1
|
Wang B, Yang L, Yuan X, Zhang Y. Roles and therapeutic targeting of dendritic cells in liver fibrosis. J Drug Target 2024; 32:647-654. [PMID: 38682473 DOI: 10.1080/1061186x.2024.2347365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Liver fibrosis is a common pathological condition marked by excessive accumulation of extracellular matrix proteins, resulting in irreversible cirrhosis and cancer. Dendritic cells (DCs) act as the crucial component of hepatic immunity and are believed to affect fibrosis by regulating the proliferation and differentiation of hepatic stellate cells (HSCs), a key mediator of fibrogenesis, and by interplaying with immune cells in the liver. This review concisely describes the process of fibrogenesis, and the phenotypic and functional characteristics of DCs in the liver. Besides, it focuses on the interaction between DCs and HSCs, T cells, and natural killer (NK) cells, as well as the dual roles of DCs in liver fibrosis, for the sake of exploring the potential of targeting DCs as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Bingyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
2
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
3
|
Feng J, Wu Y, Dai P, Wang D, Liu L, Chai B. Gut microbial signatures of patients with primary hepatocellular carcinoma and their healthy first-degree relatives. J Appl Microbiol 2023; 134:lxad221. [PMID: 37777841 DOI: 10.1093/jambio/lxad221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/27/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
AIMS The gut microbiome has been recognized as a significant contributor to primary hepatocellular carcinoma (HCC), with mounting evidence indicating associations between bacterial components and cancers of the digestive system. METHODS AND RESULTS Here, to characterize gut bacterial signature in patients with primary HCC and to assess the diagnostic potential of bacterial taxa for primary HCC, 21 HCC patients and 21 healthy first-degree relatives (control group) were enrolled in this study. Bacterial DNA in the fecal samples was quantified by 16S rRNA gene sequencing. We found that 743 operational taxonomic units (OTUs) were shared between patients with primary HCC and healthy controls. Of these, 197 OTUs were unique to patients with primary HCC, while 95 OTUs were unique to healthy subjects. Additionally, we observed significant differences in the abundance of Ruminococcaceae_UCG-014 and Romboutsia between patients with primary HCC and their healthy first-degree relatives. Besides, the relative abundance of Ruminococcaceae_UCG-014 and Prevotella_9 was positively correlated with physiological indicators including AST, ALT, ALB, or TBIL. Signature bacterial taxa could serve as non-invasive biomarkers, of which Romboutsia and Veillonella were identified as differential taxa in fecal samples from patients with HCC compared to healthy controls. Romboutsia showed a strong association with HCC (AUC = 0.802). Additionally, the combination of Romboutsia and Veillonella (AUC = 0.812) or the grouping of Fusobacterium, Faccalibacterium, and Peptostreptococcacae together (AUC = 0.762) exhibited promising outcomes for the diagnosis of HCC. CONCLUSIONS The composition of gut microbes in patients with HCC was found to be significantly altered. Differential taxa Romboutsia, Veillonella, and Peptostreptococcacae could be tested for identification of HCC.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
- Department of Gastroenterology, Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Yalin Wu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Peng Dai
- Department of Hepat-Bliary-Pancreatic Surgery, Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030012, China
| | - Dong Wang
- Department of Hepatology, The Third People's Hospital of Taiyuan, Taiyuan 030000, China
| | - Lixin Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
4
|
Zhou Y, Zhao S, Li Y, Yu M, Zheng J, Gong Q, Cao C, Ding J, Zhou X. Design and functional preliminary investigation of recombinant antigen EgG1Y162-EgG1Y162 against Echinococcus granulosus. Open Life Sci 2023; 18:20220558. [PMID: 36941829 PMCID: PMC10024343 DOI: 10.1515/biol-2022-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/15/2023] Open
Abstract
In the early stage, our research group cloned Echinococcus granulosus-specific antigen, EgG1Y162, from protoscolex and adult worms of E. granulosus. In order to enhance the immunogenicity of the vaccine, we prepared a recombinant vaccine by tandemly linking EgG1Y162, splicing the protein and linker at the gene level. This approach is expected to improve the immunogenicity of the vaccine by enhancing the molecular weight of the protein and increasing the antigenic epitopes. Bioinformatics was used to predict the physicochemical properties, transmembrane domain, protein structure, and T-/B-cell antigenic epitope of different recombinant proteins, EgG1Y162-linker-EgG1Y162. Finally, the linker sequence, "GGGGSGGG," which had the least influence on the migration of recombinant protein T/B epitope and can fold normally in series with EgG1Y162, was selected to design the recombinant vaccine. The plasmid was produced using genetic engineering techniques, and the recombinant protein, EGG1Y162-GGGGSGGG-EgG1Y162, was induced to be expressed and purified. EgG1Y162-GGGGSGGG-EgG1Y162 was identified to be correctly expressed with 100% specificity. Compared with EgG1Y162, EgG1Y162-GGGGSGGG-EgG1Y162 was more likely to promote dendritic cell maturation. EgG1Y162-GGGGSGGG-EgG1Y162 was speculated to have the potential to improve antigen immunogenicity by increasing the molecular weight and antigenic epitope.
