1
|
Zhang C, Xing Y, Wu X, Jiang Q, Luo X, He W, Liu S, Lu W, Wang J. Inhalation of hydrogen gas protects against mitomycin-induced pulmonary veno-occlusive disease. Respir Res 2024; 25:281. [PMID: 39014440 PMCID: PMC11253336 DOI: 10.1186/s12931-024-02906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND As a subtype of pulmonary hypertension (PH), pulmonary veno-occlusive disease (PVOD) is devastating and life-threatening disease without effective therapy. Hydrogen has been reported to exhibits antioxidant and anti-inflammatory effects in a rat model induced by monocrotaline of PH. In this study, we investigated the effects of inhaled hydrogen gas on the prevention and treatment of PVOD induced by mitomycin C (MMC) in rats. METHODS PVOD was induced in female Sprague-Dawley rats through intraperitoneal injection of MMC at a concentration of 3 mg·kg- 1·wk- 1 for 2 weeks. Inhalation of hydrogen gas (H2) was administered through a designed rat cage concurrently or two weeks after MMC administration. The severity of PVOD was assessed by using hemodynamic measurements and histological analysis. The expression levels of general control nonderepressible 2 (GCN2), nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1) and endothelial-to-mesenchymal transition (EndoMT) related proteins in lung tissue were measured. Levels of lipid peroxidation pro-inflammatory cytokines in serum were determined. RESULTS Inhaled H2 improved hemodynamics and right heart function, reversed right ventricular hypertrophy, and prevented pulmonary vessel reconstitution in both prevention and treatment approaches. It decreased malondialdehyde (MDA) levels in the serum and the expression of NADPH oxidase 1 (NOX-1) in lung tissue. It regulated Nrf2/HO-1 signaling pathway and anti-inflammatory factor GCN2 in lung tissue, accompanied by a decrease in macrophages and pro-inflammatory cytokines. Our data suggested that H2 inhalation effectively countered EndoMT induced by MMC, as evidenced by the detection of endothelial markers (e.g., VE-cadherin and CD31) and mesenchymal markers (e.g., vimentin and fibronectin). Further research revealed that H2 preserved p-Smad3 and induced p-Smad1/5/9. CONCLUSION Inhalation of H2 effectively inhibits the pathogenesis of PVOD induced by MMC in rats. This inhibitory effect may be attributed to the antioxidant and anti-inflammatory properties of H2.
Collapse
Affiliation(s)
- Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yue Xing
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xiaoyun Luo
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Wei He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
2
|
Liu SF, Li CL, Lee HC, Chang HC, Liu JF, Kuo HC. The Benefit of Hydrogen Gas as an Adjunctive Therapy for Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:245. [PMID: 38399533 PMCID: PMC10890181 DOI: 10.3390/medicina60020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Recent studies suggest that hydrogen gas possesses anti-inflammatory, antioxidant, and anti-apoptotic properties. This study aimed to explore the therapeutic potential of hydrogen gas and assess its safety and tolerability in individuals with chronic obstructive pulmonary disease (COPD). Materials and Methods: Enrolled COPD patients received standard treatments along with additional hydrogen inhalation for 30 min in the morning, afternoon, and evening over a 30-day period. The assessment included changes in the COPD Assessment Test (CAT), the modified Medical Research Council (mMRC) Dyspnea Scale, lung function, sleep quality, inflammation markers, and oxidative stress markers before and after hydrogen inhalation. Results: Six patients participated in this study. Patients 2, 3, 4, 5, and 6 demonstrated improvements in CAT scores following hydrogen gas intervention, with patients 2, 4, 5, and 6 also showing improvements in mMRC scores. Statistically, this study revealed significant improvements in CAT [15.5 (10.5-19.75) vs. 8.5 (3-13.5); p = 0.043] and mMRC scores [2.5 (1-4) vs. 2 (0-3.25); p = 0.046] before and after intervention, respectively. However, no significant differences were observed in lung function, DLCO, sleep quality, and 6 MWT before and after hydrogen therapy. CBC examination showed a significant difference in platelet count before and after treatment [247 (209.75-298.75) vs. 260 (232.75-314.5); p = 0.043], respectively, while other blood tests, inflammation markers, and oxidative stress markers did not exhibit significant differences before and after hydrogen therapy. All patients experienced no obvious side-effects. Conclusions: Adjuvant therapy with hydrogen gas demonstrated symptom improvements in specific COPD patients, and no significant adverse effects were observed in any of the patients. Hydrogen gas may also exert a modulatory effect on platelet count.
