1
|
Chen C, Liu H, Li Y, Liu J. Association of ERCC family mutations with prognosis and immune checkpoint inhibitors response in multiple cancers. Sci Rep 2023; 13:13925. [PMID: 37626083 PMCID: PMC10457344 DOI: 10.1038/s41598-023-40185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The proteins encoded by the excision repair cross-complementing (ERCC) family are pivotal in DNA damage repair and maintaining genome stability. However, the precise role of the ERCC family in tumor prognosis and the effectiveness of immune checkpoint inhibitors (ICI) therapy remain uncertain. This study aimed to explore the connection between ERCC mutations and prognosis as well as the response to ICI. We observed that patients with ERCC mutations exhibited enhanced progression-free survival (PFS) and overall survival (OS) in two independent pan-cancer cohorts. Furthermore, this mutant subgroup showed higher tumor mutation burden (TMB) compared to the wild-type subgroup. Notably, ERCC mutations were associated with better OS (HR 0.54, 95% CI 0.42-0.70; P < 0.001) in pan-cancer patients who underwent ICI therapy (N = 1661). These findings were validated in a separate cohort, where patients in the ERCC mutant subgroup demonstrated improved clinical outcomes (HR 0.56, 95% CI 0.37-0.84; P = 0.03) and higher response rates (51.9% vs. 26.8%) than the wild-type subgroup. Further analysis revealed that patients with ERCC mutations displayed elevated tumor neoantigen burden (TNB) levels and increased infiltration of immune-response cells. Our study suggests that ERCC mutations are linked to enhanced immunogenicity and improved ICI efficacy, thus potentially serving as a biomarker for ICI therapy.
Collapse
Affiliation(s)
- Chao Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China.
| | - Haozhen Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China
| | - Yanlin Li
- Central Laboratory of Peking University Shenzhen Hospital, Shenzhen, 518035, China
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518035, China.
| |
Collapse
|
2
|
Chen M, Li C, Sun M, Li Y, Sun X. Recent developments in PD-1/PD-L1 blockade research for gastroesophageal malignancies. Front Immunol 2022; 13:1043517. [PMID: 36505480 PMCID: PMC9731511 DOI: 10.3389/fimmu.2022.1043517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Gastroesophageal cancers (GECs) comprise malignancies in the stomach, esophagus, and gastroesophageal junction. Despite ongoing improvements in chemoradiotherapy, the clinical outcomes of GEC have not significantly improved over the years, and treatment remains challenging. Immune checkpoint inhibitors (ICIs) have been the subject of clinical trials worldwide for several years. Encouraging results have been reported in different countries, but further research is required to apply ICIs in the clinical care of patients with GEC. This review summarizes completed and ongoing clinical trials with programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway blockers in GEC and current biomarkers used for predicting PD-1/PD-L1 blockade efficacy. This review captures the main findings of PD-1/PD-L1 antibodies combined with chemotherapy as an effective first-line treatment and a monotherapy in second-line or more treatment and in maintenance therapy. This review aims to provide insight that will help guide future research and clinical trials, thereby improving the outcomes of patients with GEC.