Collapse
Affiliation(s)
- Yanxia Zhou
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Department of Anesthesiology, Zhanjiang Central Hospital, Zhanjiang, 524037, Guangdong, China
| | - Shangqi Zhao
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Yanmin Li
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Mingkai Yu
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Jia Zheng
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Qiaoqiao Gong
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Chunbao Cao
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| | - Xiaotao Zhou
- Department of Immunology, Basic Medical College, Xinjiang Medical University, Xinjiang830011, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang830011, Urumqi, China
| |
Collapse
|
5
|
Zhang N, Yao H, Zhang Z, Li Z, Chen X, Zhao Y, Ju R, He J, Pan H, Liu X, Lv Y. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14:1131588. [PMID: 36875101 PMCID: PMC9978172 DOI: 10.3389/fimmu.2023.1131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhixuan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi He
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heli Pan
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18:100772. [PMID: 36896446 PMCID: PMC9989662 DOI: 10.1016/j.ajps.2022.100772] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In the inflammatory microenvironment, there are numerous exosomes secreted by immune cells (Macrophages, neutrophils, dendritic cells), mesenchymal stem cells (MSCs) and platelets as intercellular communicators, which participate in the regulation of inflammation by modulating gene expression and releasing anti-inflammatory factors. Due to their good biocompatibility, accurate targeting, low toxicity and immunogenicity, these exosomes are able to selectively deliver therapeutic drugs to the site of inflammation through interactions between their surface-antibody or modified ligand with cell surface receptors. Therefore, the role of exosome-based biomimetic delivery strategies in inflammatory diseases has attracted increasing attention. Here we review current knowledge and techniques for exosome identification, isolation, modification and drug loading. More importantly, we highlight progress in using exosomes to treat chronic inflammatory diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), atherosclerosis (AS), and inflammatory bowel disease (IBD). Finally, we also discuss their potential and challenges as anti-inflammatory drug carriers.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
7
|
Yuan M, Hu X, Yao L, Liu P, Jiang Y, Li L. Comprehensive bioinformatics and machine learning analysis identify VCAN as a novel biomarker of hepatitis B virus-related liver fibrosis. Front Mol Biosci 2022; 9:1010160. [PMID: 36275632 PMCID: PMC9585216 DOI: 10.3389/fmolb.2022.1010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains the leading cause of liver fibrosis (LF) worldwide, especially in China. Identification of decisive diagnostic biomarkers for HBV-associated liver fibrosis (HBV-LF) is required to prevent chronic hepatitis B (CHB) from progressing to liver cancer and to more effectively select the best treatment strategy. We obtained 43 samples from CHB patients without LF and 81 samples from CHB patients with LF (GSE84044 dataset). Among these, 173 differentially expressed genes (DEGs) were identified. Functional analysis revealed that these DEGs predominantly participated in immune-, extracellular matrix-, and metabolism-related processes. Subsequently, we integrated four algorithms (LASSO regression, SVM-RFE, RF, and WGCNA) to determine diagnostic biomarkers for HBV-LF. These analyses and receive operating characteristic curves identified the genes for phosphatidic acid phosphatase type 2C (PPAP2C) and versican (VCAN) as potentially valuable diagnostic biomarkers for HBV-LF. Single-sample gene set enrichment analysis (ssGSEA) further confirmed the immune landscape of HBV-LF. The two diagnostic biomarkers also significantly correlated with infiltrating immune cells. The potential regulatory mechanisms of VCAN underlying the occurrence and development of HBV-LF were also analyzed. These collective findings implicate VCAN as a novel diagnostic biomarker for HBV-LF, and infiltration of immune cells may critically contribute to the occurrence and development of HBV-LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Lanjuan Li, ; Yingan Jiang,
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Lanjuan Li, ; Yingan Jiang,
| |
Collapse
|
8
|
Mora-Palazuelos C, Bermúdez M, Aguilar-Medina M, Ramos-Payan R, Ayala-Ham A, Romero-Quintana JG. Cytokine-polymorphisms associated with Preeclampsia: A review. Medicine (Baltimore) 2022; 101:e30870. [PMID: 36181055 PMCID: PMC9524891 DOI: 10.1097/md.0000000000030870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a syndromic disorder that affects 2% to 8% of pregnancies and is diagnosed principally when hypertension appears in the second-d half of pregnancy. WHO estimates the incidence of PE to be seven times higher in developing countries than in developed countries. Severe preeclampsia/eclampsia is one of the most important causes of maternal mortality, associated with 50,000 to 100,000 annual deaths globally as well as serious fetal and neonatal morbidity and mortality, especially in developing countries. Even though evidence from family-based studies suggest PE has a heritable component, its etiology, and specific genetic contributions remain unclear. Many studies examining the genetic factors contributing to PE have been conducted, most of them are focused on single nucleotide polymorphisms (SNPs). Given that PE has a very important inflammatory component, is mandatory to examine cytokine-SNPs for elucidating all mechanisms involved in this pathology. In this review, we describe the most important cytokine-polymorphisms associated with the onset and development of PE. We aim to provide current and relevant evidence in this regard. METHODS We searched English databases such as PubMed and the National Center for Biotechnology Information. The publication time of the papers was set from the establishment of the databases to February 2022. All studies about Th1/Th2/Th17 cytokines polymorphisms were included in our study. RESULTS SNPs in IFN-γ, TNF-α, IL-4, IL-6, IL-10, IL-17A, and IL-22 are associated with the development, early-onset and severity of PE, being the Th1/Th2/Th17 responses affected by the presence of these SNPs. CONCLUSIONS The changes in Th1/Th2/Th17 response modify processes such as placentation, control of inflammation, and vascular function. Nonetheless, association studies have shown different results depending on sample size, diagnostic, and population.
