1
|
Wu Y, Chen D, Luo Y, Wang J, Gong H, Li J, Jiang L. Expression and clinical significance of SYNE3 in non-small cell lung cancer. Am J Transl Res 2024; 16:4436-4449. [PMID: 39398556 PMCID: PMC11470357 DOI: 10.62347/zhbp7145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To detect the expression of Spectrin Repeat Containing Nuclear Envelope Family Member 3 (SYNE3) and Cluster of Differentiation 34 (CD34) in non-small cell lung cancer (NSCLC). It also aimed to explore the relationship between SYNE3 and NSCLC angiogenesis and clinicopathologic features to identify new biomarkers for NSCLC. METHODS Forty-five NSCLC stage IA-IVB tissue specimens from patients diagnosed at Bazhong Central Hospital were collected from January to September 2022, along with 45 para-cancerous normal lung tissues as controls. None of the NSCLC patients had received anti-tumor therapies, including radiotherapy, chemotherapy, targeted therapy, immunotherapy, or traditional Chinese medicine. All specimens were stained for SYNE3 and CD34 using the Streptavidin-Peroxidase (SP) method. The expression levels of SYNE3 and CD34 in NSCLC tissues and para-cancerous tissues were detected, and a correlation analysis between SYNE3 and clinicopathological features was performed. The number of CD34-labeled microvessels was counted using the Microvessel density (MVD) method. The relationship between SYNE3 and NSCLC angiogenesis was examined through the correlation between CD34-MVD and NSCLC clinicopathologic features. RESULTS The expression of SYNE3 in NSCLC was significantly lower than that in para-cancerous normal lung tissues, while the expression of CD34 in NSCLC was significantly higher than in para-cancerous normal lung tissues (P=0.037). SYNE3 expression in NSCLC was negatively correlated with tumor diameter and was lower in male patients with a smoking history compared to female patients without a smoking history. CD34 expression was positively correlated with Tumor, Node, Metastasis staging and lymph node metastasis. There was a significant correlation between the expression of SYNE3 and CD34 in NSCLC (r=0.450, P=0.000). CONCLUSION SYNE3 was lowly expressed and negatively correlated with tumor size in NSCLC, whereas CD34 was highly expressed and positively correlated with TNM stage and lymph node metastasis. The significant correlation between the expressions of SYNE3 and CD34 suggests that SYNE3 may play a key role in NSCLC angiogenesis and progression.
Collapse
Affiliation(s)
- Yunxi Wu
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Dehe Chen
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Yu Luo
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Haiying Gong
- Department of Respiratory and Critical Care Medicine, Guang’an Central HospitalGuang’an 638500, Sichuan, China
| | - Junhua Li
- Department of Respiratory and Critical Care Medicine, Bazhong Central HospitalBazhong 636000, Sichuan, China
| | - Li Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000, Sichuan, China
| |
Collapse
|
2
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
3
|
Mocanu-Dobranici AE, Costache M, Dinescu S. Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation. Int J Mol Sci 2023; 24:ijms24032028. [PMID: 36768351 PMCID: PMC9916404 DOI: 10.3390/ijms24032028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Magnetic materials and magnetic stimulation have gained increasing attention in tissue engineering (TE), particularly for bone and nervous tissue reconstruction. Magnetism is utilized to modulate the cell response to environmental factors and lineage specifications, which involve complex mechanisms of action. Magnetic fields and nanoparticles (MNPs) may trigger focal adhesion changes, which are further translated into the reorganization of the cytoskeleton architecture and have an impact on nuclear morphology and positioning through the activation of mechanotransduction pathways. Mechanical stress induced by magnetic stimuli translates into an elongation of cytoskeleton fibers, the activation of linker in the nucleoskeleton and cytoskeleton (LINC) complex, and nuclear envelope deformation, and finally leads to the mechanical regulation of chromatin conformational changes. As such, the internalization of MNPs with further magnetic stimulation promotes the evolution of stem cells and neurogenic differentiation, triggering significant changes in global gene expression that are mediated by histone deacetylases (e.g., HDAC 5/11), and the upregulation of noncoding RNAs (e.g., miR-106b~25). Additionally, exposure to a magnetic environment had a positive influence on neurodifferentiation through the modulation of calcium channels' activity and cyclic AMP response element-binding protein (CREB) phosphorylation. This review presents an updated and integrated perspective on the molecular mechanisms that govern the cellular response to magnetic cues, with a special focus on neurogenic differentiation and the possible utility of nervous TE, as well as the limitations of using magnetism for these applications.
Collapse
Affiliation(s)
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050063 Bucharest, Romania
- Correspondence:
| |
Collapse
|
4
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
5
|
Zhang Y, Yang L, Huang L, Liu G, Nie X, Zhang X, Xing X. SUN5 Interacting With Nesprin3 Plays an Essential Role in Sperm Head-to-Tail Linkage: Research on Sun5 Gene Knockout Mice. Front Cell Dev Biol 2021; 9:684826. [PMID: 34268309 PMCID: PMC8276135 DOI: 10.3389/fcell.2021.684826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Acephalic spermatozoa syndrome is a rare genetic and reproductive disease. Recent studies have shown that approximately 33–47% of patients with acephalic spermatozoa syndrome have SUN5 mutations, but the molecular mechanism underlying this phenomenon has not been elucidated. In this study, we generated Sun5 knockout mice and found that the head-to-tail linkage was broken in Sun5–/– mice, which was similar to human acephalic spermatozoa syndrome. Furthermore, ultrastructural imaging revealed that the head-tail coupling apparatus (HTCA) and the centrosome were distant from the nucleus at steps 9–10 during spermatid elongation. With the manchette disappearing at steps 13–14, the head and the tail segregated. To explore the molecular mechanism underlying this process, bioinformatic analysis was performed and showed that Sun5 may interact with Nesprin3. Further coimmunoprecipitation (Co-IP) and immunofluorescence assays confirmed that Sun5 and Nesprin3 were indeed bona fide interaction partners that formed the linker of the nucleoskeleton and cytoskeleton (LINC) complex participating in the connection of the head and tail of spermatozoa. Nesprin3 was located posterior and anterior to the nucleus during spermiogenesis in wild-type mice, whereas it lost its localization at the implantation fossa of the posterior region in Sun5–/– mice. Without correct localization of Nesprin3 at the nuclear membrane, the centrosome, which is the originator of the flagellum, was distant from the nucleus, which led to the separation of the head and tail. In addition, isobaric tag for relative and absolute quantitation results showed that 47 proteins were upregulated, and 56 proteins were downregulated, in the testis in Sun5–/– mice, and the downregulation of spermatogenesis-related proteins (Odf1 and Odf2) may also contribute to the damage to the spermatozoa head-to-tail linkage. Our findings suggested that Sun5 is essential for the localization of Nesprin3 at the posterior nuclear membrane, which plays an essential role in the sperm head-tail connection.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfei Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|