1
|
Arora N, Keshri AK, Kaur R, Rawat SS, Kumar R, Mishra A, Prasad A. Taenia solium excretory secretory proteins (ESPs) suppresses TLR4/AKT mediated ROS formation in human macrophages via hsa-miR-125. PLoS Negl Trop Dis 2023; 17:e0011858. [PMID: 38157380 PMCID: PMC10783723 DOI: 10.1371/journal.pntd.0011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/11/2024] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Helminth infections are a global health menace affecting 24% of the world population. They continue to increase global disease burden as their unclear pathology imposes serious challenges to patient management. Neurocysticercosis is classified as neglected tropical disease and is caused by larvae of helminthic cestode Taenia solium. The larvae infect humans and localize in central nervous system and cause NCC; a leading etiological agent of acquired epilepsy in the developing world. The parasite has an intricate antigenic make-up and causes active immune suppression in the residing host. It communicates with the host via its secretome which is complex mixture of proteins also called excretory secretory products (ESPs). Understanding the ESPs interaction with host can identify therapeutic intervention hot spots. In our research, we studied the effect of T. solium ESPs on human macrophages and investigated the post-translation switch involved in its immunopathogenesis. METHODOLOGY T. solium cysts were cultured in vitro to get ESPs and used for treating human macrophages. These macrophages were studied for cellular signaling and miR expression and quantification at transcript and protein level. CONCLUSION We found that T. solium cyst ESPs treatment to human macrophages leads to activation of Th2 immune response. A complex cytokine expression by macrophages was also observed with both Th1 and Th2 cytokines in milieu. But, at the same time ESPs modulated the macrophage function by altering the host miR expression as seen with altered ROS activity, apoptosis and phagocytosis. This leads to activated yet compromised functional macrophages, which provides a niche to support parasite survival. Thus T. solium secretome induces Th2 phenomenon in macrophages which may promote parasite's survival and delay their recognition by host immune system.
Collapse
Affiliation(s)
- Naina Arora
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anand K. Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rimanpreet Kaur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S. Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute for Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
2
|
Gierlikowski W, Gierlikowska B. MicroRNAs as Regulators of Phagocytosis. Cells 2022; 11:cells11091380. [PMID: 35563685 PMCID: PMC9106007 DOI: 10.3390/cells11091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and thus act as important regulators of cellular phenotype and function. As their expression may be dysregulated in numerous diseases, they are of interest as biomarkers. What is more, attempts of modulation of some microRNAs for therapeutic reasons have been undertaken. In this review, we discuss the current knowledge regarding the influence of microRNAs on phagocytosis, which may be exerted on different levels, such as through macrophages polarization, phagosome maturation, reactive oxygen species production and cytokines synthesis. This phenomenon plays an important role in numerous pathological conditions.
Collapse
Affiliation(s)
- Wojciech Gierlikowski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
- Correspondence:
| | - Barbara Gierlikowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Żwirki i Wigury 63a, 02-091 Warsaw, Poland;
| |
Collapse
|
3
|
Nava-Castro KE, Pavón L, Becerril-Villanueva LE, Ponce-Regalado MD, Aguilar-Díaz H, Segovia-Mendoza M, Morales-Montor J. Sexual Dimorphism of the Neuroimmunoendocrine Response in the Spleen during a Helminth Infection: A New Role for an Old Player? Pathogens 2022; 11:pathogens11030308. [PMID: 35335632 PMCID: PMC8955289 DOI: 10.3390/pathogens11030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
The interaction of the nervous, immune, and endocrine systems is crucial in maintaining homeostasis in vertebrates, and vital in mammals. The spleen is a key organ that regulates the neuroimmunoendocrine system. The Taenia crassiceps mouse system is an excellent experimental model to study the complex host–parasite relationship, particularly sex-associated susceptibility to infection. The present study aimed to determine the changes in neurotransmitters, cytokines, sex steroids, and sex-steroid receptors in the spleen of cysticercus-infected male and female mice and whole parasite counts. We found that parasite load was higher in females in comparison to male mice. The levels of the neurotransmitter epinephrine were significantly decreased in infected male animals. The expression of IL-2 and IL-4 in the spleen was markedly increased in infected mice; however, the expression of Interleukin (IL)-10 and interferon (IFN)-γ decreased. We also observed sex-associated differences between non-infected and infected mice. Interestingly, the data show that estradiol levels increased in infected males but decreased in females. Our studies provide evidence that infection leads to changes in neuroimmunoendocrine molecules in the spleen, and these changes are dimorphic and impact the establishment, growth, and reproduction of T. crassiceps. Our findings support the critical role of the neuroimmunoendocrine network in determining sex-associated susceptibility to the helminth parasite.