Collapse
Affiliation(s)
| | - Mercedes Bermúdez
- Facultad de Odontología, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Maribel Aguilar-Medina
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Rosalío Ramos-Payan
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Alfredo Ayala-Ham
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, México
| | - Jose Geovanni Romero-Quintana
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, México
- *Correspondence: Jose Geovanni Romero-Quintana, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Josefa Ortiz DE Domínguez S/N y Avenida DE las Américas, CP. 80010, Culiacán, Sinaloa, México (e-mail: )
| |
Collapse
|
9
|
Yu S, Wang J, Zheng H, Wang R, Johnson N, Li T, Li P, Lin J, Li Y, Yan J, Zhang Y, Zhu Z, Ding X. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J Hepatocell Carcinoma 2022; 9:855-867. [PMID: 36051860 PMCID: PMC9426868 DOI: 10.2147/jhc.s377768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. As opposed to the majority of patients with HCC, approximately 20–30% of cases of non-alcoholic steatohepatitis (NASH)-derived HCC develop malignant tumours in the absence of liver cirrhosis. NASH is characterized by metabolic dysregulation, chronic inflammation and cell death in the liver, which provide a favorable setting for the transformation of inflammation into cancer. This review aims to describe the pathogenesis and the underlying mechanism of the transition from inflammation to cancer in NASH.
Collapse
Affiliation(s)
- Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ruilin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jin Yan
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Centre of Research for Traditional Chinese Medicine Digestive, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
10
|
Gou Y, Weng Y, Chen Q, Wu J, Wang H, Zhong J, Bi Y, Cao D, Zhao P, Dong X, Guo M, Wagstaff W, Hendren-Santiago B, Chen C, Youssef A, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. Carboxymethyl chitosan prolongs adenovirus-mediated expression of IL-10 and ameliorates hepatic fibrosis in a mouse model. Bioeng Transl Med 2022; 7:e10306. [PMID: 36176604 PMCID: PMC9472002 DOI: 10.1002/btm2.10306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/09/2022] Open
Abstract
Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qian Chen
- Health Management Center, Deyang People's Hospital Deyang China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders The Children's Hospital of Chongqing Medical University Chongqing China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital Chongqing China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| |
Collapse
|
11
|
Wang L, Gao T, Li Y, Xie Y, Zeng S, Tai C, Feng Y, Shen P, Wang B. A long-term anti-inflammation markedly alleviated high-fat diet-induced obesity by repeated administrations of overexpressing IL10 human umbilical cord-derived mesenchymal stromal cells. Stem Cell Res Ther 2022; 13:259. [PMID: 35715850 PMCID: PMC9204983 DOI: 10.1186/s13287-022-02935-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Obesity is a chronic process and could activate various inflammatory responses, which in turn aggravates obesity and related metabolic syndrome. Here we explored whether long-term inhibition of inflammation could successfully alleviate high-fat diet (HFD)-induced obesity. Methods We constructed stable overexpressing interleukin 10 (IL10) human umbilical cord-derived mesenchymal stromal cells (HUCMSCs) which repeatedly were applied to obesity mice with HFD feeding to obtain a long-term anti-inflammation based on the prominent anti-inflammation effects of IL10 and immunomodulatery effects of HUCMSCs. Then we monitored the features of obesity including body weight, serum ALT, AST, and lipids. In addition, glucose homeostasis was determined by glucose tolerance and insulin sensitivity tests. The infiltrated macrophages in adipose tissues and hepatic lipid accumulation were detected, and the expressions of adipogenesis and inflammatory genes in adipose tissues were examined by real-time (RT) PCR and western blot analysis. Results Compared with HUCMSCs, IL10-HUCMSCs treatment had much better anti-obesity effects including body weight reduction, less hepatic lipids accumulation, lower amount and size of adipocyte, greater glucose tolerance, less systemic insulin resistance, and less adipose tissue inflammation in HFD feeding mice. Finally, IL10-HUCMSCs could decrease the activation of MAPK JNK of adipose tissue induced by HFD. The inhibition of MAPK JNK signal pathway by a small chemical molecule SP600125 in 3T3-L1 cells, a preadipocyte line, reduced the differentiation of adipocytes and lipid droplet accumulation. Conclusion A lasting anti-inflammation based on gene modified stem cell therapy is an effective strategy in preventing diet-induced obesity and obesity-related metabolic syndrome.
