural compound extracted from Zingiber officinale, exerts antioxidant, anti-inflammatory, and antioncogenic properties. In this study, we found that treatment with zingerone reduced organ injury and improved the outcome in a cecal ligation puncture- (CLP-) induced polymicrobial sepsis model. Administration of zingerone also alleviates reactive oxygen species (ROS) accumulation and systematic inflammation in septic mice and inhibits neutrophil extracellular traps (NETs) formation in vivo and in vitro. Furthermore, inhibition of nuclear factor erythroid 2-related factor 2 (Nrf2) with its specific antagonist significantly counteracted the suppressive effects of zingerone on ROS and NETs and retarded the protective role of zingerone against sepsis-associated organ injury. In addition, exposure to zingerone does not affect phagocytic activity of neutrophils in vitro and bacterial dissemination in vivo. Above all, our results indicate that zingerone treatment obviously attenuates NET formation and inflammatory response via Nrf2-mediated ROS inhibition, thus providing a novel therapeutic strategy against sepsis-induced injury.
Collapse
|
48
|
Zhao Q, Shao X, Ding X, Lin S, Zhang D, Qin J, Wang W, Yu W, Zhang R, Tao L, Zhao W, Zhang H. PDPOB Exerts Multiaspect Anti-Ischemic Effects Associated with the Regulation of PI3K/AKT and MAPK Signaling Pathways. ACS Chem Neurosci 2021; 12:4416-4427. [PMID: 34755509 DOI: 10.1021/acschemneuro.1c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The discovery of new therapeutic agents for ischemic stroke remains an urgent need. Here, we identified a novel phenyl carboxylic acid derivative, n-pentyl 4-(3,4-dihydroxyphenyl)-4-oxobutanoate (PDPOB), with anti-ischemic activities. The in vitro anti-ischemic neuroprotective and anti-inflammatory capacities of PDPOB were investigated using neuronal cells suffering from oxygen-glucose deprivation/reperfusion (OGD/R) and microglial cells stimulated by lipopolysaccharide (LPS). PDPOB attenuated the OGD/R-evoked cellular damage of SH-SY5Y cells and primary cortical neurons in a concentration-dependent manner. Likewise, PDPOB displayed protective roles against OGD/R-evoked multiaspect neuronal deterioration in SH-SY5Y cells, as evidenced by alleviated mitochondrial dysfunction, oxidative stress, and apoptosis. A further study unveiled the accelerated phosphorylation of protein kinase B (AKT) by PDPOB treatment, while blockade of phosphoinositide 3-kinase (PI3K)/AKT signaling substantially diminished the neuroprotective capacities of PDPOB. Additionally, the PDPOB pretreatment dampened the LPS-evoked neuroinflammation in BV2 cells, characterized by the suppressed secretion of nitric oxide (NO) and proinflammatory cytokines, as well as normalized expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Western blotting further revealed that PDPOB abated the overabundant phosphorylation of the extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), and p38 in LPS-exposed BV2 cells. The intravenous application of PDPOB (30 mg/kg, single dose) attenuated ipsilateral cerebral infarction in middle cerebral artery occlusion (MCAO) rats, accompanied by recovered neurological behaviors. Collectively, the above observations provided substantial evidence for the favorable properties and mechanistic explanations of PDPOB in the regulation of ischemia-associated neuronal injury and microglial inflammation, which may furnish ideas for the discovery of new therapeutic strategies against cerebral ischemia.
