1
|
Wang M, Yin J, Han Q, Li B, Zhao XW, Xue L. Arsenic Trioxide Suppresses Angiogenesis in Non-small Cell Lung Cancer via the Nrf2-IL-33 Signaling Pathway. Anticancer Agents Med Chem 2024; 24:1142-1150. [PMID: 38847245 DOI: 10.2174/0118715206288348240420174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) ranks as a leading cause of cancer-related mortality, necessitating the urgent search for cost-effective and efficient anti-NSCLC drugs. Our preliminary research has demonstrated that arsenic trioxide (ATO) significantly inhibits NSCLC angiogenesis, exerting anti-tumor effects. In conjunction with existing literature reports, the Nrf2-IL-33 pathway is emerging as a novel mechanism in NSCLC angiogenesis. OBJECTIVE This study aimed to elucidate whether ATO can inhibit NSCLC angiogenesis through the Nrf2-IL-33 pathway. METHODS Immunohistochemistry was employed to assess the expression of Nrf2, IL-33, and CD31 in tumor tissues from patients with NSCLC. DETA-NONOate was used as a nitric oxide (NO) donor to mimic high levels of NO in the tumor microenvironment. Western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were utilized to evaluate the expression of Nrf2 and IL-33 in the NCI-H1299 cell line. Subcutaneous xenograft models were established in nude mice by implanting NCI-H1299 cells to assess the anti-tumor efficacy of ATO. RESULTS High expression levels of Nrf2 and IL-33 were observed in tumor samples from patients with NSCLC, and Nrf2 expression positively correlated with microvascular density in NSCLC. In vitro, NO (released from 1mM DETA-NONOate) promoted activation of the Nrf2-IL-33 signaling pathway in NCI-H1299 cells, which was reversed by ATO. Additionally, both Nrf2 deficiency and ATO treatment significantly attenuated NOinduced IL-33 expression. In vivo, both ATO and the Nrf2 inhibitor ML385 demonstrated significant inhibitory effects on angiogenesis tumor growth. CONCLUSION Nrf2-IL-33 signaling is usually activated in NSCLC and positively correlates with tumor angiogenesis. ATO effectively disrupts the activation of the Nrf2-IL-33 pathway in NSCLC and thus inhibits angiogenesis, suggesting its potential as an anti-angiogenic agent for use in the treatment of NSCLC.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Angiogenesis
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Arsenic Trioxide/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Interleukin-33/metabolism
- Interleukin-33/antagonists & inhibitors
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/antagonists & inhibitors
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Mingdong Wang
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Jizhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Qianyu Han
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Xue-Wei Zhao
- Department of Thoracic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
2
|
Hrgovic I, Zöller E, Doll M, Hailemariam-Jahn T, Jakob T, Kaufmann R, Meissner M, Kleemann J. Arsenic Trioxide Decreases Lymphangiogenesis by Inducing Apoptotic Pathways and Inhibition of Important Endothelial Cell Receptors. Curr Issues Mol Biol 2023; 46:67-80. [PMID: 38275666 PMCID: PMC10813910 DOI: 10.3390/cimb46010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Tumor-induced lymphangiogenesis is strongly associated with the formation of tumor metastasis. Therefore, the regulation of lymphangiogenesis offers a promising target in cancer therapy. Arsenic trioxide (ATO) is highly effective in the treatment of patients with acute promyelocytic leukemia (APL). As ATO mediates anti-angiogenic effects on endothelial and tumor cells, we aimed to explore the impact of ATO on lymphangiogenesis in human lymphatic endothelial cells (LEC). The BrdU assay and flow cytometry analysis were used to evaluate the influence of ATO on the proliferation and cell cycle distribution of LECs. The lymphatic suppression effects of ATO were investigated in vitro using the lymphatic tube formation assay. The effects of ATO on apoptosis, mitochondrial membrane potential and endothelial cell receptors were investigated by Western blotting, ELISA, flow cytometry and qRT-PCR. The treatment of LECs with ATO attenuated cell proliferation, blocked tube formation and induced subG0/G1 arrest in LECs, thus suggesting enhanced apoptosis. Although subG0/G1 arrest was accompanied by the upregulation of p21 and p53, ATO treatment did not lead to visible cell cycle arrest in LECs. In addition, ATO caused apoptosis via the release of cytochrome c from mitochondria, activating caspases 3, 8 and 9; downregulating the anti-apoptotic proteins survivin, XIAP and cIAP-2; and upregulating the pro-apoptotic protein Fas. Furthermore, we observed that ATO inhibited the VEGF-induced proliferation of LECs, indicating that pro-survival VEGF/VEGFR signaling was affected by ATO treatment. Finally, we found that ATO inhibited the expression of the important endothelial cell receptors VEGFR-2, VEGFR-3, Tie-2 and Lyve-1. In conclusion, we demonstrate that ATO inhibits lymphangiogenesis by activating apoptotic pathways and inhibiting important endothelial cell receptors, which suggests that this drug should be further evaluated in the treatment of tumor-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Igor Hrgovic