Collapse
Affiliation(s)
- Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Sheng Zeng
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxu Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yirui Feng
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China. .,College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Deng J, Xie Y, Shen J, Gao Q, He J, Ma H, Ji Y, He Y, Xiang M. Photocurable Hydrogel Substrate-Better Potential Substitute on Bone-Marrow-Derived Dendritic Cells Culturing. MATERIALS 2022; 15:ma15093322. [PMID: 35591655 PMCID: PMC9104740 DOI: 10.3390/ma15093322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are recognized as the most effective antigen-presenting cells at present. DCs have corresponding therapeutic effects in tumor immunity, transplantation immunity, infection inflammation and cardiovascular diseases, and the activation of T cells is dependent on DCs. However, normal bone-marrow-derived Dendritic cells (BMDCs) cultured on conventional culture plates are easy to be activated during culturing, and it is difficult to imitate the internal immune function. Here, we reported a novel BMDCs culturing with hydrogel substrate (CCHS), where we synthesized low substituted Gelatin Methacrylate-30 (GelMA-30) hydrogels and used them as a substitute for conventional culture plates in the culture and induction of BMDCs in vitro. The results showed that 5% GelMA-30 substrate was the best culture condition for BMDCs culturing. The low level of costimulatory molecules and the level of development-related transcription factors of BMDCs by CCHS were closer to that of spleen DCs and were capable of better promoting T cell activation and exerting an immune effect. CCHS was helpful to study the transformation of DCs from initial state to activated state, which contributes to the development of DC-T cell immunotherapy.
Collapse
Affiliation(s)
- Jiewen Deng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Qing Gao
- Engineering for Life Group (EFL), Suzhou 215000, China;
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (Y.H.); (M.X.)
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
- Correspondence: (Y.H.); (M.X.)
| |
Collapse
|
13
|
Xiang M, Liu T, Tian C, Ma K, Gou J, Huang R, Li S, Li Q, Xu C, Li L, Lee CH, Zhang Y. Kinsenoside attenuates liver fibro-inflammation by suppressing dendritic cells via the PI3K-AKT-FoxO1 pathway. Pharmacol Res 2022; 177:106092. [PMID: 35066108 PMCID: PMC8776354 DOI: 10.1016/j.phrs.2022.106092] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
Kinsenoside (KD) exhibits anti-inflammatory and immunosuppressive effects. Dendritic cells (DCs) are critical regulators of the pathologic inflammatory milieu in liver fibrosis (LF). Herein, we explored whether and how KD repressed development of LF via DC regulation and verified the pathway involved in the process. Given our analysis, both KD and adoptive transfer of KD-conditioned DCs conspicuously reduced hepatic histopathological damage, proinflammatory cytokine release and extracellular matrix deposition in CCl4-induced LF mice. Of note, KD restrained the LF-driven rise in CD86, MHC-II, and CCR7 levels and, simultaneously, upregulated PD-L1 expression on DCs specifically, which blocked CD8+T cell activation. Additionally, KD reduced DC glycolysis, maintained DCs immature, accompanied by IL-12 decrease in DCs. Inhibiting DC function by KD disturbed the communication of DCs and HSCs with the expression or secretion of α-SMA and Col-I declined in the liver. Mechanistically, KD suppressed the phosphorylation of PI3K-AKT driven by LF or PI3K agonist, followed by enhanced nuclear transport of FoxO1 and upregulated interaction of FoxO1 with the PD-L1 promoter in DCs. PI3K inhibitor or si-IL-12 acting on DC could relieve LF, HSC activation and diminish the effect of KD. In conclusion, KD suppressed DC maturation with promoted PD-L1 expression via PI3K-AKT-FoxO1 and decreased IL-12 secretion, which blocked activation of CD8+T cells and HSCs, thereby alleviating liver injury and fibro-inflammation in LF.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, the Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kun Ma
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Gou
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanrui Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Mukti AI, Ilyas S, Warli SM, Putra A, Rasyid N, Munir D, Siregar KB, Ichwan M. Umbilical Cord-Derived Mesenchymal Stem Cells Improve TGF-β, α-SMA and Collagen on Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats. Med Arch 2022; 76:4-11. [PMID: 35422561 PMCID: PMC8976889 DOI: 10.5455/medarh.2022.76.4-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022] Open
Abstract
