1
|
Riazuelo L, Planat-Bénard V, Vinel A, Laurencin S, Casteilla L, Kémoun P, Marty M, Monsarrat P. Acceptability of Allogeneic Mesenchymal Stromal Cell-Based Tissue Engineering for the Treatment of Periodontitis: A Qualitative Study in France. Int Dent J 2024:S0020-6539(24)01398-4. [PMID: 39245621 DOI: 10.1016/j.identj.2024.07.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
INTRODUCTION AND AIMS Periodontitis, the main cause of tooth loss in adults, is a public health concern; its incidence increases with age, and its prevalence increases with increasing life expectancy of the population. Innovative therapies such as cell therapy represent promising future solutions for guided tissue regeneration. However, these therapies may be associated with fears and mistrust from the general public. The aim of this study was to estimate the acceptability of an advanced therapy medicinal product combining allogeneic mesenchymal stromal cells from adipose tissue with a natural fibrin hydrogel in the treatment of periodontitis. METHODS The methodology was based on a qualitative study conducted through semi-structured interviews with patients followed for periodontitis in the Oral Medicine Department of the Toulouse University Hospital, Toulouse, France. Qualitative studies are essential methodologies to understand the patterns of health behaviours, describe illness experiences, and design health interventions in a humanistic and person-centred way of discovering. RESULTS Eleven interviews (with 4 men and 7 women) were required to reach thematic saturation. Analysis allowed 4 main themes to emerge: (1) perception of new treatments, science, and caregivers; (2) conditions that the treatment must meet; (3) patient perception of the disease; and (4) factors related to the content of the treatment. CONCLUSIONS Patients find cell therapy for periodontitis to be acceptable. If they express a need to be informed about the benefit/risk ratio, they are not particularly worried about side effects of the treatment, for either allogeneic or blood-derived products. Periodontitis is a prototypical model of chronic inflammatory pathology and is multitissular, with hard- and soft-tissue lesions. In a patient-centred approach, the success of cell therapy will require a bilateral, informed decision, taking into account potential therapeutic effectiveness and patient expectations for regeneration.
Collapse
Affiliation(s)
- Lucas Riazuelo
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Alexia Vinel
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; I2MC, INSERM UMR 1297, University of Toulouse III, Toulouse, France
| | - Sara Laurencin
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; Center for Epidemiology and Research in POPulation Health (CERPOP), UMR 1295, Paul Sabatier University, Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Philippe Kémoun
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mathieu Marty
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; LIRDEF, Faculty of Educational Sciences, Paul Valery University, Montpellier, France
| | - Paul Monsarrat
- Oral Medicine Department and CHU de Toulouse, Toulouse Institute of Oral Medicine and Science, Toulouse, France; RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France; Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France.
| |
Collapse
|
2
|
Surcel ES, Merkkola-von Schantz PA, Öhman H, Kauhanen SC. Long-term results of the tuberous breast: What to expect after the primary correction process? Scand J Surg 2024; 113:246-253. [PMID: 38742668 DOI: 10.1177/14574969241250213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIMS Tuberous breast is a rare anomaly affecting the development of mainly the female breast. It presents with varying degrees of hypoplasia in the breast base and skin. In some cases, herniation and widening of the areola is observed. The condition constitutes a great challenge for the reconstructive surgeon. In this study, the surgical cascades of implant and lipofilling corrections were compared with a focus on the need for re-interventions. METHODS In total, 129 patients whose treatment regimen started between January 2010 and October 2020 were included in this study. Patients were categorized into two groups based on the volume correction method used (lipofilling versus implant). RESULTS In 35 (27%) patients (41 breasts), breast volume increasement was executed with an implant, while 94 (73%) patients (169 breasts) underwent volume increasement with lipofilling. The mean number of operations during the primary correction process was 1.2 (range 1-5) for the implant group and 2.4 (range 1-5) for the lipofilling group. When assessing the need for re-operations within 5 years after completing the primary correction, 46% of patients in the implant group needed further surgeries, while the corresponding proportion for the lipofilling group was 21% (p = 0.04). There were six major complications, all of them in the implant group. CONCLUSION Implant-based reconstruction is associated with more revision surgeries and major complications compared to autologous lipofilling corrections. Lipofilling offers a more durable result with less re-operations over time despite initial sequential primary surgeries.
