1
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Ruixuan Wang
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; Department of Neurosurgery, and Department of Cellular & Molecular Physiology,Yale University School of Medicine, USA; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Jason Hu
- Department of Neonatology, Yale University School of Medicine, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
2
|
Tong M, Xiong Y, Zhu C, Xu H, Zheng Q, Hu C, Jiang Y, Zou L, Xiao X, Chen F, Zhu Y. Elevated Serum Pentraxin-3 Levels is Positively Correlated to Disease Severity and Coagulopathy in COVID-19 Patients. Mediterr J Hematol Infect Dis 2021; 13:e2021015. [PMID: 33489054 PMCID: PMC7813280 DOI: 10.4084/mjhid.2021.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is highly contagious and deadly and is associated with coagulopathy. Pentraxin-3(PTX3) participates in innate resistance to infections and plays a role in thrombogenesis. PURPOSE The present study aimed to investigate the role of PTX3 in coagulopathy in patients with COVID-19. METHODS A retrospective study, including thirty-nine COVID-19 patients, enrolled in Hunan, China, were performed. The patients were classified into the D-dimer_L (D-dimer <1mg/L) and D-dimer_H (D-dimer≥1mg/L) groups basing on the plasma D-dimer levels on admission. Serum PTX3 levels were detected by enzyme-linked immunosorbent assays and compared between those two groups, then receiver operating characteristic (ROC) curve analysis, correlation analysis, and linear regression models were performed to analyze the association between PTX3 and D-dimer. RESULTS Our results showed that serum PTX3 levels (median values, 10.21 vs. 3.36, P<0.001), computerized chest tomography (C.T.) scores (median values, 10.0 vs. 9.0, P<0.05), and length of stay (LOS) (mean values, 16.0 vs. 10.7, P=0.001) in the D-dimer_H group were significantly higher than that in D-dimer_L group. ROC curve analysis revealed that the AUC of white blood corpuscle counts, C-reaction protein, erythrocyte sedimentation rate, and PTX3 for COVID-19 were 0.685, 0.863, 0.846, and 0.985, respectively. Correlation analysis showed that there was a positive relationship between PTX3 and D-dimer (r=0.721, P<0.001), chest CT imaging score (r=0.418, P=0.008), and LOS (r=0.486, P=0.002). Multiple linear regression analysis showed that the coefficient of determination was 0.657 (P < 0.001). CONCLUSION Serum level of PTX3 was positively correlated with disease severity and coagulopathy. Detection of serum PTX3 level could help identify severer patients on admission and may be a potential therapeutic target for coagulopathy in patients with COVID-19.
Collapse
Affiliation(s)
- Ming Tong
- Department of Infectious Diseases, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
| | - Ying Xiong
- The Fourth People’s Hospital of Yiyang, Yiyang, 413000, Hunan, China
| | - Chen Zhu
- Department of Pediatrics, Yiyang Central Hospital, Yiyang, Hunan 413099, P.R. China
| | - Hong Xu
- The Fourth People’s Hospital of Yiyang, Yiyang, 413000, Hunan, China
| | - Qing Zheng
- Department of Geriatrics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
| | - Lianhong Zou
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
| | - Xiaolin Xiao
- The Fourth People’s Hospital of Yiyang, Yiyang, 413000, Hunan, China
| | - Fang Chen
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
| | - Yimin Zhu
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, 410005, Hunan, China
| |
Collapse
|