1
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Lutsiv T, Hussan H, Thompson HJ. Ecosystemic Approach to Understanding Gut Microbiome-Mediated Prevention of Colorectal Cancer. Cancer J 2024; 30:329-344. [PMID: 39312453 DOI: 10.1097/ppo.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Humans and their associated microorganisms coexist in complex symbiotic relationships. Continuously advancing research is demonstrating the crucial role of host-associated microbiota in the pathophysiology and etiology of disease and in mediating the prevention thereof. As an exemplar, the gut microbiota, especially colonic bacteria, have been extensively studied in colorectal cancer (CRC), and the growing body of evidence establishes new oncomicrobes and their oncometabolites associated with the initiation and promotion of carcinogenesis. Herein, we discuss the importance of approaching the gut microbiome as an ecosystem rather than an assortment of individual factors, especially in the context of cancer prevention. Furthermore, we argue that a dietary pattern effectively drives multiple nodes of the gut microbial ecosystem toward disease- or health-promoting qualities. In the modern circumstances of excessive consumption of ultraprocessed and animal-based foods and concomitant escalation of chronic disease burden worldwide, we focus on whole food-derived dietary fiber as a key to establishing a health-promoting eubiosis in the gut.
Collapse
|
3
|
Xia B, Lin T, Li Z, Wang J, Sun Y, Wang D, Ye J, Zhang Y, Kou R, Zhao B, Yi J, Bai G, Liu X. Lactiplantibacillus plantarum Regulates Intestinal Physiology and Enteric Neurons in IBS through Microbial Tryptophan Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17989-18002. [PMID: 39082086 DOI: 10.1021/acs.jafc.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.
Collapse
Affiliation(s)
- Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tongkui Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhiqing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jialin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuwei Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Rongwei Kou
- School of Science, Xi'an University of Technology, Xi'an, 710048 Shaanxi, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 Yunnan, China
| | - Gaiyan Bai
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, 710068 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
4
|
Chi ZC. Recent studies on gut-brain axis and irritable bowel syndrome. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:468-483. [DOI: 10.11569/wcjd.v32.i7.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
5
|
Wade U, Pascual-Figal DA, Rabbani F, Ernst M, Albert A, Janssens I, Dierckxsens Y, Iqtadar S, Khokhar NA, Kanwal A, Khan A. The Possible Synergistic Pharmacological Effect of an Oral Berberine (BBR) and Curcumin (CUR) Complementary Therapy Alleviates Symptoms of Irritable Bowel Syndrome (IBS): Results from a Real-Life, Routine Clinical Practice Settings-Based Study. Nutrients 2024; 16:1204. [PMID: 38674895 PMCID: PMC11053504 DOI: 10.3390/nu16081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent chronic functional gastrointestinal disorder, characterised by recurrent abdominal discomfort and altered bowel movements. IBS cause a significantly negative impact on quality of life (QoL). Growing pharmacological evidence suggests that berberine (BBR) and curcumin (CUR) may mitigate IBS symptoms through multiple complementary synergistic mechanisms, resulting in the attenuation of intestinal inflammation and regulation of bowel motility and gut functions. In the present observational study conducted under real-life routine clinical practice settings, 146 patients diagnosed with IBS were enrolled by general practitioner clinics and pharmacies in Belgium. For the first time, this study assessed the potential synergistic pharmacological effect of a combined oral BBR/CUR supplement (Enterofytol® PLUS, containing 200 mg BBR and 49 mg CUR) (two tablets daily for 2 months), serving as complementary therapy in the management of IBS. Following the 2-month supplementation, significant improvements were observed in the patients' IBS severity index (IBSSI) (47.5%) and all the primary IBS symptoms, such as abdominal discomfort (47.2%), distension (48.0%), intestinal transit (46.8%), and QoL (48.1%) (all p < 0.0001). The improvement in the patients' IBSSI was independent of age, sex, and IBS sub-types. The patients' weekly maximum stool passage frequency decreased significantly (p < 0.0001), and the stool status normalized (p < 0.0001). The patients' need for concomitant conventional IBS treatment decreased notably: antispasmodics by 64.0% and antidiarrhoeals by 64.6%. Minor adverse effects were reported by a small proportion (7.1%) of patients, mostly gastrointestinal. The majority (93.1%) experienced symptom improvement or resolution, with a high satisfaction rate (82.6%) and willingness to continue the supplementation (79.0%). These findings support the potential synergistic pharmacological role of BBR and CUR in IBS, and their co-supplementation may alleviate IBS symptoms and improve QoL.