Background A Erectile dysfunction (ED) is one of the well-known comorbidities in males with diabetes mellitus (DM), whose pathogenesis might be induced by dysregulation of corpus cavernosum smooth muscle cells. UC-MSCs are multipotent cells that attract considerable interest due to immunoregulatory properties and might be a potential strategy to regulate and recover the functional cells and tissues, including tissue improvement in DMED. Objective This study aims to determine the efficacy of UC-MSCs in improving the erectile function of DMED rats through analyzing the expression of TGF-β, α-SMA, and collagen. Methods Total number of 30 male Sprague-Dawley rats (6 to 8 weeks old) were randomly divided into four groups (negative control group, positive control group, T1 group, and T2 group). After 16 h fast, 24 rats were randomly selected and intraperitoneally injected with streptozotocin to induce DM. At 8 weeks after STZ injection, rats with DMED were identified by unresponsive erectile stimulation within 30 min. PC group received 500 μL; T1 rats treated with 500 μL PBS containing 1x106 UC-MSCs; T2 rats treated with 500 μL PBS containing 3x106 UC-MSCs. After MSCs treatment, the rats were sacrificed and the corpus cavernosum tissues were prepared for histological observations. Results This study resulted in the administration of UC-MSCs could downregulate the expression of TGF-β, α-SMA, and collagen leading to the improvement of DMED. Conclusion UC-MSCs improve the expression of TGF-β, α-SMA, and collagen on erectile dysfunction in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Ade Indra Mukti
- Departement of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syah Mirsya Warli
- Department of Urology, Faculty of Medicine / Universitas Sumatera Utara Hospital, Medan Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
- Department of Pathology, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
- Department of Postgraduate Biomedical Science, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia
| | - Nur Rasyid
- Department of Urology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Delfitri Munir
- Departement of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Departement of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Medan, Indonesia
- Pusat Unggulan Inovasi (PUI) Stem Cell, Universitas Sumatera Utara (USU), Medan, Indonesia
| | - Kamal Basri Siregar
- Oncology Surgery Department, Faculty of Medicine, Universitas Sumatera Utara, Universitas Sumatera Utara Hospital, Medan, Indonesia
| | - Muhammad Ichwan
- Pusat Unggulan Inovasi (PUI) Stem Cell, Universitas Sumatera Utara (USU), Medan, Indonesia
- Departement of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
15
|
Ike Y, Shimizu T, Ogawa M, Yamaguchi T, Suzuki K, Takayama Y, Makiguchi T, Iwashina M, Yokoo S. Ossifying fibrous epulis as an IgG4-related disease of the oral cavity: a case report and literature review. BMC Oral Health 2022; 22:4. [PMID: 35012519 PMCID: PMC8744345 DOI: 10.1186/s12903-022-02041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fibrous sclerosing tumours and hypertrophic lesions in IgG4-related disease (IgG4-RD) are formed in various organs throughout the body, but disease in the oral region is not included among individual organ manifestations. We report a case of ossifying fibrous epulis that developed from the gingiva, as an instance of IgG4-RD.
Case presentation A 60-year-old Japanese man visited the Department of Oral and Maxillofacial Surgery, Gunma University Hospital, with a chief complaint of swelling of the left mandibular gingiva. A 65 mm × 45 mm pedunculated tumour was observed. The bilateral submandibular lymph nodes were enlarged. The intraoperative pathological diagnosis of the enlarged cervical lymph nodes was inflammation. Based on this diagnosis, surgical excision was limited to the intraoral tumour, which was subsequently pathologically diagnosed as ossifying fibrous epulis. Histopathologically, the ossifying fibrous epulis exhibited increased levels of fibroblasts and collagen fibres, as well as infiltration by numerous plasma cells. The IgG4/IgG cell ratio was > 40%. Serologic analysis revealed hyper-IgG4-emia (> 135 mg/dL). The patient met the comprehensive clinical diagnosis criteria and the American College of Rheumatology and European League Against Rheumatism classification criteria for IgG4-RD. Based on these criteria, we diagnosed the ossifying fibrous epulis in our patient as an IgG4-related disease. A pathological diagnosis of IgG4-related lymphadenopathy was established for the cervical lymph nodes. Concomitant clinical findings were consistent with type II IgG4-related lymphadenopathy. Conclusions A routine serological test may be needed in cases with marked fibrous changes (such as epulis) in the oral cavity and plasma cells, accompanied by tumour formation, to determine the possibility of individual-organ manifestations of IgG4-related disease.
Collapse
Affiliation(s)
- Yoshiko Ike
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Takahiro Shimizu
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Masaru Ogawa
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan.
| | - Takahiro Yamaguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Keisuke Suzuki
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Yu Takayama
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Takaya Makiguchi
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Masanori Iwashina
- Clinical Department of Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, and Plastic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi-City, Gunma, 371-8511, Japan.