Collapse
Affiliation(s)
- Meng Chen
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China,*Correspondence: Xuren Sun,
| |
Collapse
|
3
|
Li Y, Xu C, Wang B, Xu F, Ma F, Qu Y, Jiang D, Li K, Feng J, Tian S, Wu X, Wang Y, Liu Y, Qin Z, Liu Y, Qin J, Song Q, Zhang X, Sujie A, Huang J, Liu T, Shen K, Zhao JY, Hou Y, Ding C. Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals new therapeutic strategies. Nat Commun 2022; 13:5723. [PMID: 36175412 PMCID: PMC9522856 DOI: 10.1038/s41467-022-33282-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Chemotherapy and targeted therapy are the major treatments for gastric cancer (GC), but drug resistance limits its effectiveness. Here, we profile the proteome of 206 tumor tissues from patients with GC undergoing either chemotherapy or anti-HER2-based therapy. Proteome-based classification reveals four subtypes (G-I-G-IV) related to different clinical and molecular features. MSI-sig high GC patients benefit from docetaxel combination treatment, accompanied by anticancer immune response. Further study reveals patients with high T cell receptor signaling respond to anti-HER2-based therapy; while activation of extracellular matrix/PI3K-AKT pathway impair anti-tumor effect of trastuzumab. We observe CTSE functions as a cell intrinsic enhancer of chemosensitivity of docetaxel, whereas TKTL1 functions as an attenuator. Finally, we develop prognostic models with high accuracy to predict therapeutic response, further validated in an independent validation cohort. This study provides a rich resource for investigating the mechanisms and indicators of chemotherapy and targeted therapy in GC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bing Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, 453007, China
| | - Fujiang Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Shanghai, 200032, China.,Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi Song
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Akesu Sujie
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Kuntang Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Neoantigens and their clinical applications in human gastrointestinal cancers. World J Surg Oncol 2022; 20:321. [PMID: 36171610 PMCID: PMC9520945 DOI: 10.1186/s12957-022-02776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Tumor-specific neoantigens are ideal targets for cancer immunotherapy. As research findings have proved, neoantigen-specific T cell activity is immunotherapy’s most important determinant. Main text There is sufficient evidence showing the role of neoantigens in clinically successful immunotherapy, providing a justification for targeting. Because of the significance of the pre-existing anti-tumor immune response for the immune checkpoint inhibitor, it is believed that personalized neoantigen-based therapy may be an imperative approach for cancer therapy. Thus, intensive attention is given to strategies targeting neoantigens for the significant impact with other immunotherapies, such as the immune checkpoint inhibitor. Today, several algorithms are designed and optimized based on Next-Generation Sequencing and public databases, including dbPepNeo, TANTIGEN 2.0, Cancer Antigenic Peptide Database, NEPdb, and CEDAR databases for predicting neoantigens in silico that stimulates the development of T cell therapies, cancer vaccine, and other ongoing immunotherapy approaches. Conclusions In this review, we deliberated the current developments in understanding and recognition of the immunogenicity of newly found gastrointestinal neoantigens as well as their functions in immunotherapies and cancer detection. We also described how neoantigens are being developed and how they might be used in the treatment of GI malignancies.
Collapse
|
5
|
Zhou S, Liu S, Zhao L, Sun HX. A Comprehensive Survey of Genomic Mutations in Breast Cancer Reveals Recurrent Neoantigens as Potential Therapeutic Targets. Front Oncol 2022; 12:786438. [PMID: 35387130 PMCID: PMC8978336 DOI: 10.3389/fonc.2022.786438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Neoantigens are mutated antigens specifically generated by cancer cells but absent in normal cells. With high specificity and immunogenicity, neoantigens are considered as an ideal target for immunotherapy. This study was aimed to investigate the signature of neoantigens in breast cancer. Somatic mutations, including SNVs and indels, were obtained from cBioPortal of 5991 breast cancer patients. 738 non-silent somatic variants present in at least 3 patients for neoantigen prediction were selected. PIK3CA (38%), the highly mutated gene in breast cancer, could produce the highest number of neoantigens per gene. Some pan-cancer hotspot mutations, such as PIK3CA E545K (6.93%), could be recognized by at least one HLA molecule. Since there are more SNVs than indels in breast cancer, SNVs are the major source of neoantigens. Patients with hormone receptor-positive or HER2 negative are more competent to produce neoantigens. Age, but not the clinical stage, is a significant contributory factor of neoantigen production. We believe a detailed description of breast cancer neoantigen signatures could contribute to neoantigen-based immunotherapy development.