Collapse
Affiliation(s)
- Elena S Surcel
- Department of Plastic and Reconstructive Surgery University of Helsinki and Helsinki University Hospital PO Box 266 Helsinki 00029 HUS Finland
| | - Päivi A Merkkola-von Schantz
- Department of Plastic and Reconstructive Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Öhman
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Susanna C Kauhanen
- Department of Plastic and Reconstructive Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Canceill T, Jourdan G, Kémoun P, Guissard C, Monsef YA, Bourdens M, Chaput B, Cavalie S, Casteilla L, Planat-Bénard V, Monsarrat P, Raymond-Letron I. Characterization and Safety Profile of a New Combined Advanced Therapeutic Medical Product Platelet Lysate-Based Fibrin Hydrogel for Mesenchymal Stromal Cell Local Delivery in Regenerative Medicine. Int J Mol Sci 2023; 24:ijms24032206. [PMID: 36768532 PMCID: PMC9916739 DOI: 10.3390/ijms24032206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.
Collapse
Affiliation(s)
- Thibault Canceill
- CIRIMAT, Université Toulouse III Paul Sabatier, CNRS UMR 5085, INPT, Faculté de Pharmacie, 35 Chemin des Maraichers, CEDEX 09, 31062 Toulouse, France
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
| | - Géraldine Jourdan
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Philippe Kémoun
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Christophe Guissard
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Yanad Abou Monsef
- LabHPEC, Histology and Pathology Department, Université de Toulouse, ENVT, CEDEX 03, 31076 Toulouse, France
| | - Marion Bourdens
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Benoit Chaput
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Centre Hospitalier Universitaire Rangueil, Avenue du Professeur Jean Poulhès, CEDEX 09, 31059 Toulouse, France
| | - Sandrine Cavalie
- CIRIMAT, Université Toulouse III Paul Sabatier, CNRS UMR 5085, INPT, Faculté de Pharmacie, 35 Chemin des Maraichers, CEDEX 09, 31062 Toulouse, France
| | - Louis Casteilla
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Valérie Planat-Bénard
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Paul Monsarrat
- Department of Oral Medicine and Toulouse University Hospital (CHU of Toulouse)—Toulouse Institute of Oral Medicine and Science, CEDEX 09, 31062 Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, 31400 Toulouse, France
- Correspondence:
| | - Isabelle Raymond-Letron
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Batiment INCERE, 4bis Avenue Hubert Curien, 31100 Toulouse, France
- LabHPEC, Histology and Pathology Department, Université de Toulouse, ENVT, CEDEX 03, 31076 Toulouse, France
| |
Collapse
|
4
|
Jiang YL, Wang ZL, Fan ZX, Wu MJ, Zhang Y, Ding W, Huang YZ, Xie HQ. Human adipose-derived stem cell-loaded small intestinal submucosa as a bioactive wound dressing for the treatment of diabetic wounds in rats. BIOMATERIALS ADVANCES 2022; 136:212793. [PMID: 35929325 DOI: 10.1016/j.bioadv.2022.212793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Chronic nonhealing wounds are one of the most common and serious complications of diabetes, which can lead to disability of patients. Adipose-derived stem cells (ADSCs) have emerged as a promising tool for skin wound healing, but the therapeutic potential depends considerably on the cell delivery system. Small intestinal submucosa (SIS) is an extracellular matrix-based membranous scaffold with outstanding repair potential for skin wounds. In this study, we first fabricated a bioactive wound dressing, termed the SIS+ADSCs composite, by using human ADSCs as the seed cell and porcine SIS as the cell delivery vehicle. Then, we systematically investigated, for the first time, the healing potential of this wound dressing in a rat model of type 2 diabetes. In vitro studies revealed that SIS provided a favorable microenvironment for ADSCs and significantly promoted the expression of growth factors critical for chronic wound healing. After implantation in the full-thickness skin wounds of diabetic rats, the SIS+ADSCs composite showed a higher wound healing rate and wound healing quality than those in the PBS, ADSCs, and SIS groups. Along with the ability to modulate the polarization of macrophages in vivo, the SIS+ADSCs composite was potent at promoting wound angiogenesis, reepithelialization, and skin appendage regeneration. Taken together, these results indicate that the SIS+ADSCs composite has good therapeutic potential and high translational value for diabetic wound treatment.