Collapse
Affiliation(s)
- Ursula Wade
- Department of Basic and Clinical Neuroscience, Kings College London, London SE5 9RT, UK;
| | - Domingo A. Pascual-Figal
- Hospital Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, 30120 Murcia, Spain;
| | - Fazale Rabbani
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Marie Ernst
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | - Adelin Albert
- Biostatistics and Research Methods Center (B-STAT), CHU of Liège and University of Liège, 4000 Liège, Belgium (A.A.)
| | | | | | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan;
| | - Nisar A. Khokhar
- Department of Medicine, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan;
| | - Ayesha Kanwal
- Lady Reading Hospital, Peshawar 25000, Pakistan; (F.R.); (A.K.)
| | - Amjad Khan
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro 76090, Pakistan
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
6
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
7
|
Xue H, Mei C, Wang F, Tang X. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr 2023; 11:5837-5855. [PMID: 37823142 PMCID: PMC10563694 DOI: 10.1002/fsn3.3596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D), osmotic diarrhea, bile acid diarrhea, and antibiotic-associated diarrhea, is a common problem which is highly associated with disorders of the gut microbiota composition such as small intestinal bacterial overgrowth (SIBO) and so on. A growing number of studies have supported the view that Chinese herbal formula alleviates the symptoms of diarrhea by modulating the fecal microbiota. Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides that are widely found in Chinese herbs and function as important active ingredients. Commensal gut microbiota has an extensive capacity to utilize CHPs and play a vital role in degrading polysaccharides into short-chain fatty acids (SCFAs). Many CHPs, as prebiotics, have an antidiarrheal role to promote the growth of beneficial bacteria and inhibit the colonization of pathogenic bacteria. This review systematically summarizes the relationship among gut microbiota, chronic diarrhea, and CHPs as well as recent progress on the impacts of CHPs on the gut microbiota and recent advances on the possible role of CHPs in chronic diarrhea.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Chun‐Feng Mei
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Feng‐Yun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
8
|
A High Dose of Dietary Berberine Improves Gut Wall Morphology, Despite an Expansion of Enterobacteriaceae and a Reduction in Beneficial Microbiota in Broiler Chickens. mSystems 2023; 8:e0123922. [PMID: 36719211 PMCID: PMC9948737 DOI: 10.1128/msystems.01239-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytogenic products are embraced as alternatives to antimicrobials, and some are known to mitigate intestinal inflammation and ensure optimal gut health and performance in broiler chickens. Dietary inclusion of berberine, a benzylisoquinoline alkaloid found in plants, is believed to exert gut health-promoting effects through modulation of the gut microbiota; however, there are only a few studies investigating its effects in chickens. The aim of this study was to investigate the interplay between dietary supplementation of a high concentration of berberine, the gastrointestinal microbiota, and histomorphological parameters in the gut. Berberine was shown to increase villus length and decrease crypt depth and CD3+ T-lymphocyte infiltration in the gut tissue of chickens at different ages. Berberine affected the diversity of the gut microbiota from the jejunum to the colon, both at a compositional and functional level, with larger effects observed in the large intestine. A high concentration of berberine enriched members of the Enterobacteriaceae family and depleted members of the Ruminococcaceae, Lachnospiraceae, and Peptostreptococcaceae families, as well as tended to reduce butyrate production in the cecum. In vivo results were confirmed by in vitro growth experiments, where increasing concentrations of berberine inhibited the growth of several butyrate-producing strains while not affecting that of Enterobacteriaceae strains. Positive correlations were found between berberine levels in plasma and villus length or villus-to-crypt ratio in the jejunum. Our study showed that berberine supplementation at a high concentration improves chicken gut morphology toward decreased inflammation, which is likely not mediated by the induced gut microbiota shifts. IMPORTANCE Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. This study investigates for the first time the impact of berberine supplementation on the chicken gastrointestinal microbiota, as a potential mechanism to improve gut health, together with histological effects in the small intestine. This study identified a dose-effect of berberine on the gut microbiota, indicating the importance of finding an optimal dose to be used as a dietary additive.