- Department of Dermatology and Allergy, Experimental Dermatology and Allergy Research Group, University Medical Center Giessen, Justus Liebig University, 35392 Giessen, Germany
| | - Eva Zöller
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tsige Hailemariam-Jahn
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Thilo Jakob
- Department of Dermatology and Allergy, Experimental Dermatology and Allergy Research Group, University Medical Center Giessen, Justus Liebig University, 35392 Giessen, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergy, Goethe University, 60596 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Yuan B, Li J, Miyashita SI, Kikuchi H, Xuan M, Matsuzaki H, Iwata N, Kamiuchi S, Sunaga K, Sakamoto T, Hibino Y, Okazaki M. Enhanced Cytotoxic Effects of Arenite in Combination with Active Bufadienolide Compounds against Human Glioblastoma Cell Line U-87. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196577. [PMID: 36235115 PMCID: PMC9571627 DOI: 10.3390/molecules27196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxicity of a trivalent arsenic derivative (arsenite, AsIII) combined with arenobufagin or gamabufotalin was evaluated in human U-87 glioblastoma cells. Synergistic cytotoxicity with upregulated intracellular arsenic levels was observed, when treated with AsIII combined with arenobufagin instead of gamabufotalin. Apoptosis and the activation of caspase-9/-8/-3 were induced by AsIII and further strengthened by arenobufagin. The magnitude of increase in the activities of caspase-9/-3 was much greater than that of caspase-8, suggesting that the intrinsic pathway played a much more important role in the apoptosis. An increase in the number of necrotic cells, enhanced LDH leakage, and intensified G2/M phase arrest were observed. A remarkable increase in the expression level of γH2AX, a DNA damage marker, was induced by AsIII+arenobufagin. Concomitantly, the activation of autophagy was observed, suggesting that autophagic cell death associated with DNA damage was partially attributed to the cytotoxicity of AsIII+arenobufagin. Suppression of Notch signaling was confirmed in the combined regimen-treated cells, suggesting that inactivation of Jagged1/Notch signaling would probably contribute to the synergistic cytotoxic effect of AsIII+arenobufagin. Given that both AsIII and arenobufagin are capable of penetrating into the blood-brain barrier, our findings may provide fundamental insight into the clinical application of the combined regimen for glioblastoma.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
- Correspondence: ; Tel./Fax: +81-49-271-8026
| | - Jingmei Li
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shin-Ich Miyashita
- National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 3, 1-1-1 Umezono, Tsukuba 305-8563, Ibaraki, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Meiyan Xuan
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hirokazu Matsuzaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Naohiro Iwata
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Shinya Kamiuchi
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Katsuyoshi Sunaga
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Takeshi Sakamoto
- Laboratory of Organic and Medicinal Chemistry; Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Yasuhide Hibino
- Laboratory of Immunobiochemistry, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Mari Okazaki
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
4
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
5
|
Yang MH, Li B, Chang KJ. Notch pathway inhibition mediated by arsenic trioxide depletes tumor initiating cells in small cell lung cancer. Mol Biol Rep 2022; 49:2245-2253. [PMID: 35028858 DOI: 10.1007/s11033-021-07046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most malignant type of lung cancer. We previously reported that arsenic trioxide (As2O3) inhibited tumor initiating cells (TICs) of SCLC in vitro. In the present study, we aimed to identify the above effect in vivo and shed light on its underlying mechanism. METHODS AND RESULTS TICs were enriched by culturing human SCLC cell line as sphere cells in specified serum-free medium. The expression of stem cell markers, CD133 and CD44, and the in vivo tumorigenicity of both TICs and their parental cells were examined. To demonstrate the inhibitory effect of As2O3 on TICs, cell proliferation, clone formation and sphere formation assays were performed. CD133 and Notch pathway-related factors were also measured after As2O3 treatment. Xenograft models were established by injecting TICs into nude mice. Mice