Collapse
Affiliation(s)
- Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhao-Xin Fan
- Neo-life Stem Cell Biotech INC, Chengdu, Sichuan 610037, China
| | - Ming-Jun Wu
- Neo-life Stem Cell Biotech INC, Chengdu, Sichuan 610037, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Front Microbiol 2022; 12:786111. [PMID: 35237239 PMCID: PMC8882917 DOI: 10.3389/fmicb.2021.786111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids, lipids, and proteins and mediate intercellular communication, have attracted much attention in diagnosis and treatment in the field of medicine. The contents of exosomes vary depending on the cell type and physiological conditions. Among exosomes derived from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly being explored due to their immunomodulatory properties, regenerative capacity, anti-inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free therapy for various diseases, has gained great promise. Indeed, the advantages of exosomes secreted from stem cells outweigh those of their parent cells owing to their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier condition for storage. Recently, the use of stem cell-Exo has been proposed in the field of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can cause various diseases in humans with acute and chronic complications, sometimes resulting in mortality. On the other hand, treatments based on antibiotics and other chemical compounds have many side effects and the strains become resistant to drugs in some cases. Hence, this review aimed to highlight the effect of stem cell-derived extracellular vesicles including stem cell-Exo on microbial diseases. Although most published studies are preclinical, the avenue of clinical application of stem cell-Exo is under way to reach clinical applications. The challenges ahead of this cell-free treatment that might be applied as a therapeutic alternative to stem cells for translation from bench to bed were emphasized, as well.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, Bonsi L, Alviano F. Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome. Antibiotics (Basel) 2021; 10:750. [PMID: 34206190 PMCID: PMC8300685 DOI: 10.3390/antibiotics10070750] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Silvia Zia
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
| | | | - Daniele Gazzola
- Cell Dynamics i.S.r.l., 40129 Bologna, Italy; (A.S.); (D.G.)
| | - Barbara Roda
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| |
Collapse
|
7
|
Planat-Benard V, Varin A, Casteilla L. MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Front Immunol 2021; 12:626755. [PMID: 33995350 PMCID: PMC8120150 DOI: 10.3389/fimmu.2021.626755] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are currently widely used in cell based therapy regarding to their remarkable efficacy in controlling the inflammatory status in patients. Despite recent progress and encouraging results, inconstant therapeutic benefits are reported suggesting that significant breakthroughs in the understanding of MSCs immunomodulatory mechanisms of action remains to be investigated and certainly apprehended from original point of view. This review will focus on the recent findings regarding MSCs close relationship with the innate immune compartment, i.e. granulocytes and myeloid cells. The review will also consider the intercellular mechanism of communication involved, such as factor secretion, cell-cell contact, extracellular vesicles, mitochondria transfer and efferocytosis. Immune-like-properties of MSCs supporting part of their therapeutic effect in the clinical setting will be discussed, as well as their potentials (immunomodulatory, anti-bacterial, anti-inflammatory, anti-oxidant defenses and metabolic adaptation…) and effects mediated, such as cell polarization, differentiation, death and survival on various immune and tissue cell targets determinant in triggering tissue regeneration. Their metabolic properties in term of sensing, reacting and producing metabolites influencing tissue inflammation will be highlighted. The review will finally open to discussion how ongoing scientific advances on MSCs could be efficiently translated to clinic in chronic and age-related inflammatory diseases and the current limits and gaps that remain to be overcome to achieving tissue regeneration and rejuvenation.