| |
Collapse
|
16
|
Liu F, Sun C, Chen Y, Du F, Yang Y, Wu G. Indole-3-propionic Acid-aggravated CCl 4-induced Liver Fibrosis via the TGF-β1/Smads Signaling Pathway. J Clin Transl Hepatol 2021; 9:917-930. [PMID: 34966655 PMCID: PMC8666369 DOI: 10.14218/jcth.2021.00032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS The pathogenesis of liver fibrosis involves liver damage, inflammation, oxidative stress, and intestinal dysfunction. Indole-3-propionic acid (IPA) has been demonstrated to have antioxidant, anti-inflammatory and anticancer activities, and a role in maintaining gut homeostasis. The current study aimed to investigate the role of IPA in carbon tetrachloride (CCl4)-induced liver fibrosis and explore the underlying mechanisms. METHODS The liver fibrosis model was established in male C57BL/6 mice by intraperitoneal injection of CCl4 twice weekly. IPA intervention was made orally (20 mg/kg daily). The degree of liver injury and fibrosis were assessed by serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathology. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction (qPCR) were used to detect the inflammatory cytokines. The malondialdehyde (MDA), glutathione, glutathione peroxidase, superoxide dismutase, and catalase were determined via commercial kits. Hepatocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The expression of mRNA and protein was assayed by qPCR, Western blotting, or immunohistochemical staining. RESULTS After IPA treatment, the ALT and AST, apoptotic cells, and pro-inflammatory factor levels were enhanced significantly. Moreover, IPA intervention up-regulated the expression of collagen I, α-smooth muscle actin, tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-2, transforming growth factor-β1 (TGF-β1), Smad3, and phosphorylated-Smad2/3. Additionally, IPA intervention did not affect the MDA level. Attractively, the administration of IPA remodeled the gut flora structure. CONCLUSIONS IPA aggravated CCl4-induced liver damage and fibrosis by activating HSCs via the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Wu
- Correspondence to: Gang Wu, Department of Infectious Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China. ORCID: https://orcid.org/0000-0002-2513-5089. Tel/Fax: +86-830-3165-625, E-mail:
| |
Collapse
|
17
|
Cross-talk between hepatic stellate cells and T lymphocytes in liver fibrosis. Hepatobiliary Pancreat Dis Int 2021; 20:207-214. [PMID: 33972160 DOI: 10.1016/j.hbpd.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibrosis results from inflammation and healing following injury. The imbalance between extracellular matrix (ECM) secretion and degradation leads to the ECM accumulation and liver fibrosis. This process is regulated by immune cells. T lymphocytes, including alpha beta (αβ) T cells, which have adaptive immune functions, and gamma delta (γδ) T cells, which have innate immune functions, are considered regulators of liver fibrosis. This review aimed to present the current understanding of the cross-talk between T lymphocytes and hepatic stellate cells (HSCs), which are the key cells in liver fibrosis. DATA SOURCES The keywords "liver fibrosis", "immune", and "T cells" were used to retrieve articles published in PubMed database before January 31, 2020. RESULTS The ratio of CD8+ (suppressor) T cells to CD4+ (helper) T cells is significantly higher in the liver than in the peripheral blood. T cells secrete a series of cytokines and chemokines to regulate the inflammation in the liver and the activation of HSCs to influence the course of liver fibrosis. In addition, HSCs also regulate the differentiation and proliferation of T cells. CONCLUSIONS The cross-talk between T cells and HSCs regulates liver fibrosis progression. The elucidation of this communication process will help us to understand the pathological process of liver fibrosis.
Collapse
|
18
|
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, Chen J. Dendritic Cells: Versatile Players in Renal Transplantation. Front Immunol 2021; 12:654540. [PMID: 34093544 PMCID: PMC8170486 DOI: 10.3389/fimmu.2021.654540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenxi Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ao Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingwei Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
19
|
Mo C, Xie S, Liu B, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Indoleamine 2,3-dioxygenase 1 limits hepatic inflammatory cells recruitment and promotes bile duct ligation-induced liver fibrosis. Cell Death Dis 2021; 12:16. [PMID: 33414436 PMCID: PMC7791029 DOI: 10.1038/s41419-020-03277-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a course of chronic liver dysfunction, can develop into cirrhosis and hepatocellular carcinoma. Inflammatory insult owing to pathogenic factors plays a crucial role in the pathogenesis of liver fibrosis. Indoleamine 2,3-dioxygenase 1 (IDO1) can affect the infiltration of immune cells in many pathology processes of diseases, but its role in liver fibrosis has not been elucidated completely. Here, the markedly elevated protein IDO1 in livers was identified, and dendritic cells (DCs) immune-phenotypes were significantly altered after BDL challenge. A distinct hepatic population of CD11c+DCs was decreased and presented an immature immune-phenotype, reflected by lower expression levels of co-stimulatory molecules (CD40, MHCII). Frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+MHCII+, and CD11c+CD40+ cells in splenic leukocytes were reduced significantly. Notably, IDO1 overexpression inhibited hepatic, splenic CD11c+DCs maturation, mature DCs-mediated T-cell proliferation and worsened liver fibrosis, whereas above pathological phenomena were reversed in IDO1-/- mice. Our data demonstrate that IDO1 affects the process of immune cells recruitment via inhibiting DCs maturation and subsequent T cells proliferation, resulting in the promotion of hepatic fibrosis. Thus, amelioration of immune responses in hepatic and splenic microenvironment by targeting IDO1 might be essential for the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Bin Liu
- Department of Emergency, Guangzhou Red Cross Hospital, Medical College, Jinan University, 510220, Guangzhou, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, 518033, Shenzhen, Guangdong, People's Republic of China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
20
|
