1
|
Marrez DA, Badr AN, El-Bahrawy A, Naeem MA. Algal extracts evaluation as an Antitoxicity sustainable solution against aflatoxin B 1 toxicity in rat tissues. Toxicon 2024; 250:108098. [PMID: 39284454 DOI: 10.1016/j.toxicon.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Aflatoxin B1 (AFB1) is a pre-carcinogenic molecule produced by toxigenic fungi and is widely harmful to public health. Algae extracts are sub-cellular pilot plants rich in bioactive substances that aid detoxification. This study aimed to reduce AFB1-toxicity in biological tissues of administrated rats using two algae extracts, Spirulina (SPR) and Amphora (AMR). Algae extracts were prepared using an aqueous system, concentrated, and lyophilized before being administrated to rats. The extract contents of total phenolic and flavonoids were determined to indicate their bioactive content and antioxidant potency. The animal experiment was designed in 8 groups as the control negative and control positive (AFB1; 20 μg/kg BW/day); groups 3 and 4 were designed for control positive of algae applied at high doses for toxicity evaluation. Otherwise, four groups were classified as G5 and G6 for rats administrated by AFB1, followed by 50 and 100 mg/kg Spirulina extract, respectively. The G7 and G8 were administrated with an AFB1 dose followed by amphora treatment at 50 and 100 mg extract/kg, respectively. The results showed a significant content of algae extracts of phenolic compounds (27.36 ± 1.75 and 39.55 ± 1.14 mg GAE/g DW for the SPR and AMR, respectively), with a valuable antioxidant activity. For rats treated only with the SPR or AMR extracts, no tissue changes were recorded for the liver, kidney, pancreas, or testis. Again, the biochemical parameters of these groups are recorded without harmful impacts, particularly for the tumor markers of AFP, TNF-α, CEA, and ALP. Once more, a higher extract concentration was more effective in AFB1-toxicity reduction, particularly for the SPR on the liver and kidney tissues. The SPR extract manifested a protective impact in sensitive tissue against the AFB1 effect, particularly in the testis. The results recommend the application of SPR extract at 100 mg/kg bw as an effective treatment for AFB1-toxicity regulation (as pharmaceutical or nutraceutical) involved in daily habits.
Collapse
Affiliation(s)
- Diaa Attia Marrez
- Food Toxicology and Contaminants Dept., National Research Center, Cairo, 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Dept., National Research Center, Cairo, 12622, Egypt.
| | - Amanallah El-Bahrawy
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32958, Egypt
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
LaTouche L. Clinical Utility of Probiotics Therapy in Managing Mycotoxin Illness. Integr Med (Encinitas) 2023; 22:12-14. [PMID: 37752931 PMCID: PMC10519232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- Liam LaTouche
- in practice in Barrie, Ontario, and faculty member, Canadian School of Natural Nutrition in Toronto, Ontario, Canada
| |
Collapse
|
3
|
Aytekin Sahin G, Karabulut D, Unal G, Sayan M, Sahin H. Effects of probiotic supplementation on very low dose AFB1-induced neurotoxicity in adult male rats. Life Sci 2022; 306:120798. [PMID: 35843344 DOI: 10.1016/j.lfs.2022.120798] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
Abstract
AIMS Aflatoxin B1 (AFB1) is the most toxic and common form of AF found in food and feed. Although AFB1 exposure has toxic effects on many organs, studies on the brain are limited. Moreover, to the best of our knowledge, there is no study on the effect of probiotics on AFB1-induced neurotoxicity. Therefore, we aimed to evaluate the possible effects of probiotics on AFB1-induced neurotoxicity in the brain. MAIN METHODS Thirty-two adult male Wistar rats were divided into four groups: Vehicle (VEH), Probiotic (PRO) (2.5 × 1010 CFU/day VSL#3, orally), Aflatoxin B1 (AFB1) (25 μg/kg/week AFB1, orally), and Aflatoxin B1 + Probiotic (AFB1 + PRO) (2.5 × 1010 CFU/day VSL#3 + 25 μg/kg/week AFB1, orally). At the end of eight weeks, rats were behaviorally evaluated by the open field test, novel object recognition test, and forced swim test. Then, oxidative stress and inflammatory markers in brain tissues were analyzed. Next, brain sections were processed for Hematoxylin&Eosin staining and NeuN and GFAP immunostaining. KEY FINDINGS Probiotic supplementation tended to decrease oxidative stress and inflammatory markers compared to the AFB1 group. Besides, brain tissues had more normal histological structures in VEH, PRO, and AFB1 + PRO groups than in the AFB1 group. Moreover, in probiotic groups, GFAP immunoreactivity intensity was decreased, while NeuN-positive cell number increased in brain tissues compared to the AFB1 group. SIGNIFICANCE Probiotics seem to be effective at reducing the neurotoxic effects of AFB1. Thus, our study suggested that especially Bifidobacterium and Lactobacillus species can improve AFB1-induced neurotoxicity with their antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gizem Aytekin Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Meryem Sayan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Habibe Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Taranu I, Hermenean A, Bulgaru C, Pistol GC, Ciceu A, Grosu IA, Marin DE. Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110899. [PMID: 32678747 DOI: 10.1016/j.ecoenv.2020.110899] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Liver is the earliest target for AFB1 toxicity in both human and animals. In the last decade, plant derived by-products have been used in animal feed to reduce AFB1 induced toxicity. In the present study we investigated whether the presence of 8% grape seed meal by-product is able to counteract the hepatotoxic effects produced by AFB1 in liver of pig after weaning exposed to the toxin through the contaminated feed for 28 days. Twenty four weaned cross-bred TOPIGS-40 piglets with an average body weight of 9.13±0.03 were allocated to the following experimentally treatments: control diet without AFB1 (normal compound feed for weaned pigs); contaminated diet with 320 mg kg-1 AFB1; GSM diet (compound feed plus 8% grape seed meal) and AFB1+GSM diet (320 mg kg-1 AFB1 contaminated feed plus 8% grape seed meal). Pigs fed AFB1 diet had altered performance, body weight decreasing with 25.1% (b.w.: 17.17 kg for AFB1 vs 22.92 kg for control). Exposure of piglets to AFB1 contaminated diet caused liver oxidative stress as well as liver histological damage, manly characterized by inflammatory infiltrate, fibrosis and parenchyma cells vacuolation when compared to control and GSM meal group. 94.12% of the total analysed genes (34) related to inflammation and immune response was up-regulated. The addition of GSM into the AFB1 diet diminished the gene overexpression and ameliorate histological liver injuries and oxidative stress. The protective effect of GSM diet in diminishing the AFB1 harmful effect was mediated through the decreasing of gene and protein expression of MAPKs and NF-κB signalling overexpressed by AFB1 diet. The inclusion of grape seed by-products in the diet of pigs after weaning might be used as a novel nutritional intervention to reduce aflatoxin toxicity.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Anca Hermenean
- Aurel Ardelean Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Alina Ciceu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Iulian Alexandru Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
5
|
Ben Salah-Abbès J, Belgacem H, Ezdini K, Mannai M, Oueslati R, Abbès S. Immunological effects of AFM1 in experimental subchronic dosing in mice prevented by lactic acid bacteria. Immunopharmacol Immunotoxicol 2020; 42:572-581. [PMID: 32938251 DOI: 10.1080/08923973.2020.1824237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Recently, higher contamination by aflatoxin M1 (AFM1) has been detected in many countries. Unfortunately, many tons of contaminated milk and milk byproducts are removed from the food chain to avoid human contamination; as a consequence of higher economic losses. Fewest number of studies are interested to AFM1 detoxification using lactic acid bacteria. MATERIALS AND METHODS In this study, AFM1-degradation using Lactobacillus paracasei BEJ01 (LPBEJ01) was tested in vitro. The preventive effect of LPBEJ01 against AFM1 immunobiological effects in mice are treated orally during 3 weeks with 100 µg AFM1, LPBEJ01 (2 × 109 CFU/ml∼2 mg/kg p.c.) and a mixture of AFM1 and LPBEJ01. RESULTS In vitro LPBEJ01 was found able to absorb 98% of AFM1 (100 µg/ml) in liquid medium after 24 h and more than 95% of AFM1 could be eliminated after 24 h in a solid-state fermentation. Animals treated with AFM1 obtained lower body weight than the control ones. The mitogenic response of spleen mononuclear cells (SMCs) in vivo was higher in mice treated with AFM1. The SMC of mice treated with AFM1 produced lower levels of IL-2, higher levels IL-4 and no effect on IL-10 production. The peritoneal macrophages of mice that treated with AFM1 released less H2O2, while mice exposed orally with the mixture of AFM1 and LPBEJ01 produced higher levels. CONCLUSION LPBEJ01 was safe and it did not have any sign of toxicity. It can be used as an additive for AFM1-detoxification contamination in the food chain in countries suffering from this problem.