Collapse
Affiliation(s)
- Si Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Songming Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lijian Zhao
- College of Medical Technology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Xi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Identification of a Five-Gene Panel to Assess Prognosis for Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5593619. [PMID: 35187167 PMCID: PMC8850031 DOI: 10.1155/2022/5593619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Methods Two datasets were used as training and validation cohorts to establish the predictive model. We used three types of screening criteria: background analysis, pathway analysis, and functional analysis provided by the cBioportal website. Fisher's exact test and multivariable logistic regression were performed to screen out related genes. Furthermore, we performed receiver operating characteristic (ROC) and Kaplan–Meier curve analyses to evaluate the correlation between the selected genes and overall survival. Result We screened five genes (KNL1, NRXN1, C6, CCDC169-SOHLH2, and TTN) that were highly related to recurrence of GC. The area under the receiver operating characteristic (ROC) curve was 0.813, which was much higher than that of the baseline model (AUC = 0.699). This result suggested that the mutation of five selected genes had a significant effect on the prediction of recurrence compared with other factors (age, stages, history, etc.). Furthermore, the Kaplan-Meier estimator also revealed that the mutation of five genes positively correlated with patient survival. Conclusions The patients who have mutations in these five genes may experience longer survival than those who do not have mutations. This five-gene panel will likely be a practical tool for prognostic evaluation and will provide another possible way for clinicians to determine therapy.
Collapse
|
7
|
Zachariah NN, Basu A, Gautam N, Ramamoorthi G, Kodumudi KN, Kumar NB, Loftus L, Czerniecki BJ. Intercepting Premalignant, Preinvasive Breast Lesions Through Vaccination. Front Immunol 2021; 12:786286. [PMID: 34899753 PMCID: PMC8652247 DOI: 10.3389/fimmu.2021.786286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) prevention remains the ultimate cost-effective method to reduce the global burden of invasive breast cancer (IBC). To date, surgery and chemoprevention remain the main risk-reducing modalities for those with hereditary cancer syndromes, as well as high-risk non-hereditary breast lesions such as ADH, ALH, or LCIS. Ductal carcinoma in situ (DCIS) is a preinvasive malignant lesion of the breast that closely mirrors IBC and, if left untreated, develops into IBC in up to 50% of lesions. Certain high-risk patients with DCIS may have a 25% risk of developing recurrent DCIS or IBC, even after surgical resection. The development of breast cancer elicits a strong immune response, which brings to prominence the numerous advantages associated with immune-based cancer prevention over drug-based chemoprevention, supported by the success of dendritic cell vaccines targeting HER2-expressing BC. Vaccination against BC to prevent or interrupt the process of BC development remains elusive but is a viable option. Vaccination to intercept preinvasive or premalignant breast conditions may be possible by interrupting the expression pattern of various oncodrivers. Growth factors may also function as potential immune targets to prevent breast cancer progression. Furthermore, neoantigens also serve as effective targets for interception by virtue of strong immunogenicity. It is noteworthy that the immune response also needs to be strong enough to result in target lesion elimination to avoid immunoediting as it may occur in IBC arising from DCIS. Overall, if the issue of vaccine targets can be solved by interrupting premalignant lesions, there is a potential to prevent the development of IBC.
Collapse
Affiliation(s)
| | - Amrita Basu
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Namrata Gautam
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ganesan Ramamoorthi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika N Kodumudi
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nagi B Kumar
- Clinical Science Division, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Loretta Loftus
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Department of Breast Surgery, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
8
|
Liu X, Davis AA, Xie F, Gui X, Chen Y, Zhang Q, Gerratana L, Zhang Y, Shah AN, Behdad A, Wehbe F, Huang Y, Yu J, Du P, Jia S, Li H, Cristofanilli M. Cell-free DNA comparative analysis of the genomic landscape of first-line hormone receptor-positive metastatic breast cancer from the US and China. Breast Cancer Res Treat 2021; 190:213-226. [PMID: 34471951 PMCID: PMC8558197 DOI: 10.1007/s10549-021-06370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Meaningful comparison of mutational landscapes across ethnic groups requires the use of standardized platform technology. We have used a harmonized NGS-based liquid biopsy assay to explore the differential genomic landscape of patients with initially hormone receptor-positive (HR+), HER2-negative MBC of first line metastasis or primary Stage IV at diagnosis from the United States (US) and China (CN). METHODS Plasma circulating tumor