Collapse
Affiliation(s)
- Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (S.-F.L.); (C.-L.L.); (H.-C.L.); (H.-C.C.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (S.-F.L.); (C.-L.L.); (H.-C.L.); (H.-C.C.)
| | - Hui-Ching Lee
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (S.-F.L.); (C.-L.L.); (H.-C.L.); (H.-C.C.)
| | - Hui-Chuan Chang
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (S.-F.L.); (C.-L.L.); (H.-C.L.); (H.-C.C.)
| | - Jui-Fang Liu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 600, Taiwan;
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 600, Taiwan
| | - Ho-Chang Kuo
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (S.-F.L.); (C.-L.L.); (H.-C.L.); (H.-C.C.)
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Kousar M, Kim YR, Kim JY, Park J. Enhancement of Growth and Secondary Metabolites by the Combined Treatment of Trace Elements and Hydrogen Water in Wheat Sprouts. Int J Mol Sci 2023; 24:16742. [PMID: 38069065 PMCID: PMC10706805 DOI: 10.3390/ijms242316742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to evaluate the response of Triticum aestivum to hydrogen water (HW) and trace elements treated with HW. A pot experiment was conducted to assess the growth indices, secondary metabolites, and antioxidant levels. The response surface methodology (RSM) approach was used to ascertain the concentrations and significant interaction between treatments. The outcomes demonstrated that the combined treatment of Se acid and Mo oxide exhibited a notable positive effect on the growth and secondary metabolites, when treated with HW as compared to distilled water (DW). Notably, the interaction between these two treatments is significant, and the higher response was observed at the optimal concentration of 0.000005% for Se acid and 0.06% for Mo oxide. Additionally, an in vitro experiment revealed that the mixture treatment inhibits the accumulation of lipids in HepG2 hepatocytes cells. Moreover, metabolic analysis revealed that upregulated metabolites are linked to the inhibition of lipid accumulation. In addition, the analysis emphasizes that the continued benefits of higher plants as a renewable supply for chemicals compounds, especially therapeutic agents, are being expanded and amplified by these state-of-the-art technologies.
Collapse
Affiliation(s)
- Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yu Rim Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Center for Functional Biomaterials, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Lin J, Li Y, Ke Z. Feature Analysis in High-Dimensional Data: Structure-Activity Relationships of Lewis Acid-Transition-Metal Complex-Catalyzed H 2 Activation. J Phys Chem A 2023; 127:4375-4387. [PMID: 37183362 DOI: 10.1021/acs.jpca.2c08987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Lewis acid-transition metal (LA-TM) catalysts have been proven to have an advantage in catalyzing hydrogen activation. Herein, a high-dimensional structure-activity relationship study is performed for LA-TM-catalyzed hydrogen activation by density functional theory calculations. The DPB-Ni complex is taken as the representative catalyst, and the explored Lewis acid sites and transition-metal centers include B, Al, Ga and Ni, Pd, Pt, respectively. Totally, four general hydrogen activation mechanisms are systematically studied among the nine catalytic systems. The Ga-Ni system undergoes the lowest free energy of activation (11.0 kcal/mol), which is considered to be the optimal combination of the Lewis acid site and transition-metal center. Furthermore, more than 100 parameters are used to analyze the structure-activity relationship, including the physical structure, the bond order, the atom charge, and many other properties. Key parameters of important structures are dug out to show a high correlation with the activity of the LA-TM systems, including the M-H2 distance, the H-H bond length, the second-order perturbation stabilization energy of M-H2, the bond order of the LA-TM, and so on. The multivariable analysis indicates that the feature related to the basic elemental properties and the global feature codetermine the activity of the catalyst. In the LA-TM system, the combination of IpLA/IpTM (Ip, the first ionization energy, the feature related to basic elemental properties) and the chemical hardness (the global feature) can better explain the activity of the catalyst. The IpLA/IpTM reflects the difficulty of breaking the LA-TM bond, affecting the reaction site of activating hydrogen. The hardness reflects the stability and reactivity of LA-TM-RC complexes. The above two features with the addition of the LA-TM bond length (the local feature) can better reflect the activity of the LA-TM system-catalyzed H2 activation. The feature combinations and the method of multidimensional data analysis should be informative guidance for the rational design of efficient LA-TM catalysts for H2 activation.