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Khawla Ezdini
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Marwa Mannai
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Ridha Oueslati
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences Bizerte, University of Carthage, Tunis, Tunisia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia.,Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| |
Collapse
|
6
|
Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol 2020; 10:2908. [PMID: 31998250 PMCID: PMC6962185 DOI: 10.3389/fmicb.2019.02908] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Due to Earth's changing climate, the ongoing and foreseeable spreading of mycotoxigenic Aspergillus species has increased the possibility of mycotoxin contamination in the feed and food production chain. These harmful mycotoxins have aroused serious health and economic problems since their first appearance. The most potent Aspergillus-derived mycotoxins include aflatoxins, ochratoxins, gliotoxin, fumonisins, sterigmatocystin, and patulin. Some of them can be found in dairy products, mainly in milk and cheese, as well as in fresh and especially in dried fruits and vegetables, in nut products, typically in groundnuts, in oil seeds, in coffee beans, in different grain products, like rice, wheat, barley, rye, and frequently in maize and, furthermore, even in the liver of livestock fed by mycotoxin-contaminated forage. Though the mycotoxins present in the feed and food chain are well documented, the human physiological effects of mycotoxin exposure are not yet fully understood. It is known that mycotoxins have nephrotoxic, genotoxic, teratogenic, carcinogenic, and cytotoxic properties and, as a consequence, these toxins may cause liver carcinomas, renal dysfunctions, and also immunosuppressed states. The deleterious physiological effects of mycotoxins on humans are still a first-priority question. In food production and also in the case of acute and chronic poisoning, there are possibilities to set suitable food safety measures into operation to minimize the effects of mycotoxin contaminations. On the other hand, preventive actions are always better, due to the multivariate nature of mycotoxin exposures. In this review, the occurrence and toxicological features of major Aspergillus-derived mycotoxins are summarized and, furthermore, the possibilities of treatments in the medical practice to heal the deleterious consequences of acute and/or chronic exposures are presented.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anett Madar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Taranu I, Marin DE, Palade M, Pistol GC, Chedea VS, Gras MA, Rotar C. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon 2019; 162:24-31. [PMID: 30849456 DOI: 10.1016/j.toxicon.2019.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023]
Abstract
The aim of this study was to investigate the potential of a grape seed byproduct to mitigate the harmful damage produced by aflatoxin B1 (AFB1) at systemic level in plasma and liver as well as at local level in the gastrointestinal tract in weaned piglets. Twenty four crossbred pigs (TOPIG) were randomly assigned to one of four experimental diets: 1)- control diet (normal compound feed for starter piglets without mycotoxin), 2)- AFB1 diet (compound feed contaminated with 320 ppb pure AFB1), 3)- GS diet (compound feed including 8% of grape seed meal), 4)- AFB1+GS diet (compound feed containing 8% of grape seed meal contaminated with 320 ppb AFB1) for 30 days. The results showed that pigs fed AFB1 diet had altered performance (-25.1%), increased the thiobarbituric substances (TBARS) concentration wile reduced total antioxidant capacity and activity of antioxidant enzymes (CAT, SOD and GPx) in plasma and organs. AFB1 produced a dual effect on inflammatory response by increasing the level of pro-inflammatory cytokines in liver and colon and decreasing these cytokines in duodenum. The inclusion of grape seed in the diet of AFB1 intoxicated pigs enhanced the antioxidant enzymes activity, decreased the pro-inflammatory cytokines and TBARS level and ameliorated the growth performance of AFB1-treated animals. These findings suggest that grape waste is a promising feed source in counteracting the harmful effect of aflatoxin B1.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Mihai Palade