Collapse
|
9
|
Guo H, Lu S, Zhang J, Chen C, Du Y, Wang K, Duan L. Berberine and rifaximin effects on small intestinal bacterial overgrowth: Study protocol for an investigator-initiated, double-arm, open-label, randomized clinical trial (BRIEF-SIBO study). Front Pharmacol 2023; 14:1121435. [PMID: 36873985 PMCID: PMC9974661 DOI: 10.3389/fphar.2023.1121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Small intestinal bacterial overgrowth (SIBO) leads to non-specific abdominal discomfort and nutrient malabsorption. Currently, rifaximin is widely applied in SIBO based on its antibacterial and non-absorbable nature. Berberine is a natural component of many popular medicine plants that ameliorates intestinal inflammation in humans through its modification of the gut microbiota. Potential effect of berberine to the gut may provide therapeutic target for SIBO. We aimed to evaluate the effect of berberine compared with rifaximin on SIBO patients. Methods: This is an investigator-initiated, single-center, open-label, double-arm randomized controlled trial, termed BRIEF-SIBO (Berberine and rifaximin effects for small intestinal bacterial overgrowth). In total, 180 patients will be recruited and allocated to an intervention group (berberine) and a control group (rifaximin). Each participant will receive one 400 mg drug twice a day (800 mg daily) for 2 weeks. The total follow-up period is 6 weeks from the start of medication. The primary outcome is a negative breath test. The secondary outcomes include abdominal symptom relief and alteration in gut microbiota. Efficacy assessment will be performed every 2 weeks, as well as safety assessment during the treatment. The primary hypothesis is that berberine is not inferior to rifaximin for SIBO. Discussion: The BRIEF-SIBO study is the first clinical trial assessing the eradication effects of 2 weeks of berberine treatment in SIBO patients. The effect of berberine will be fully verified by using rifaximin as the positive control. The findings of this study may have implications for the management of SIBO, especially increasing the awareness of both physicians and patients who are suffering from long-term abdominal discomfort and avoiding excessive examination.
Collapse
Affiliation(s)
- Huaizhu Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Siqi Lu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Chen Chen
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanlin Du
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Kun Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.,International Institute of Population Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
11
|
Liu Z, Zhu S, He M, Li M, Wei H, Zhang L, Sun Q, Jia Q, Hu N, Fang Y, Song L, Zhou C, Tao H, Kao JY, Zhu H, Owyang C, Duan L. Patients with breath test positive are necessary to be identified from irritable bowel syndrome: a clinical trial based on microbiomics and rifaximin sensitivity. Chin Med J (Engl) 2022; 135:1716-1727. [PMID: 36070467 PMCID: PMC9509105 DOI: 10.1097/cm9.0000000000002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND As a non-invasive and effective diagnostic method for small intestinal bacterial overgrowth (SIBO), wild-use of breath test (BT) has demonstrated a high comorbidity rate in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) and SIBO. Patients overlapping with SIBO respond better to rifaximin therapy than those with IBS-D only. Gut microbiota plays a critical role in both of these two diseases. We aimed to determine the microbial difference between IBS-D overlapping with/without SIBO, and to study the underlying mechanism of its sensitivity to rifaximin. METHODS Patients with IBS-D were categorized as BT-negative (IBSN) and BT-positive (IBSP). Healthy volunteers (BT-negative) were enrolled as healthy control. The patients were clinically evaluated before and after rifaximin treatment (0.4 g bid, 4 weeks). Blood, intestine, and stool samples were collected for cytokine assessment and gut microbial analyses. RESULTS Clinical complaints and microbial abundance were significantly higher in IBSP than in IBSN. In contrast, severe systemic inflammation and more active bacterial invasion function that were associated with enrichment of opportunistic pathogens were seen in IBSN. The symptoms of IBSP patients were relieved in different degrees after therapy, but the symptoms of IBSN rarely changed. We also found that the presence of IBSN-enriched genera ( Enterobacter and Enterococcus ) are unaffected by rifaximin therapy. CONCLUSIONS IBS-D patients overlapping with SIBO showed noticeably different fecal microbial composition and function compared with IBS-D only. The better response to rifaximin in those comorbid patients might associate with their different gut microbiota, which suggests that BT is necessary before IBS-D diagnosis and use of rifaximin. REGISTRATION Chinese Clinical Trial Registry, ChiCTR1800017911.