Mo C, Xie S, Zhong W, Zeng T, Huang S, Lai Y, Deng G, Zhou C, Yan W, Chen Y, Huang S, Gao L, Lv Z. Mutual antagonism between indoleamine 2,3-dioxygenase 1 and nuclear factor E2-related factor 2 regulates the maturation status of DCs in liver fibrosis. Free Radic Biol Med 2020; 160:178-190. [PMID: 32771520 DOI: 10.1016/j.freeradbiomed.2020.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrosis can develop into liver cirrhosis and hepatocellular carcinoma substantially without effective available treatment currently due to rarely characterized molecular pathogenesis. Indoleamine 2,3-dioxygenase 1(IDO1) can be detected on antigen-presenting cells (APCs) and modulates various immune responses. However, the role of IDO1 in the regulation of dendritic cells (DCs) during liver fibrosis is rarely reported. Here, we found that hepatic IDO1 was up-regulated during CCL4-induced liver fibrosis, which accompanied by a significant decrease in the frequencies of CD11c+CD80+, CD11c+CD86+, CD11c+CD40+ and CD11c+MHCII+ cells and a reduction in the subsequent T cell proliferation rate, whereas these changes were reversed significantly in IDO1-/- mice. Overexpressing IDO1 by adeno-associated viral vector serotype 9 (AAV9) significantly inhibited the maturation status of DCs, worsened fibrosis. In vitro studies showed that significantly elevated CD80, CD86, CD40 and MHCII expression were observed in BMDCs derived from IDO1-/- mice. Moreover, the maturation of BMDCs derived from WT mice were significantly increased after stimulated with IDO1 inhibitor (1-methyl- D -tryptophan). Nuclear factor E2-related factor 2 (Nrf2), a key regulator of the cellular adaptive response to oxidative insults and inflammation, exhibited a markedly decrease in the liver of WT fibrotic mice, nevertheless, knockout of IDO1 enhanced the protein level of Nrf2. Moreover, the expression of IDO1 and Nrf2 exhibited inverse colocalization pattern suggesting that ectopically expressed IDO1 down-regulated Nrf2. Additionally, up-regulation of IDO1 was also observed in the livers of Nrf2-/- fibrotic mice. Taken together, these data uncovered mutual antagonism between IDO1 and Nrf2 on the maturation status of DCs during hepatic fibrosis.
Collapse
Affiliation(s)
- Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weichao Zhong
- Shenzhen Traditional Chinese Medicine Hospital, No.1, Fuhua Road, Futian District, Shenzhen, Guangdong, 518033, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, PR China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
21
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
22
|
Dendritic Cells Transfected with MHC Antigenic Determinants of CBA Mice Induce Antigen-Specific Tolerance in C57Bl/6 Mice. J Immunol Res 2020; 2020:9686143. [PMID: 32953894 PMCID: PMC7487104 DOI: 10.1155/2020/9686143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Nonspecific immunosuppressive therapy for graft rejection and graft-versus-host disease (GVHD) is often accompanied by severe side effects such as opportunistic infections and cancers. Several approaches have been developed to suppress transplantation reactions using tolerogenic cells, including induction of FoxP3+ Tregs with antigen-loaded dendritic cells (DCs) and induction of CD4+IL-10+ cells with interleukin IL-10-producing DCs. Here, we assessed the effectiveness of both approaches in the suppression of graft rejection and GVHD. Methods IL-10-producing DCs were generated by the transfection of DCs with DNA constructs encoding mouse IL-10. Antigen-loaded DCs from C57BL/6 mice were generated by transfection with DNA constructs encoding antigenic determinants from the H2 locus of CBA mice which differ from the homologous antigenic determinants of C57BL/6 mice. Results We found that both IL-10-producing DCs and antigen-loaded immature DCs could suppress graft rejection and GVHD but through distinct nonspecific and antigen-specific mechanisms, respectively. Discussion. We provide data that the novel approach for DCs antigen loading using DNA constructs encoding distinct homologous determinants derived from major histocompatibility complex genes is effective in antigen-specific suppression of transplantation reactions. Such an approach eliminates the necessity of donor material use and may be useful in immunosuppressive therapy side effects prevention.
Collapse
|
23
|
Ahmed R, Sayegh N, Graciotti M, Kandalaft LE. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr Opin Biotechnol 2020; 65:142-155. [PMID: 32240923 DOI: 10.1016/j.copbio.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
In the last few decades, immunotherapy has emerged as an alternative therapeutic approach to treat cancer. Immunotherapy offers a plethora of different treatment possibilities. Among these, dendritic cell (DC)-based cancer vaccines constitute one of the most promising and valuable therapeutic options. DC-vaccines have been introduced into the clinics more than 15 years ago, and preclinical studies showed their general safety and low toxic effects on patients. However, their treatment efficacy is still rather limited, demanding for novel avenues to improve vaccine efficacy. One way to potentially achieve this is to focus on improving the DC-T cell interaction to further increase T cell priming and downstream activity. A successful DC-T cell interaction requires three different signals (Figure 1): (1) Major Histocompatibility Complex (MHC) and antigen complex interaction with T cell receptor (TCR) (2) interaction between co-stimulatory molecules and their cognate ligands at the cell surface and (3) secretion of cytokines to polarize the immune response toward a Type 1 helper (Th1) phenotype. In recent years, many studies attempted to improve the DC-T cell interaction and overall cancer vaccine therapeutic outcomes by increasing the expression of mediators of signal 1, 2 and/or 3, through genetic modifications of DCs. Transfection of genes of interest can be achieved through many different methods such as passive pulsing, lipofection, viral transfection, or electroporation (EP). However, EP is currently emerging as the method of choice thanks to its safety, versatility, and relatively easy clinical translation. In this review we will highlight the potential benefits of EP over other transfection methods as well as giving an overview of the available studies employing EP to gene-modify DCs in cancer vaccines. Crucial aspects such as safety, feasibility, and gene(s) of choice will be also discussed, together with future perspectives and opportunities for DC genetic engineering.