DNA (ctDNA) from 27 US patients and 65 CN patients was sequenced using the harmonized CLIA-certified, 152-gene PredicineCare™ liquid biopsy assay. Kaplan-Meier survival analysis was performed to analyze the correlation between genomic alterations and progression-free survival (PFS), and p-values were calculated using the log-rank test. RESULTS All patients in the CN cohort received chemotherapy and/or hormonal therapy, while 85.2% (23/27) patients in the US cohort received hormonal therapy plus CDK4/6 inhibitors. Mutations were detected in 23 of 27 (85%) US patients and 54 of 65 (83%) CN patients. The prevalence of AKT1 (P = 0.008) and CDH1 (P = 0.021) alterations were both higher in the US vs. CN cohort. In addition, FGFR1 amplification were more frequent in the CN vs. US cohort (P = 0.048). PTEN deletions (P = 0.03) and ESR1 alterations (P = 0.02) were associated with shorter PFS in the CN cohort, neither of these associations were observed in the US cohort. Interestingly, a reduced association between PTEN deletion and PFS was observed in patients receiving CDK4/6 inhibitor treatment. CONCLUSION The differential prevalence of ctDNA-based alterations such as FGFR1, AKT1, and CDH1 was observed in initially HR+/HER2- MBC patients in the US vs. CN. In addition, the association of PTEN deletions with shorter PFS was found in the CN but not the US cohort. The differential genomic landscapes across the two ethnic groups may reflect biologic differences and clinical implications.
Collapse
Affiliation(s)
- Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, 100142, China
| | - Andrew A Davis
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Medicine, Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Feng Xie
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Xinyu Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, 100142, China
| | - Yifei Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, 100142, China
| | - Qiang Zhang
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lorenzo Gerratana
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Youbin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ami N Shah
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amir Behdad
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Firas Wehbe
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yong Huang
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Jianjun Yu
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Pan Du
- Predicine, Inc., Hayward, CA, USA
| | - Shidong Jia
- Huidu (Shanghai) Medical Sciences, Ltd., Shanghai, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Fu-Cheng road No. 52, Hai-Dian District, Beijing, 100142, China.
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Huang X, He M, Peng H, Tong C, Liu Z, Zhang X, Shao Y, Zhu D, Zhang J, Yin JC, Yang F, Lan C. Genomic profiling of advanced cervical cancer to predict response to programmed death-1 inhibitor combination therapy: a secondary analysis of the CLAP trial. J Immunother Cancer 2021; 9:jitc-2020-002223. [PMID: 34011535 PMCID: PMC8137235 DOI: 10.1136/jitc-2020-002223] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Camrelizumab Plus Apatinib in Patients with Advanced Cervical Cancer trial was a single-arm, phase II study that showed promising activity of the programmed death-1 (PD-1) inhibitor camrelizumab plus the vascular endothelial growth factor receptor-2 inhibitor apatinib in patients with advanced cervical cancer. However, the predictive biomarkers for treatment outcomes are unknown. In this study, we aimed to identify potential predictors of treatment response in PD-1 inhibitor combination therapy. METHODS Genomic profiling was performed on patients with available biopsy or surgical samples by targeted next-generation sequencing of 425 cancer-related genes in this preplanned, secondary analysis. Somatic alterations, including all non-synonymous mutations, and tumor mutational burden (TMB) were assessed for their predictive values in objective response rate, progression-free survival (PFS), and overall survival (OS). RESULTS A subset of 32 patients was included in this analysis. Top altered genes included PIK3CA (43.8%), STK11 (25%), FBXW7 (15.6%), and PTEN (15.6%). The PI3K/AKT pathway was among the most frequently dysregulated pathways, and its genetic alterations were identified in 68.8% of patients. PIK3CA (PFS HR 0.33, p=0.05; OS HR 0.23, p=0.04) and PTEN (PFS HR 3.71e-09, p=0.05; OS HR 3.64e-09, p=0.08) alterations were associated with improved outcomes. PI3K/AKT pathway genetic alterations showed improved predictive power compared with either PIK3CA or PTEN alterations alone (PFS HR 0.33, p=0.03; OS HR 0.25, p=0.02), while ERBB3 mutations (PFS HR 34.9, p<0.001; OS HR 19.8, p<0.001) correlated with poor survival. TMB-high (≥5 mut/Mb) was associated with prolonged PFS (HR 0.26, p<0.01) and OS (HR 0.31, p=0.05). Multivariate analysis showed ERBB3 mutations (PFS p=0.01, OS p<0.001), PD-L1 positive (PFS p=0.01, OS p=0.05), and high TMB (PFS p=0.01, OS p=0.05) remained significantly associated with survival. CONCLUSIONS We uncovered that genetic alterations in PIK3CA, PTEN, ERBB3, and PI3K/AKT pathway, as well as TMB, could be novel predictive biomarkers in patients with cervical cancer treated with PD-1 inhibitor combination therapy. TRIAL REGISTRATION NUMBER NCT03816553.