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Veronica Sanda Chedea
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Mihail Alexandru Gras
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Catalin Rotar
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
8
|
Liew WPP, Mohd-Redzwan S, Than LTL. Gut Microbiota Profiling of Aflatoxin B1-Induced Rats Treated with Lactobacillus casei Shirota. Toxins (Basel) 2019; 11:E49. [PMID: 30658400 PMCID: PMC6357033 DOI: 10.3390/toxins11010049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous carcinogenic food contaminant. Gut microbiota is of vital importance for the host's health, regrettably, limited studies have reported the effects of xenobiotic toxins towards gut microbiota. Thus, the present study aims to investigate the interactions between AFB1 and the gut microbiota. Besides, an AFB1-binding microorganism, Lactobacillus casei Shirota (Lcs) was tested on its ability to ameliorate the changes on gut microbiota induced by AFB1. The fecal contents of three groups of rats included an untreated control group, an AFB1 group, as well as an Lcs + AFB1 group, were analyzed. Using the MiSeq platform, the PCR products of 16S rDNA gene extracted from the feces were subjected to next-generation sequencing. The alpha diversity index (Shannon) showed that the richness of communities increased significantly in the Lcs + AFB1 group compared to the control and AFB1 groups. Meanwhile, beta diversity indices demonstrated that AFB1 group significantly deviated from the control and Lcs + AFB1 groups. AFB1-exposed rats were especially high in Alloprevotella spp. abundance. Such alteration in the bacterial composition might give an insight on the interactions of AFB1 towards gut microbiota and how Lcs plays its role in detoxification of AFB1.
Collapse
Affiliation(s)
- Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Liew WPP, Nurul-Adilah Z, Than LTL, Mohd-Redzwan S. The Binding Efficiency and Interaction of Lactobacillus casei Shirota Toward Aflatoxin B1. Front Microbiol 2018; 9:1503. [PMID: 30042748 PMCID: PMC6048233 DOI: 10.3389/fmicb.2018.01503] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/18/2018] [Indexed: 12/07/2022] Open
Abstract
The use of probiotic as dietary approach to prevent exposure to food contaminant, aflatoxin B1 (AFB1) has greatly increased. Several studies found that AFB1 binding to the bacterial cell wall is strain-specific. Moreover, the interaction between AFB1 and bacterial cell wall is not well-understood, thus warrants further investigation. This research was conducted to assess the ability of Lactobacillus casei Shirota (Lcs) to bind AFB1 at different concentrations and to determine AFB1 binding efficiency of different Lcs cell components including live cell, heat-treated, and cell wall. In addition, the interaction between AFB1 and Lcs was also evaluated via scanning electron microscopy (SEM) and through an animal study. The binding of AFB1 by all Lcs cell components depends on the concentration of available AFB1. Among all Lcs cell components, the live Lcs cells exhibited the highest binding efficiency (98%) toward AFB1. Besides, the SEM micrographs showed that AFB1 induced structural changes on the bacterial cell surface and morphology including rough and irregular surface along with a curve rod-shaped. In vivo experiment revealed that Lcs is capable to neutralize the toxicity of AFB1 on body weight and intestine through the binding process. The animal’s growth was stunted due to AFB1 exposure, however, such effect was significantly (p < 0.05) alleviated by Lcs. This phenomenon can be explained by a significant (p < 0.05) decreased level of blood serum AFB1 by Lcs (49.6 ± 8.05 ng/mL) compared to AFB1-exposed rats without treatment (88.12 ± 10.65 ng/mL). Taken together, this study highlights the potential use of Lcs as a preventive agent against aflatoxicosis via its strong binding capability.
Collapse
Affiliation(s)
- Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zainuddin Nurul-Adilah
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Leslie T L Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|