Collapse
Affiliation(s)
- Jiaxin Lin
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yinwu Li
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Gao Y, Song O, Wang M, Guo X, Zhang G, Liu X, Liu J, Zhao L. Hydrogen Protection Boosts the Bioactivity of Chrysanthemum morifolium Extract in Preventing Palmitate-Induced Endothelial Dysfunction by Restoring MFN2 and Alleviating Oxidative Stress in HAEC Cells. Antioxidants (Basel) 2023; 12:antiox12051019. [PMID: 37237885 DOI: 10.3390/antiox12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
As the most important natural antioxidants in plant extracts, polyphenols demonstrate versatile bioactivities and are susceptible to oxidation. The commonly used ultrasonic extraction often causes oxidation reactions involving the formation of free radicals. To minimize the oxidation effects during the ultrasonic extraction process, we designed a hydrogen (H2)-protected ultrasonic extraction method and used it in Chrysanthemum morifolium extraction. Hydrogen-protected extraction improved the total antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and polyphenol content of Chrysanthemum morifolium water extract (CME) compared with air and nitrogen (N2) conditions. We further investigated the protective effects and mechanisms of CME on palmitate (PA)-induced endothelial dysfunction in human aorta endothelial cells (HAECs). We found that hydrogen-protected CME (H2-CME) best-prevented impairment in nitric oxide (NO) production, endothelial NO synthase (eNOS) protein level, oxidative stress, and mitochondrial dysfunction. In addition, H2-CME prevented PA-induced endothelial dysfunction by restoring mitofusin-2 (MFN2) levels and maintaining redox balance.
Collapse
Affiliation(s)
- Yilin Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Oumeng Song
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Guo
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
6
|
Li Y, Ji M, Yang J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front Immunol 2022; 13:855006. [PMID: 35603184 PMCID: PMC9120941 DOI: 10.3389/fimmu.2022.855006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is recognized as a life-threatening multi-organ dysfunction resulting from a dysregulated host response to infection. Although the incidence and mortality of sepsis decrease significantly due to timely implementation of anti-infective and support therapies, accumulating evidence suggests that a great proportion of survivors suffer from long-term cognitive impairment after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. Several mechanisms have been proposed for long-term cognitive impairment after sepsis, which are not mutually exclusive, including blood-brain barrier disruption, neuroinflammation, neurotransmitter dysfunction, and neuronal loss. Targeting these critical processes might be effective in preventing and treating long-term cognitive impairment. However, future in-depth studies are required to facilitate preventive and/or treatment strategies for long-term cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Jiangyin Hospital, Affiliated to Southeast University Medical School, Jiangyin, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Shogenova LV, Truong TT, Kryukova NO, Yusupkhodzhaeva KA, Pozdnyakova DD, Kim TG, Chernyak AV, Kalmanova ЕN, Medvedev OS, Kuropatkina TA, Varfolomeev SD, Ryabokon AM, Svitich OА, Kostinov MP, Kunio I, Hiroki M, Chuchalin AG. Hydrogen inhalation in rehabilitation program of the medical staff recovered from COVID-19. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Active hydrogen inhalation (H(H2O)m) has powerful antioxidant and antiapoptotic effects. In recent years, it has been used in a number of experimental and clinical studies.Aim. To study the safety and effectiveness of inhalation of the “active form of hydrogen” (AFV;(H(H2O)m)) in the rehabilitation program of coronavirus disease 2019 (COVID-19) survivors during the recovery period.Material and methods. This randomized controlled parallel prospective study included 60 COVID-19 survivors with post-COVID-19 syndrome (ICD-10: U09.9) during the recovery period, with clinical manifestations of chronic fatigue syndrome (CFS), who received standard therapy in accordance with the management protocol of patients with CFS (ICD-10: G93.3): physiotherapy and medication therapy with drugs containing magnesium, B vitamins and L-carnitine. The patients were divided into 2 groups. The experimental group (n=30) included patients who received hydrogen inhalation for 90 minutes every day during 10 days (SUISONIA hydrogen inhalation device, Japan). The control group (n=30) consisted of patients who received standard therapy. In both groups, patients were comparable in sex and mean age: in the experimental group — 53 (22; 70) years, in the control group — 51 (25; 70) years. Biological markers of systemic inflammation, oxygen transport, lactate metabolism, intrapulmonary shunting, 6-minute walk test, and vascular endothelial function were determined in all patients on the 1st and 10th days of follow-up.Results. In the experimental group, a decrease in following parameters was revealed: stiffness index (SI), from 8,8±1,8 to 6,8±1,5 (p<0,0001); ALT, from 24,0±12,7 to 20,22±10,61 U/L (p<0,001); venous blood lactate, from 2,5±0,8 to 1,5±1,0 mmol/L (p<0,001); capillary blood lactate, from 2,9±0,8 to 2,0±0,8 mmol/L (p<0,0001); estimated pulmonary shunt fraction (Qs/Qt, Berggren equation, 1942) from 8,98±5,7 to 5,34±3,2 (p<0,01); white blood cells, from 6,64±1,57 to 5,92±1,32 109/L. In addition, we revealed an increase in the refractive index (RI) from 46,67±13,26% to 63,32±13,44% (p<0,0001), minimum blood oxygen saturation (SpO2) from 92,25±2,9 to 94,25±1, 56% (p<0,05), direct bilirubin from 2,99±1,41 to 3,39±1,34 pmol/L (p<0,01), partial oxygen tension (PvO2) from 26,9±5,0 to 34,8±5,6 mm Hg (p<0,0001), venous oxygen saturation (SvO2) from 51,8±020,6 to 61,1±018,1% (p<0,05), partial capillary oxygen tension (PcO2) from 48,7±15,4 to 63,8±21,2 mm Hg (p<0,01), capillary oxygen saturation (ScO2) from 82,2±4,2 to 86,2±4,8% (p<0,01), distance in 6 minute walk test from 429±45,0 to 569±60 m.Conclusion. Inhalation therapy with H(H2O)m in the rehabilitation program of COVID-19 survivors during the recovery period is a safe and highly effective method. Manifestations of silent hypoxemia and endothelial dysfunction decreased, while exercise tolerance increased. As for laboratory tests, a decrease in the white blood cell count, estimated pulmonary shunt fraction and lactate content parameters was revealed.