Collapse
Affiliation(s)
- Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Shiwei Zhu
- Department of Ultrasound, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mo Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100187, China
| | - Hui Wei
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Lu Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Nan Hu
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Lijin Song
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Chen Zhou
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - Heqing Tao
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| | - John Y Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, 6520 MSRB I, SPC 5682, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Huaiqiu Zhu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100187, China
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, 6520 MSRB I, SPC 5682, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing 100191, China
| |
Collapse
|
12
|
Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, Atatri S, Schmitz M, Karta J, Schmoetten M, Heinken A, Rodriguez F, Delbrouck C, Gaigneaux A, Ginolhac A, Nguyen TTD, Grandmougin L, Frachet-Bour A, Martin-Gallausiaux C, Pacheco M, Neuberger-Castillo L, Miranda P, Zuegel N, Ferrand JY, Gantenbein M, Sauter T, Slade DJ, Thiele I, Meiser J, Haan S, Wilmes P, Letellier E. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab 2022; 4:458-475. [PMID: 35437333 PMCID: PMC9046088 DOI: 10.1038/s42255-022-00558-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Vitaly Igorevich Pozdeev
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Marianne Meyers
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sura Atatri
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Maryse Schmoetten
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Almut Heinken
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
| | - Fabien Rodriguez
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Catherine Delbrouck
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anthoula Gaigneaux
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Aurelien Ginolhac
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Tam Thuy Dan Nguyen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lea Grandmougin
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Audrey Frachet-Bour
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camille Martin-Gallausiaux
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Maria Pacheco
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Paulo Miranda
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Nikolaus Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Jean-Yves Ferrand
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Manon Gantenbein
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Thomas Sauter
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Daniel Joseph Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- APC Microbiome, Cork, Ireland
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
13
|
Active Yeast but Not Henhouse Environment Affects Dropping Moisture Levels in Egg-Laying Hens. Animals (Basel) 2021; 11:ani11082179. [PMID: 34438640 PMCID: PMC8388414 DOI: 10.3390/ani11082179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The high dropping moisture content of chicken feces can impose a serious burden on poultry production costs and the environment. In the first part of this study, we investigated the correlations among chicken dropping moisture content, environmental factors, and production performance. In the second part, we explored whether the addition of three types of additives added individually could reduce the dropping moisture content. The results showed that the dropping moisture level was not associated with production performance or any environmental factors at different locations at the same henhouse height. The probiotic additive (active yeast) significantly reduced the dropping moisture rate. These findings can improve strategies for dealing with high dropping moisture levels and contribute to the enhancement of chicken production. Abstract Dropping moisture (DM) refers to the water content in feces. High DM negatively affects poultry production, environment, production costs, and animal health. Heredity, nutrition, environment, and disease may affect DM level. DM has medium inheritability and is related to cage height in henhouses. We examined the relationship among DM level, production performance, and environmental factors at different locations at the same henhouse height and effects of three types of additives. We measured the correlation between environmental factors including temperature, humidity, CO2 concentration, absolute pressure, and DM levels and laying performance of 934 Rhode Island Red hens. DM level was not significantly associated with environmental factors or production performance. We divided 64 persistently high DM hens into control and treatment groups supplied with different additives (probiotics, anisodamine, and antibiotics). DM levels, laying performance, egg quality, and serum biochemical indices were determined. Compared with the control and antibiotics, probiotics significantly reduced DM levels and eggshell strength while improving yolk color but did not significantly affect production performance. The additives reduced the b value of eggshell color; compared with probiotics, anisodamine decreased serum globulin levels. Exogenous active yeast supplementation can significantly reduce DM levels.