Collapse
Affiliation(s)
- Qinyuan Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingcheng Shao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xun Ding
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Sijin Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
| | - Junjun Qin
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Weichen Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Rujun Zhang
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
| | - Lingxue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Weimin Zhao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
49
|
Zhao X, Ma R, Zhang X, Wang B, Rong B, Jiang N, Feng W, Chen M, Huo Z, Li S, Xia T. Transcriptomic study of the mechanism by which the Kai Yu Zhong Yu recipe improves oocyte quality in a stressed mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114298. [PMID: 34090913 DOI: 10.1016/j.jep.2021.114298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/26/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Kai Yu Zhong Yu recipe (KYZY) is a classic herbal formula in traditional Chinese medicine (TCM) that has been used to treat infertility associated with psychological stress for more than three hundred years. AIM OF THE STUDY Psychological stress has major impacts on fertility, with variable outcomes depending on the nature, strength, and duration of the stress. Stress can directly disturb ovulation, oocyte quality, maturation, and embryo development. The aim of this study is to investigate the molecular mechanism by which KYZY improves oocyte developmental potential under psychological stress. MATERIALS AND METHODS ICR female mice aged 4-5 weeks were randomly divided into five groups: control, stressed in the chronic unpredictable stress model (CUSM), and stressed plus KYZY treatment at 38.2 g/kg (KYZYH), 19.1 g/kg (KYZYM), or 9.6 g/kg (KYZYL). Ovary function was assessed by measuring serum levels of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH). Oocyte quality was evaluated in terms of reactive oxygen species (ROS) levels, apoptotic DNA fragmentation, and mitochondria distribution. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between groups and then further analyzed the DEGs for gene ontology (GO) term enrichment and protein-protein interactions. RESULTS Mice in the stressed group had reduced serum E2, LH, and FSH as well as increased ROS levels, increased apoptosis, and disturbed mitochondria distribution in oocytes. Treatment with KYZY at all three doses reversed or ameliorated these negative effects of stress. DEG analysis identified 187 common genes between the two comparisons (stressed vs. control and KYZYM vs. stressed), 33 of which were annotated with six gene ontology (GO)'s biological process (BP) terms: cell differentiation, apoptosis, ATP synthesis, protein homo-oligomerization, neuron migration, and negative regulation of peptidase activity. Protein-protein interaction network analysis of DEGs identified key hub genes. Notably, the genes Atp5o and Cyc1 were both involved in the ATP synthesis and among the top three hub genes, suggesting that regulation of oocyte mitochondrial electron transport and ATP synthesis is important in the response to stress and also is a possible mechanism of action for KYZY. CONCLUSIONS KYZY was effective in ameliorating the adverse effects of stress on oocyte competence, possibly by targeting the mitochondrial respiratory chain and ATP synthase.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Ruihong Ma
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiaoyu Zhang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Baojuan Wang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Beilei Rong
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Nan Jiang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Weihua Feng
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Mingli Chen
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Zhipeng Huo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuming Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Tian Xia
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, And National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| |
Collapse
|
50
|
Ruan C, Guo H, Gao J, Wang Y, Liu Z, Yan J, Li X, Lv H. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway. Brain Behav 2021; 11:e2335. [PMID: 34473417 PMCID: PMC8553305 DOI: 10.1002/brb3.2335] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Metformin (Met) is a commonly used drug in the treatment of type 2 diabetes. Currently, it has been found that Met can effectively reduce the incidence of stroke and exert anti-inflammatory effects. However, its role in ischemia-reperfusion (I/R)-induced nerve injury remains unclear. This study aims to investigate the neuroprotective effects of Met in I/R-induced neuron injury as well as the underlying mechanism. A middle cerebral artery occlusion (MCAO) model was established in Sprague Dawley (SD) rats, which were then treated with different doses of Met. Neurological deficits of rats were measured at different times post-surgery. TTC staining was done to observe the volume of cerebral infarction. HE staining was performed to observe pathological changes of brain tissues. Immunohistochemistry was performed to observe the expression of inflammatory factors in the cerebral tissues. qRT-PCR method was used to detect the relative expression of PI3K, Akt mRNA in cells after 24 h of drug action. Western blot method was used to detect the expression of PI3K, p-PI3K, Akt, and p-Akt in hippocampus. What is more, in vitro experiments were performed on BV2 microglia to verify the role of Met against oxygen-glucose deprivation (OGD). As a result, Met dose-dependently attenuated neurological deficits and neuronal apoptosis. Besides, Met administration also significantly reduced BV2 cells apoptosis and inflammatory response. Mechanistically, Met inactivated PI3K/Akt pathway induced by I/R and OGD, while it upregulated PI3K. In conclusion, Met protected rats from cerebral I/R injury via reducing neuronal apoptosis and microglial inflammation through PI3K/Akt pathway.
Collapse
Affiliation(s)
- Cailian Ruan
- Department ofMedicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, shannxi 710061, P. R. China.,College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Hongtao Guo
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Jiaqi Gao
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Yiwei Wang
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Zhiyong Liu
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Jinyi Yan
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Xiaoji Li
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Haixia Lv
- Department ofMedicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, shannxi 710061, P. R. China
| |
Collapse
|