Collapse
Affiliation(s)
- Rita Ahmed
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Naya Sayegh
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Michele Graciotti
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
24
|
Li LY, Yang CC, Yang JF, Li HD, Zhang BY, Zhou H, Hu S, Wang K, Huang C, Meng XM, Zhou H, Zhang L, Li J, Xu T. ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol 2019; 865:172787. [DOI: 10.1016/j.ejphar.2019.172787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|
25
|
Kim JY, Park JH, Kim K, Leem J, Park KK. Melatonin Inhibits Transforming Growth Factor-β1-Induced Epithelial-Mesenchymal Transition in AML12 Hepatocytes. BIOLOGY 2019; 8:biology8040084. [PMID: 31717992 PMCID: PMC6956139 DOI: 10.3390/biology8040084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/01/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022]
Abstract
Recent studies showed that melatonin, a well-known pineal hormone that modulates the circadian rhythm, exerts beneficial effects against liver fibrosis. However, mechanisms for its protective action against the fibrotic processes remain incompletely understood. Here, we aimed to explore the effects of the hormone on transforming growth factor-β1 (TGF-β1)-stimulated epithelial–mesenchymal transition (EMT) in AML12 hepatocytes. Pretreatment with melatonin dose-dependently reversed downregulation of an epithelial marker and upregulation of mesenchymal markers after TGF-β1 stimulation. Additionally, melatonin dose-dependently suppressed an increased phosphorylation of Smad2/3 after TGF-β1 treatment. Besides the canonical Smad signaling pathway, an increase in phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was also dose-dependently attenuated by melatonin. The suppressive effect of the hormone on EMT stimulated by TGF-β1 was not affected by luzindole, an antagonist of melatonin membrane receptors, suggesting that its membrane receptors are not required for the inhibitory action of melatonin. Moreover, melatonin suppressed elevation of intracellular reactive oxygen species (ROS) levels in TGF-β1-treated cells. Finally, TGF-β1-stimulated EMT was also inhibited by the antioxidant N-acetylcysteine. Collectively, these results suggest that melatonin prevents TGF-β1-stimulated EMT through suppression of Smad and mitogen-activated protein kinase signaling cascades by deactivating ROS-dependent mechanisms in a membrane receptor-independent manner.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Jae-Hyung Park
- Department of Physiology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.-H.P.); (K.K.)
| | - Kiryeong Kim
- Department of Physiology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.-H.P.); (K.K.)
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence:
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
26
|
Khantakova J, Tereshchenko V, Kurilin V, Silkov A, Maksyutov A, Lopatnikova J, Shevchenko J, Knauer N, Kulikova E, Sennikov S. Comparison of CD4 +CD25 hiFoxP3 + Treg Induction by pIL-10-Transfected Dendritic Cells in Different Mouse Strains. J Interferon Cytokine Res 2019; 39:531-538. [PMID: 31070504 DOI: 10.1089/jir.2019.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) and T-regulatory cells (Tregs) are involved in maintaining tolerance to self-antigens and foreign antigens. The cells are used as therapeutic tools for inducing tolerance to transplanted organs or tissues. We investigated the possibility of inducing Tregs in splenocyte cultures using DCs transfected with a DNA construct encoding mouse interleukin-10 (DCpIL-10). DCs were derived from bone marrow cells in the presence of rmGM-CSF and rmIL-4 and electroporated with a plasmid encoding mouse IL-10. Furthermore, DCpIL-10 was cocultured with syngeneic splenocytes. The CD4+CD25hiFoxP3+ Treg frequency, IL-10 expression, and inhibition of the mixed lymphocyte reaction were evaluated. C57Bl/6 and CBA mice differ in their initial frequency of CD4+CD25hiFoxP3+ Tregs and baseline IL-10 production. Also, the effectiveness of CD4+CD25hiFoxP3+ Treg upregulation by tolDCpIL-10 was different. In this study, DCpIL-10 from C57Bl/6 mice induced CD4+CD25hiFoxP3+ Tregs in syngenic splenocytes, which was accompanied by an increase in the IL-10 production and a decrease in the proliferation of splenocytes in response to the alloantigen. DCpIL-10 may be used to induce CD4+CD25hiFoxP3+ Tregs and the regulatory potential of splenocytes.
Collapse
Affiliation(s)
- Julia Khantakova
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Vasiliy Kurilin
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Alexander Silkov
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Amir Maksyutov
- State Research Center of Virology and Biotechnology, Novosibirsk, Russia
| | - Julia Lopatnikova
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Shevchenko
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Nadezda Knauer
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Ekaterina Kulikova
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Sergey Sennikov
- Department of Molecular Immunology, Federal State Budgetary Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|