Collapse
|
14
|
Wang Z, Zhu H, Jiang Q, Zhu YZ. The gut microbiome as non-invasive biomarkers for identifying overweight people at risk for osteoarthritis. Microb Pathog 2021; 157:104976. [PMID: 34023440 DOI: 10.1016/j.micpath.2021.104976] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the potential for identifying overweight people at risk for osteoarthritis from a gut microbiome biomarker. BACKGROUND Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people worldwide. Being overweight increases the load placed on the joints such as the knee, which increases stress and could hasten the breakdown of cartilage. Identifying overweight people at risk for osteoarthritis remains a challenge. However, emerging evidence indicates that microbial dysbiosis in the human gut might play an important role in many inflammatory diseases. Considering the role of inflammation in OA development, analysis of the gut microbiome might be a potential non-invasive tool for overweight individuals to evaluate their risk for OA. RESULTS In this prospective study, we collected 182 stool samples from overweight OA patients (n = 86) and overweight normal people (n = 96) (25 kg/m2<BMI<30 kg/m2). 16S ribosomal RNA gene sequencing for V3 and V4 regions on the Illumina MiSeq platform was used to identify bacteria at different levels and it showed that both the diversity and richness of the gut microbiome decreased in overweight OA patients. Correspondingly, 9 phyla and 87 genera had significantly differences between overweight OA patients and overweight normal people. Finally, we identified 7 optimal microbial biomarkers in genus levels as a panel, including Gemmiger, Klebsiella, Akkermansia, Bacteroides, Prevotella, Alistipes and Parabacteroides, to build the random forest model, and achieved a 83.36% area under the curve (AUC) of receiver operating characteristic (ROC). CONCLUSION We present the first 16S rRNA gene sequencing profiling study of stool microbiomes in overweight people to discover and validate microbial biomarkers indicating risk for OA. Our study successfully established a 7 biomarkers prediction panel, moving towards affordable non-invasive early diagnostic biomarkers for OA in stool samples from overweight individuals.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Huaijun Zhu
- Department of Pharmacy, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Macau SAR, China; Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Fang Y, Zhang J, Zhu S, He M, Ma S, Jia Q, Sun Q, Song L, Wang Y, Duan L. Berberine ameliorates ovariectomy-induced anxiety-like behaviors by enrichment in equol generating gut microbiota. Pharmacol Res 2021; 165:105439. [PMID: 33493658 DOI: 10.1016/j.phrs.2021.105439] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The gut microbiota is recognized as a promising therapeutic target for anxiety. Berberine (BBR) has shown efficacy in the treatment of diseases such as postmenopausal osteoporosis, obesity, and type 2 diabetes through regulating the gut microbiota. However, the effects of BBR on postmenopausal anxiety are still unclear. The purpose of the study is to test whether BBR ameliorates anxiety by modulating intestinal microbiota under estrogen-deficient conditions. Experimental anxiety was established in specific pathogen-free (SPF) ovariectomized (OVX) rats, which were then treated with BBR for 4 weeks before undergoing behavioral tests. Open field and elevated plus maze tests demonstrated that BBR treatment significantly ameliorated anxiety-like behaviors of OVX rats compared with vehicle-treated counterparts. Moreover, as demonstrated by 16S rRNA sequencing and liquid chromatography/mass spectrometry (LC/MS) analysis, BBR-treated OVX rats harbored a higher abundance of beneficial gut microbes, such as Bacteroides, Bifidobacterium, Lactobacillus, and Akkermansia, and exhibited increased equol generation. Notably, gavage feeding of BBR had no significant anti-anxiety effects on germ-free (GF) rats that underwent ovariectomy, whereas GF rats transplanted with fecal microbiota from SPF rats substantially phenocopied the donor rats in terms of anxiety-like symptoms and isoflavone levels. This study indicates that the gut microbiota is critical in the treatment of ovariectomy-aggravated anxiety, and that BBR modulation of the gut microbiota is a promising therapeutic strategy for treating postmenopausal symptoms of anxiety.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shurong Ma
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Lijin Song
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Wang
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
16
|