were treated with As2O3 for 14 days. Afterwards, the tumor volume and the expression of CD133 and Notch1 were evaluated. TICs obtained by the above-mentioned method showed elevated levels of stem cell markers and increased tumorigenicity compared with their parental cells. As2O3 treatment largely inhibited TICs proliferation, sphere formation and clonogenic capacity. As2O3 also reduced the expression of CD133 and down-regulated Notch pathway in TICs. Furthermore, As2O3 potently inhibited tumor growth, decreased the expression of CD133 and down-regulated Notch1 in tumors originating from TICs. CONCLUSIONS Our data demonstrate that As2O3 has a remarkable inhibitory effect on TICs of SCLC both in vitro and in vivo, and the mechanism might involve the down-regulation of Notch pathway.
Collapse
Affiliation(s)
- Meng-Hang Yang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China. .,Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Ke-Jie Chang
- Department of Thoracic Oncology, Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
6
|
Ren C, Zhou Y, Liu W, Wang Q. Paradoxical effects of arsenic in the lungs. Environ Health Prev Med 2021; 26:80. [PMID: 34388980 PMCID: PMC8364060 DOI: 10.1186/s12199-021-00998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
High levels (> 100 ug/L) of arsenic are known to cause lung cancer; however, whether low (≤ 10 ug/L) and medium (10 to 100 ug/L) doses of arsenic will cause lung cancer or other lung diseases, and whether arsenic has dose-dependent or threshold effects, remains unknown. Summarizing the results of previous studies, we infer that low- and medium-concentration arsenic cause lung diseases in a dose-dependent manner. Arsenic trioxide (ATO) is recognized as a chemotherapeutic drug for acute promyelocytic leukemia (APL), also having a significant effect on lung cancer. The anti-lung cancer mechanisms of ATO include inhibition of proliferation, promotion of apoptosis, anti-angiogenesis, and inhibition of tumor metastasis. In this review, we summarized the role of arsenic in lung disease from both pathogenic and therapeutic perspectives. Understanding the paradoxical effects of arsenic in the lungs may provide some ideas for further research on the occurrence and treatment of lung diseases.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Wenwen Liu
- Liaoning Clinical Research Center for Lung Cancer, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
7
|
Huang W, Chen JJ, Xing R, Zeng YC. Combination therapy: Future directions of immunotherapy in small cell lung cancer. Transl Oncol 2021; 14:100889. [PMID: 33065386 PMCID: PMC7567053 DOI: 10.1016/j.tranon.2020.100889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Small cell lung cancer (SCLC), an aggressive and devastating malignancy, is characterized by rapid growth and early metastasis. Although most patients respond to first-line chemotherapy, the majority of patients rapidly relapse and have a relatively poor prognosis. Fortunately, immunotherapy, mainly including antibodies that target the cytotoxic T lymphocyte antigen-4 (CTLA-4), checkpoints programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) to block immune regulatory checkpoints on tumor cells, immune cells, fibroblasts cells and endothelial cells, has achieved the milestone in several solid tumors, such as melanoma and non-small-cell lung carcinomas (NSCLC). In recent years, immunotherapy has made progress in the treatment of patients with SCLC, while its response rate is relatively low to monotherapy. Interestingly, the combination of immunotherapy with other therapy, such as chemotherapy, radiotherapy, and targeted therapy, preliminarily achieve greater therapeutic effects for treating SCLC. Combining different immunotherapy drugs may act synergistically because of the complementary effects of the two immune checkpoint pathways (CTLA-4 and PD-1/PD-L1 pathways). The incorporation of chemoradiotherapy in immunotherapy may augment antitumor immune responses because chemoradiotherapy can enhance tumor cell immunogenicity by rapidly inducing tumor lysis and releasing tumor antigens. In addition, since immunotherapy drugs and the molecular targets drugs act on different targets and cells, the combination of these drugs may achieve greater therapeutic effects in the treatment of SCLC. In this review, we focused on the completed and ongoing trials of the combination therapy for immunotherapy of SCLC to find out the rational combination strategies which may improve the outcomes for SCLC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China; Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Jia-Jia Chen
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Rui Xing
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China
| | - Yue-Can Zeng
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110022, China; Department of Medical Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Road, Haikou 571199, China.