Collapse
Affiliation(s)
| | | | | | | | | | - T. G. Kim
- Pirogov Russian National Research Medical University; D.D. Pletnev City Clinical Hospital
| | - A. V. Chernyak
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
| | - Е. N. Kalmanova
- Pirogov Russian National Research Medical University; D.D. Pletnev City Clinical Hospital
| | | | | | - S. D. Varfolomeev
- Institute of Physicochemical Foundations of the Functioning of Neural Network and Artificial Intellegence, Lomonosov Moscow State University; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
| | - A. M. Ryabokon
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
| | - O. А. Svitich
- I.I. Mechnikov Scientific Research Institute of Vaccines and Serums
| | - M. P. Kostinov
- I.I. Mechnikov Scientific Research Institute of Vaccines and Serums
| | | | | | | |
Collapse
|
8
|
Li R, Qu Y, Li X, Tao Y, Yang Q, Wang J, Diao Y, Li Q, Fang Y, Huang Y, Wang L. Molecular Hydrogen Attenuated N-methyl-N-Nitrosourea Induced Corneal Endothelial Injury by Upregulating Anti-Apoptotic Pathway. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34196654 PMCID: PMC8267183 DOI: 10.1167/iovs.62.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previous work by our group has demonstrated the value of N-methyl-N-nitrosourea (MNU)-induced corneal endothelial decompensation in animal models. The aim of this study was to investigate the effect of molecular hydrogen (H2) on MNU-induced corneal endothelial cell (CEC) injury and the underlying mechanism. Methods MNU-induced animal models of CEC injury were washed with hydrogen-rich saline (HRS) for 14 days. Immunofluorescence staining, immunohistochemical staining, and corneal endothelial assessment were applied to determine architectural and cellular changes on the corneal endothelium following HRS treatment. MNU-induced cell models of CEC injury were co-cultured with H2. The effect of H2 was examined using morphological and functional assays. Results It was shown that MNU could inhibit the proliferation and specific physiological functions of CECs by increasing apoptosis and decreasing the expression of ZO-1 and Na+/K+-ATPase, whereas H2 improved the proliferation and physiological function of CECs by anti-apoptosis. Cell experiments further confirmed that H2 could reverse MNU damage to CECs by decreasing oxidative stress injury, interfering with the NF-κB/NLRP3 pathway and the FOXO3a/p53/p21 pathway. Conclusions This study suggests that topical application of H2 could protect CECs against corneal damage factors through anti-apoptotic effect, reduce the incidence and severity of corneal endothelial decompensation, and maintain corneal transparency.
Collapse
Affiliation(s)
- Runpu Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Chilicka K, Rogowska AM, Szyguła R. Effects of Topical Hydrogen Purification on Skin Parameters and Acne Vulgaris in Adult Women. Healthcare (Basel) 2021; 9:144. [PMID: 33535651 PMCID: PMC7912839 DOI: 10.3390/healthcare9020144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Acne vulgaris is a prevalent dermatological disease characterized by skin eruptions, which may decrease the sufferer's quality of life. Hydrogen purification treatment is a new procedure used in cosmetology to improve the skin parameters of the face. This study examined the effectiveness of hydrogen purification treatment to improve women's skin conditions with regard to acne vulgaris. METHODS In this study, 30 women participated who suffered from a high level of sebum and acne. The control group was comprised of 30 healthy women with a low level of sebum. The Hellgren-Vincent Scale and Derma Unit SSC 3 device were used to assess acne vulgaris severity and skin properties, respectively. Four hydrogen purification sessions were carried out at 7-day intervals, using the Hebe Hydrogenium+ generating alkaline water. RESULTS At baseline and 7 and 14 days after finishing the series of treatments, the levels of oiliness, moisture, and skin pH were tested. The main effects of treatment were significant in the following parameters: pH around the bottom lip, moisture between the eyebrows and around the nose, and oily skin in all three face sites. CONCLUSIONS The level of sebum decreased and moisture levels increased during hydrogen purification. Topical hydrogen purification is an effective and safe treatment for acne vulgaris.