Miao Z, Chen L, Feng H, Gu M, Yan J, Xu Y, Ye B. Baitouweng Decoction Ameliorates Ulcerative Colitis in Mice Partially Attributed to Regulating Th17/Treg Balance and Restoring Intestinal Epithelial Barrier. Front Pharmacol 2021; 11:531117. [PMID: 33597862 PMCID: PMC7883596 DOI: 10.3389/fphar.2020.531117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal disease with unclear pathogenesis. With an increasing global prevalence over the past two decades, UC poses a serious threat to public health. Baitouweng decoction (BTW), a traditional Chinese medicine, has been shown to have good clinical efficacy for treating intestinal inflammation. Yet, the efficacy of BTW in UC and the underlying mechanism remain unclear. The current study aimed to determine whether BTW suppressed intestinal inflammation in mice and the potential mechanism. We used a dextran sulfate sodium (DSS)-induced murine colitis model to test the anti-inflammatory efficacy of BTW. Clinical symptoms were scored by the disease activity index (DAI), and the colon length and pathological changes in colon tissue were also used to further evaluate the efficacy of BTW. Precisely how BTW affected immune function and the intestinal barrier of UC mice was also examined. BTW significantly reduced DAI score and colonic pathological damage. BTW regulated the balance between T helper (Th)17 and regulatory T (Treg) cells, decreased interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, and increased IL-10 levels. BTW reduced intestinal permeability of UC mice, increased expression of tight junction proteins (occludin and zonula occludens-1), and decreased expression of phospho-nuclear factor (p-NF)-κB and phospho-extracellular signal-regulated kinase (p-ERK) in the colon. BTW inhibited the ERK/p-NF-κB signaling pathway and suppressed expression of cyclo-oxygenase-2 and inducible NO synthase in lipopolysaccharide-activated RAW 264.7 cells. BTW significantly promoted the synthesis of short-chain fatty acids in the gut, particularly acetate, propionate, isobutyric acid, and isovalerate. The results suggest that BTW can protect against DSS-induced UC. The mechanism may be partially attributed to regulating the balance of Th17/Treg cells and restoring the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Liping Chen
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Hui Feng
- Internal Medicine Department of Traditional Chinese Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jing Yan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Xu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bai Ye
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Zhu J, Li M, Shao D, Ma S, Wei W. Altered Fecal Microbiota Signatures in Patients With Anxiety and Depression in the Gastrointestinal Cancer Screening: A Case-Control Study. Front Psychiatry 2021; 12:757139. [PMID: 34819887 PMCID: PMC8607523 DOI: 10.3389/fpsyt.2021.757139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Increasing attention has been devoted to cancer screening and microbiota in recent decades, but currently there is less focus on microbiota characterization among screeners and its relationship to anxiety and depression. Methods: We characterized the microbial communities of fecal samples collected through the FOBT card from anxiety and depression screeners and paired controls in Henan, China (1:2, N = 69). DNA was extracted using the MOBIO PowerSoil kit. The V4 region of the 16S rRNA gene was sequenced using MiniSeq and processed using QIIME1. LEfSe was used to identify differentially abundant microbes, the Wilcoxon rank-sum test was used to test alpha diversity differences, and permutational multivariate analysis of variance was used to test for differences in beta diversity. Results: Similar fecal microbiota signatures in composition were found among screeners. The intestinal microbial environments by phylum were all composed primarily of Firmicutes, Bacteroidetes, and Proteobacteria, and the corresponding top genera were Faecalibacterium, Roseburia, and Prevotella. Compared with controls, the ranking of the top five genera in the anxiety and depression group changed, and the dominant genus was Prevotella in the anxiety and depression group and Faecalibacterium in the control group. There was a lower relative abundance of Gemmiger (1.4 vs. 2.3%, P = 0.025), Ruminococcus (0.6 vs. 0.8%, P = 0.037), and Veillonella (0.6 vs. 1.3%, P = 0.020). This may be linked to the lower alpha diversity in participants with anxiety and depression (Observed OTUs: 122.35 vs. 143.24; Chao1: 127.35 vs. 149.98), although no significant differences were observed. Distinct clustering in microbial composition between the two groups was detected for the Jaccard distance (P = 0.011). Conclusions: Our study showed differing microbial characterization among participants with anxiety and depression in the endoscopic screening of upper gastrointestinal cancer. Gemmiger, Ruminococcus, and Veillonella were informative and have potential clinical implications, which need to be confirmed by large-scale, prospective cohort studies and biological mechanism research.