| |
Collapse
|
8
|
Ding WJ, Wu WJ, Chen YW, Chen HB, Fan JG, Qiao L. Expression of Notch family is altered in non‑alcoholic fatty liver disease. Mol Med Rep 2020; 22:1702-1708. [PMID: 32705262 PMCID: PMC7411296 DOI: 10.3892/mmr.2020.11249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to explore the dynamic relationship between Notch and non‑alcoholic fatty liver disease (NAFLD), both in vitro and in vivo. The LX2, Huh7 and MIHA hepatic cell lines were used to establish a cell steatosis model induced by palmitic acid (PA) at different concentrations (0.1, 0.25 and 0.5 mM). Cell proliferation and migration were assessed using a 5‑bromo‑2'‑deoxyuridine kit and a wound healing assay. The dosage of 0.25 mM PA for 36‑48 h treatment was chosen for subsequent experiments. Steatotic cells were identified by Oil Red O staining. Feeding mice a methionine‑choline‑deficient (MCD) diet is known induce a model of NAFLD, compared with a methionine‑choline‑sufficient (MCS) diet. Therefore, Notch family mRNA expression was evaluated in the liver of MCD‑fed mice at varying time points (days 5, 10, 21 and 70) using reverse transcription‑quantitative PCR. Notch expression levels were also assessed in cell lines at 12, 24, 36 and 48 h after PA treatment. Notch signaling molecules changed in the PA or MCD model over time. In vitro, the mRNA levels of Notch1, ‑2 and ‑4 increased in all cell lines after 12‑h PA treatment. At 24 h, these genes were upregulated only in LX2 cells, while showing a 'down‑up' pattern in MIHA cells (i.e. these genes were downregulated at 24 h but upregulated at 36 h). However, expression of Notch1, ‑2, ‑3 and ‑4 mRNA rose significantly in the early stage (day 10) of NAFLD. At week 3, the levels of Notch1 and ‑2 were higher in the MCD group than in the MCS group, while the reverse was observed for Notch3 and ‑4. Expression of these four genes increased again in the late stage (day 70) of NAFLD. Therefore, these results indicated that Notch family members Notch1‑4 were involved in the development of NAFLD and played an important role in steatosis in this model.
Collapse
Affiliation(s)
- Wen-Jin Ding
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Wei-Jie Wu
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yuan-Wen Chen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Han-Bei Chen
- Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Liang Qiao
- Storr Liver Unit, Westmead Institute for Medical Research, The Westmead Clinical School, Westmead Hospital, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
9
|
Abstract
Arsenic (As) is widely used in the modern industry, especially in the production of pesticides, herbicides, wood preservatives, and semiconductors. The sources of As such as contaminated water, air, soil, but also food, can cause serious human diseases. The complex mechanism of As toxicity in the human body is associated with the generation of free radicals and the induction of oxidative damage in the cell. One effective strategy in reducing the toxic effects of As is the usage of chelating agents, which provide the formation of inert chelator–metal complexes with their further excretion from the body. This review discusses different aspects of the use of metal chelators, alone or in combination, in the treatment of As poisoning. Consideration is given to the therapeutic effect of thiol chelators such as meso-2,3-dimercaptosuccinic acid, sodium 2,3-dimercapto-1-propanesulfonate, 2,3-dimercaptopropanol, penicillamine, ethylenediaminetetraacetic acid, and other recent agents against As toxicity. The review also considers the possible role of flavonoids, trace elements, and herbal drugs as promising natural chelating and detoxifying agents.
Collapse
|