Collapse
Affiliation(s)
- Karolina Chilicka
- Department of Health Sciences, Institute of Health Sciences, University of Opole, 45-060 Opole, Poland;
| | - Aleksandra M. Rogowska
- Department of Social Sciences, Institute of Psychology, University of Opole, 45-052 Opole, Poland;
| | - Renata Szyguła
- Department of Health Sciences, Institute of Health Sciences, University of Opole, 45-060 Opole, Poland;
| |
Collapse
|
10
|
Qian L, Liu M, Shen J, Cen J, Zhao D. Hydrogen in Patients With Corticosteroid-Refractory/Dependent Chronic Graft-Versus-Host-Disease: A Single-Arm, Multicenter, Open-Label, Phase 2 Trial. Front Immunol 2020; 11:598359. [PMID: 33324415 PMCID: PMC7724019 DOI: 10.3389/fimmu.2020.598359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic graft-versus-host-disease (cGVHD) is the leading cause of late non-relapse mortality after allogeneic hematopoietic stem cell transplantation(HSCT). There is no standard therapy for patients refractory or dependent to corticosteroid treatment. We hypothesized that hydrogen may exert therapeutic effects on cGVHD patients with few side effects. A prospective open-label phase 2 study of hydrogen was conducted. Patients received hydrogen-rich water 4ml/kg orally three times a day. Responses were graded in the skin, mouth, Gastrointestinal(GI), liver, eyes, lungs and joints and fascia every 3 months. A total of 24 patients (median age 27) were enrolled. Of the 24 patients, 18 (75%; 95% CI, 55.1% to 88%) had an objective response. No significant toxicity was observed. The estimated 4-year overall survival rate was 74.7%(95% CI, 54.9%-94.5%). The survival time was significantly prolonged in the response group. The survival rate at 4 years in the response group is significantly higher than the nonresponse group (86.6% vs 0%; p= 0.000132). Hydrogen showed great efficacy on cGVHD patients and long-term administration of hydrogen was not associated with significant toxic effects. The trial was registered at www.ClinicalTrials.Gov, NCT02918188.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Miao Liu
- Department of Statistics and Epidemiology, Graduate School of Medical School of Chinese PLA General Hospital, Beijing, China
| | - Jianliang Shen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jian Cen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Defeng Zhao
- Department of Hematology, Boren Hospital, Beijing, China
| |
Collapse
|
11
|
Amelioration of Coagulation Disorders and Inflammation by Hydrogen-Rich Solution Reduces Intestinal Ischemia/Reperfusion Injury in Rats through NF- κB/NLRP3 Pathway. Mediators Inflamm 2020; 2020:4359305. [PMID: 32587471 PMCID: PMC7303760 DOI: 10.1155/2020/4359305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury often causes inflammatory responses and coagulation disorders, which is further promoting the deterioration of the disease. Hydrogen has anti-inflammatory, antioxidative, and antiapoptotic properties against various diseases. However, the effect of hydrogen on coagulation dysfunction after intestinal I/R and the underlying mechanism remains unclear. The purpose of this study was to explore whether hydrogen-rich solution (HRS) could attenuate coagulation disorders and inflammation to improve intestinal injury and poor survival following intestinal I/R. The rat model of intestinal I/R injury was established by clamping the superior mesenteric artery for 90 min and reperfusion for 2 h. HRS (10 or 20 mL/kg) or 20 mL/kg 0.9% normal saline was intravenously injected at 10 min before reperfusion, respectively. The samples were harvested at 2 h after reperfusion for further analyses. Moreover, the survival rate was observed for 24 h. The results showed that HRS improved the survival rate and alleviated serum diamine oxidase activities, intestinal injury, edema, and apoptosis. Interestingly, HRS markedly improved intestinal I/R-mediated coagulation disorders as evidenced by abnormal conventional indicators of coagulation and thromboelastography. Additionally, HRS attenuated inflammatory responses and the elevated tissue factor (TF) and inhibited nuclear factor kappa beta (NF-κB) and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in peripheral blood mononuclear cells. Moreover, inflammatory factors and myeloperoxidase were closely associated with TF level. This study thus emphasized upon the amelioration of coagulation disorders and inflammation by HRS as a mechanism to improve intestinal I/R-induced intestinal injury and poor survival, which might be partially related to inhibition of NF-κB/NLRP3 pathway.
Collapse
|