Collapse
Affiliation(s)
- Xin Huang
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minjun He
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Peng
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chongjie Tong
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhimin Liu
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolong Zhang
- Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Bioinformatics, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Junli Zhang
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Jiani C Yin
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Fan Yang
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunyan Lan
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China .,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Gustafsson R, Eckhard U, Ye W, Enbody ED, Pettersson M, Jemth P, Andersson L, Selmer M. Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring-An Inactive Enzyme with Intact Substrate Binding. Biomolecules 2020; 10:E1631. [PMID: 33287293 PMCID: PMC7761743 DOI: 10.3390/biom10121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| | - Ulrich Eckhard
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| | - Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Erik D. Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX 77843, USA
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| |
Collapse
|
11
|
Deciphering high risk molecular alterations in gastrointestinal malignancy utilizing an extreme outlier strategy. Oncoscience 2020; 7:26-29. [PMID: 32676512 PMCID: PMC7343576 DOI: 10.18632/oncoscience.503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022] Open
|
12
|
Recurrent Neoantigens in Colorectal Cancer as Potential Immunotherapy Targets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2861240. [PMID: 32733937 PMCID: PMC7383341 DOI: 10.1155/2020/2861240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
This study was aimed at investigating the mutations in colorectal cancer (CRC) for recurrent neoantigen identification. A total of 1779 samples with whole exome sequencing (WES) data were obtained from 7 published CRC cohorts. Common HLA genotypes were used to predict the probability of neoantigens at high-frequency mutants in the dataset. Based on the WES data, we not only obtained the most comprehensive CRC mutation landscape so far but also found 1550 mutations which could be identified in at least 5 patients, including KRAS G12D (8%), KRAS G12V (5.8%), PIK3CA E545K (3.5%), PIK3CA H1047R (2.5%), and BMPR2 N583Tfs∗44 (2.8%). These mutations can also be recognized by multiple common HLA molecules in Chinese and TCGA cohort as potential "public" neoantigens. Many of these mutations also have high mutation rates in metastatic pan-cancers, suggesting their value as therapeutic targets in different cancer types. Overall, our analysis provides recurrent neoantigens as potential cancer immunotherapy targets.
Collapse
|
13
|
Rus Bakarurraini NAA, Ab Mutalib NS, Jamal R, Abu N. The Landscape of Tumor-Specific Antigens in Colorectal Cancer. Vaccines (Basel) 2020; 8:E371. [PMID: 32664247 PMCID: PMC7565947 DOI: 10.3390/vaccines8030371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Over the last few decades, major efforts in cancer research and treatment have intensified. Apart from standard chemotherapy approaches, immunotherapy has gained substantial traction. Personalized immunotherapy has become an important tool for cancer therapy with the discovery of immune checkpoint inhibitors. Traditionally, tumor-associated antigens are used in immunotherapy-based treatments. Nevertheless, these antigens lack specificity and may have increased toxicity. With the advent of next-generation technologies, the identification of new tumor-specific antigens is becoming more important. In colorectal cancer, several tumor-specific antigens were identified and functionally validated. Multiple clinical trials from vaccine-based and adoptive cell therapy utilizing tumor-specific antigens have commenced. Herein, we will summarize the current landscape of tumor-specific antigens particularly in colorectal cancer.
Collapse
Affiliation(s)
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.A.R.B.); (N.S.A.M.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.A.R.B.); (N.S.A.M.)
| |
Collapse
|