Collapse
Affiliation(s)
- Juan Zhu
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjuan Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dantong Shao
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanrui Ma
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Li L, Cui H, Li T, Qi J, Chen H, Gao F, Tian X, Mu Y, He R, Lv S, Chu F, Xu B, Wang P, Lei H, Xu H, Wang C. Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on Diarrhea-Predominant Irritable Bowel Syndrome In Vivo. Front Pharmacol 2020; 11:1210. [PMID: 32982718 PMCID: PMC7490548 DOI: 10.3389/fphar.2020.01210] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D) is one common chronic functional disease of the digestive system with limited treatments. The microbiota–gut–brain axis (MGBA) has a central function in the pathogeny of IBS-D, which includes the participation of many various factors, such as brain-gut peptides (BGPs), immune inflammation, and intestinal flora. Inspired by the drug combination in traditional Chinese medicine (TCM), our previous study discovered that berberine (BBR) and baicalin (BA) could form natural self-assemblies as BA-BBR nanoparticles (BA-BBR NPs) and showed synergistic effects against IBS-D. Here, we investigated the synergistic effects of BA-BBR NPs on IBS-D model mice induced by chronic restraint stress plus Senna alexandrina Mill decoction with the influence on MGBA. BA-BBR NPs showed the best therapeutic effect on improving visceral hypersensitivity and diarrhea on IBS-D model mice, compared with BBR, BA, and BA/BBR mixture. Furthermore, BA-BBR NPs significantly (P<0.05) reduced the levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal polypeptide (VIP) and choline acety transferase (CHAT) in colon tissues or of serum from BGPs; it lowered the expressions of the nuclear factor kappa-B (NF-κB) in colon tissues and changed the levels of basophil granulocyte (BASO) and leukomonocyte (LYMPH) in whole blood from immune inflammation; it altered the intestinal flora of Bacteroidia, Deferribacteres, Verrucomicrobia, Candidatus_Saccharibacteria, and Cyanobacteria from intestinal flora. In conclusion, BA-BBR NPs, after forming the natural self-assembly between BBR and BA, promoted the synergistic effect on IBS-D mice than the sum of BBR and BA effects, based to the formation of self-assemblies rather than the simple mixing. It further proved that synergistic effect of BA-BBR NPs on IBS-D mice might be related to BGPs, immune inflammation, and intestinal flora from three important interrelated components of MGBA. This study will provide a novel idea for the interpretation of TCM compatibility theory and provide the basis for BA-BBR NPs as a medicinal plant-derived natural and efficient nanomaterial for clinical use.