Collapse
Affiliation(s)
- Karen Elizabeth Nava-Castro
- Laboratorio de Biología y Química Atmosférica, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Lenin Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico; (L.P.); (L.E.B.-V.)
| | - Luis Enrique Becerril-Villanueva
- Laboratory of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico; (L.P.); (L.E.B.-V.)
| | - María Dolores Ponce-Regalado
- Centro Universitario de los Altos, Departamento de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 47610, Mexico;
| | - Hugo Aguilar-Díaz
- Centro Nacional de Investigaciones Disciplinarias en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Morelos 50550, Mexico;
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 00810, Mexico;
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
- Correspondence: ; Tel.: +52-55-5622-3854 or +52-55-5622-3732; Fax: +52-55-5622-3369
| |
Collapse
|
4
|
Mačak Kubašková T, Mudroňová D, Vargová M, Reiterová K, Hrčková G. Cellular and humoral peritoneal immunity to Mesocestoides vogae metacestode infection in mice. Parasit Vectors 2021; 14:54. [PMID: 33461599 PMCID: PMC7814538 DOI: 10.1186/s13071-020-04541-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Here, Mesocestoides (M.) vogae infection in mice is proposed as a suitable experimental model for studying the immunity in the peritoneal cavity of mice. METHODS To investigate the kinetics of immune parameters in M. vogae-infected mice, we detected, using flow cytometry, the expression of selected lymphoid and myeloid markers within the peritoneal cell population at day 0, 3, 6, 10, 14, 19, 25, 30 and 35 post-infection. Then, using ELISA, we analyzed the cytokine IFN-γ, TGF-β, IL-4 and IL-10 responses and the levels of anti-M. vogae IgG and IgM antibodies in the peritoneal lavage fluid. Cells isolated from the peritoneal cavity were subjected to further molecular analysis. To assess cell activation, peritoneal cells were exposed to LPS, and culture supernatants were collected and assayed for the level of cytokines and production of nitrite. Ly6C+ and Ly6G+ cells were isolated using MACS from the peritoneal cells at day 35 post-infection. Both MACS-isolated subsets were co-cultured with preactivated T cells to measure their suppressive capacity. Next, the role of parasite excretory-secretory antigens in induction of CD11b+ myeloid cells with the suppressive phenotype and the production of IL-10 was examined. RESULTS In the peritoneal cavity an initial increase of CD11b+Gr-1+F4/80highMHC IIhigh cells, NK, NKT cells and CD8+ cytotoxic T cells was observed in the first week of infection. At day 14 post-infection, an increase in the number of myeloid CD11b+Gr-1+ cells was detected, and most of this cell population expressed low levels of F4/80 and MHC II in later stages of infection, suggesting the impairment of antigen-presenting cell functions, probably through the excretory-secretory molecules. Moreover, we confirmed that peritoneal Gr1+ cells (Ly6C+ and Ly6G+ population) are phenotypically and functionally consistent with myeloid-derived suppressor cells. Metacestode infection elicited high levels of IL-10 and upregulated STAT-3 in peritoneal cells. A higher level of IgM suggests that this isotype may be predominant and is involved in the host protection. CONCLUSIONS Mesocestoides vogae tetrathyridia induced the recruitment of immunosuppressive cell subsets, which may play a key role in the downregulation of immune response in long-term parasitic diseases, and excretory-secretory antigens seem to be the main regulatory factor.