Collapse
Affiliation(s)
- Valerie Planat-Benard
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Audrey Varin
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- RESTORE, University of Toulouse, UMR 1031-INSERM, 5070-CNRS, Etablissement Français du Sang-Occitanie (EFS), Université Paul Sabatier, Toulouse, France
| |
Collapse
|
8
|
Hernandez JJ, Beaty DE, Fruhwirth LL, Lopes Chaves AP, Riordan NH. Dodging COVID-19 infection: low expression and localization of ACE2 and TMPRSS2 in multiple donor-derived lines of human umbilical cord-derived mesenchymal stem cells. J Transl Med 2021; 19:149. [PMID: 33853637 PMCID: PMC8045575 DOI: 10.1186/s12967-021-02813-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background Mesenchymal stem cells derived from human umbilical cord (hUC-MSCs) have immunomodulatory properties that are of interest to treat novel coronavirus disease 2019 (COVID-19). Leng et al. recently reported that hUC-MSCs derived from one donor negatively expressed Angiotensin-Converting Enzyme 2 (ACE2), a key protein for viral infection along with Transmembrane Serine Protease 2 (TMPRSS2). The purpose of this study was to quantify the expression of ACE2 and TMPRSS2 in hUC-MSCs lots derived from multiple donors using molecular-based techniques in order to demonstrate their inability to be a host to SARS-CoV-2. Methods Expression of ACE2 and TMPRSS2 was analyzed in 24 lots of hUC-MSCs derived from Wharton's jelly via quantitative polymerase chain reaction (qPCR), Western Blot, immunofluorescence and flow cytometry using 24 different donors. Results hUC-MSCs had significantly lower ACE2 (p = 0.002) and TMPRSS2 (p = 0.008) expression compared with human lung tissue homogenates in Western blot analyses. Little to no expression of ACE2 was observed in hUC-MSC by qPCR, and they were not observable with immunofluorescence in hUC-MSCs cell membranes. A negative ACE2 and TMPRSS2 population percentage of 95.3% ± 15.55 was obtained for hUC-MSCs via flow cytometry, with only 4.6% ACE2 and 29.5% TMPRSS2 observable positive populations. Conclusions We have demonstrated negative expression of ACE2 and low expression of TMPRSS2 in 24 lots of hUC-MSCs. This has crucial implications for the design of future therapeutic options for COVID-19, since hUC-MSCs would have the ability to “dodge” viral infection to exert their immunomodulatory effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02813-6.
Collapse
Affiliation(s)
- Jonathan J Hernandez
- Aidan Research and Consulting LLC, 11496 Luna Rd, suite 1100, Farmers Branch, TX, 75234, USA. .,Medistem Inc Panama, Ciudad del Saber, Edif. 221/Clayton, Panama, Republic of Panama.
| | - Doyle E Beaty
- Aidan Research and Consulting LLC, 11496 Luna Rd, suite 1100, Farmers Branch, TX, 75234, USA
| | - Logan L Fruhwirth
- Aidan Research and Consulting LLC, 11496 Luna Rd, suite 1100, Farmers Branch, TX, 75234, USA
| | - Ana P Lopes Chaves
- Aidan Research and Consulting LLC, 11496 Luna Rd, suite 1100, Farmers Branch, TX, 75234, USA
| | - Neil H Riordan
- Aidan Research and Consulting LLC, 11496 Luna Rd, suite 1100, Farmers Branch, TX, 75234, USA.,Medistem Inc Panama, Ciudad del Saber, Edif. 221/Clayton, Panama, Republic of Panama
| |
Collapse
|