Collapse
Affiliation(s)
- Lei Li
- Respiratory Department, Beijing University of Chinese Medicine (BUCM) Third Affiliated Hospital, Beijing, China.,School of Chinese Pharmacy, BUCM, Beijing, China
| | - Herong Cui
- School of Chinese Pharmacy, BUCM, Beijing, China
| | - Tong Li
- School of Chinese Pharmacy, BUCM, Beijing, China
| | - Jinchai Qi
- School of Chinese Pharmacy, BUCM, Beijing, China
| | | | - Feng Gao
- School of Chinese Pharmacy, BUCM, Beijing, China
| | - Xuehao Tian
- School of Chinese Pharmacy, BUCM, Beijing, China
| | - Yunnong Mu
- School of Acupuncture-Moxibustion and Tuina, BUCM, Beijing, China
| | - Rui He
- School of Acupuncture-Moxibustion and Tuina, BUCM, Beijing, China
| | - Siyuan Lv
- Respiratory Department, Beijing University of Chinese Medicine (BUCM) Third Affiliated Hospital, Beijing, China
| | - Fuhao Chu
- School of Traditional Chinese Medicine, BUCM, Beijing, China
| | - Bing Xu
- School of Chinese Pharmacy, BUCM, Beijing, China
| | | | - Haimin Lei
- School of Chinese Pharmacy, BUCM, Beijing, China
| | - Hongri Xu
- Emergency Department, BUCM Third Affiliated Hospital, Beijing, China
| | - Chengxiang Wang
- Respiratory Department, Beijing University of Chinese Medicine (BUCM) Third Affiliated Hospital, Beijing, China
| |
Collapse
|
20
|
Habtemariam S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol Res 2020; 155:104722. [PMID: 32105754 DOI: 10.1016/j.phrs.2020.104722] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Berberine is a natural pentacyclic isoquinoline alkaloid that has been isolated as the principal component of many popular medicinal plants such as the genus Berberis, Coptis and Hydrastis. The multifunctional nature of berberine as a therapeutic agent is an attribute of its diverse effects on enzymes, receptors and cell signalling pathways. Through specific and general antioxidant and anti-inflammatory mechanisms, its polypharmacology has been established. Intriguingly, this is despite the poor bioavailability of berberine in animal models and hence begging the question how it induces its reputed effects in vivo. A growing evidence now suggest the role of the gut microbiota, the so-called the hidden organ, as targets for the multifunctional role of berberine. Evidences are herein scrutinised to show that the structural and numerical changes in the gut microbiota under pathological conditions are reversed by berberine. Examples in the pharmacokinetics field, obesity, hyperlipidaemia, diabetes, cancer, inflammatory disease conditions, etc. are used to show the link between the gut microbiota and the polypharmacology of berberine.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
21
|
Xiong Y, Liu L, Zhou X, Wen Y, Wang R. Anti-Helicobacter pylori treatment can effectively improve the clinical remission rates of irritable bowel syndrome: a controlled clinical trial meta-analysis. Clinics (Sao Paulo) 2020; 75:e1857. [PMID: 33206753 PMCID: PMC7603230 DOI: 10.6061/clinics/2020/e1857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Here we used a meta-analysis of several clinical trials to determine whether anti-Helicobacter pylori therapy has any positive effect on IBS patients. Here we compared the effective clinical remission rates between IBS patients treated with anti-H. pylori therapy and those who were not. This data would provide more clinical evidence regarding the efficacy of novel treatments and intervention points for IBS patients. Relevant studies were identified using keyword searches on various electronic databases, including PubMed, Embase, the Cochrane Central Register of Controlled Trials, CNKI, and CBM. Keywords included "helicobacter pylori" and "irritable bowel syndrome" among others. The literature was screened using relatively strict inclusion and exclusion criteria and RevMan 5.3.5 and Stata 15.1 software were used for meta-analysis and to assess publication bias and sensitivity. A total of ten studies met all of the inclusion criteria; these included 655 IBS patients with H. pylori infection, of these, 385 patients were in the experimental group and 270 patients were in the control group. A random-effects model was used to pool the odds ratios (ORs) with a 95% confidence interval (CIs) and the combined OR was 2.87 (95% CI: 1.74-4.72), p<0.0001. These findings suggest that anti-H. pylori therapy can effectively improve the remission rates of H. pylori-positive IBS patients. H. pylori infection is known to correlate with the incidence of IBS. Anti-H. pylori treatment can effectively improve the clinical remission rates of IBS patients. Whether this means that IBS patients should be actively treated with anti-H. pylori compounds as a novel strategy to improve the remission rates needs to be evaluated in vivo.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, People’s Republic of China
| | - Lulu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, People’s Republic of China
| | - Xuchun Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, People’s Republic of China
- *Corresponding author. E-mail:
| | - Youfei Wen
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, People’s Republic of China
| | - Ruonan Wang
- Hainan Medical College, People’s Republic of China
| |
Collapse
|