Collapse
Affiliation(s)
- Terézia Mačak Kubašková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
| | - Dagmar Mudroňová
- The University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 040 01, Košice, Slovakia
| | - Miroslava Vargová
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia.,The University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 040 01, Košice, Slovakia
| | - Katarína Reiterová
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
| | - Gabriela Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia.
| |
Collapse
|
5
|
Chen H, Guo M, Yue D, Zhao J, Zhou Y, Chen C, Liang G, Xu L. MicroRNA-7 negatively regulates Toll-like receptor 4 signaling pathway through FAM177A. Immunology 2020; 162:44-57. [PMID: 32852789 DOI: 10.1111/imm.13252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptor (TLR) 4 signalling is critical for innate immunoinflammatory response and widely triggers the development of various types of clinical diseases. MicroRNA-7 (miR-7) is well documented to play an important regulatory role in various biological events. However, the exact role of miR-7 in TLR4 signalling pathway remains to be fully elucidated. In the present study, we found that miR-7 expression in TLR4 signalling-activated bone marrow-derived macrophages (BMDMs) stimulated by LPS was dramatically increased. Importantly, miR-7 deficiency significantly enhanced the production of related inflammatory cytokines including IL-1β, IL-6 and IL-12, as well as TNF-α, on LPS-activated BMDMs, accompanied by elevated transduction of TLR4 signalling including Myd88-dependent and Myd88-independent pathways, whereas miR-7 overexpression significantly decreased the transduction of TLR4 signalling and the production of related inflammatory cytokines. Mechanistically, we identified family with sequence similarity 177, member A (FAM177A) as a novel target molecule of miR-7. Furthermore, down-regulation of FAM177A using RNAi could impair the transduction of TLR4 signalling. Finally, down-regulation of FAM177A also reversed the effect of miR-7 deficiency on TLR4 signalling transduction and production of related inflammatory cytokines on BMDMs. Therefore, we provide the new evidence that miR-7 acts as a novel negative fine-tuner in regulating TLR4 signalling pathways by targeting FAM177A, which might throw light on the basal understanding on the regulatory mechanism of TLR4 signalling and benefit the development of therapeutic strategies against related clinical diseases.
Collapse
Affiliation(s)
- Huizi Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dongxu Yue
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Guiyou Liang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Shayesteh Z, Hosseini H, Nasiri V, Haddadi Z, Moradi N, Beikzadeh L, Sezavar M, Heidari A, Zibaei M. Evaluating the preventive and curative effects of Toxocara canis larva in Freund's complete adjuvant-induced arthritis. Parasite Immunol 2020; 42:e12760. [PMID: 32472559 DOI: 10.1111/pim.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022]
Abstract
Helminthic infection and the parallel host immune reactions are the results of a protracted dynamic co-interaction between the host and worms. An assessment of the effect of Toxocara canis infection on arthritis in rats stimulated by Freund's complete adjuvant (FCA) was the main purpose of the investigation. An arthritis model was established by the administration of 0.1 mL FCA in the palmar surface. Cytokine assessment, evaluating oedema and the use of a rheumatoid arthritis (RA) score provided evidence of the protective effects of T canis against adjuvant-induced arthritis (AIA). The cytokines TGF-β, IFN-ɣ, IL-10 and IL-17 were measured to assess the anti-inflammatory effect of T canis infection. Besides, arthritis swelling findings were evaluated in rat paws. The data showed that T canis infection significantly modulated the immune response by alleviating inflammatory cytokines and increasing TGF-β as an anti-inflammatory cytokine. Evaluations of arthritis swelling showed low severity and faster recuperation. These findings suggest that the products derived from T canis eggs might be a potential therapeutic candidate to treat autoimmune diseases like the arthritis.
Collapse
Affiliation(s)
- Zahra Shayesteh
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Hamid Hosseini
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Nasiri
- Protozoology Laboratory, Parasitology Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zeinab Haddadi
- Department of Medical Laboratory Sciences, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Najmeh Moradi
- Department of Immunology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Monireh Sezavar
- Department of Medical Laboratory Sciences, School of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Aliehsan Heidari
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Zibaei
- Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|