1
|
Zamanian Z, Tajbakhsh E, Arbab Soleimani N, Ghasemian A. Aqueous extract-mediated green synthesis of CuO nanoparticles: Potential anti-tuberculosis agents. Food Sci Nutr 2024; 12:5907-5921. [PMID: 39139956 PMCID: PMC11317747 DOI: 10.1002/fsn3.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 08/15/2024] Open
Abstract
The emergence of drug-resistant strains in tuberculosis treatment underscores the urgency for novel therapeutic approaches. This study investigates the anti-tuberculosis activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using garlic and astragalus extracts. The physicochemical characterization of the nanoparticles confirms successful synthesis, followed by assessment of their antibacterial properties and safety profile. Rats infected with Mycobacterium tuberculosis are treated with nanocomposites derived from garlic extract at doses of 50 mg/kg and 100 mg/kg body weight. Evaluation includes the analysis of Early secreted antigenic target of 6 kDa (ESAT-6) expression and confirmation of antibodies through molecular assays. Administration of garlic and nanocomposites demonstrates significant inhibitory effects on tuberculosis progression in rats, validated by safety assessments and antibacterial efficacy. Notably, the 100 mg/kg dosage exhibits pronounced mitigation of tuberculosis-induced oxidative stress and lung damage. In conclusion, the combined administration of garlic extracts and green-synthesized nanocomposites shows promising efficacy in reducing tuberculosis infection, highlighting a potential avenue for anti-tuberculosis interventions.
Collapse
Affiliation(s)
- Zohreh Zamanian
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Elahe Tajbakhsh
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - AbdolMajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
2
|
Al Musayeib NM, Amina M, Maqsood F, Bokhary KA, Alrashidi NS. Biogenic Synthesis of Photosensitive Magnesium Oxide Nanoparticles Using Citron Waste Peel Extract and Evaluation of Their Antibacterial and Anticarcinogenic Potential. Bioinorg Chem Appl 2024; 2024:8180102. [PMID: 38962162 PMCID: PMC11221967 DOI: 10.1155/2024/8180102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 07/05/2024] Open
Abstract
Background Magnesium oxide nanoparticles (MgONPs) have been fabricated by several approaches, including green chemistry approach due to diverse application and versatile features. Objectives The current study aimed to prepare a convenient, biocompatible, and economically viable MgONPs using waste citron peel extract (CP-MgONPs) to evaluate their biological applications. Methods The CP-MgONPs were synthesized by a sustainable approach from extract of waste citron peel both as capping and reducing agents without use of any hazardous material. The physicochemical features of formed CP-MgONPs were determined by sophisticated analytical and microscopic techniques. The biogenic CP-MgONPs were examined for their antibacterial, anticarcinogenic, and photocatalytic attributes. Results A prominent absorption peak in the UV-Vis spectra at 284 nm was the distinguishing characteristic of the CP-MgONPs. The scanning electron microscopy (SEM) reveals polyhedral morphology of nanoparticles with slight agglomeration of CP-MgONPs. The CP-MgONPs exerted excellent antibacterial potencies against six bacterial strains. The CP-MgONPs displayed significant susceptibility towards E. coli (20.72 ± 0.33 mm) and S. aureus (19.52 ± 0.05 mm) with the highest inhibition zones. The anticancer effect of CP-MgONPs was evaluated against HepG2 (IC50 : 15.3 μg·mL-1) cancer cells and exhibited potential anticancer activity. A prompt inversion of cellular injury manifested as impairment of the integrity of the cell membrane, apoptosis, and oxidative stress was observed in treated cells with CP-MgONPs. The biosynthesized CP-MgONPs also conducted successful photocatalytic potential as much as MgO powder under the UV-light using acid orange 8 (AO-8) dye. The degradation performance of CP-MgONPs showed over 94% photocatalytic degradation efficiency of acid orange 8 (AO-8) dyes within a short time. Conclusions Outcomes of this research signify that biogenic CP-MgONPs may be advantageous at low concentrations, with positive environmental impacts.
Collapse
Affiliation(s)
- Nawal M. Al Musayeib
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Farah Maqsood
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kholoud A. Bokhary
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nada S. Alrashidi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
3
|
Barad C, Kimmel G, Opalińska A, Gierlotka S, Łojkowski W. Lattice variation as a function of concentration and grain size in MgO-NiO solid solution system. Heliyon 2024; 10:e31275. [PMID: 38803881 PMCID: PMC11129000 DOI: 10.1016/j.heliyon.2024.e31275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The study aimed to understand how changes in crystal's size affect the lattice parameters and crystal structure of Mg1-xNixO solid solution for six X values ranging from x = 0 to x = 1. Mg1-xNixO was synthesized via two different wet-chemical techniques: the sol-gel and the microwave hydrothermal method, both followed by calcination at different temperatures of 673, 873, 1073, 1273 and 1473 K. As annealing caused grain growth, the varied temperature range allowed to examine a wide range of grain sizes. The lattice parameters and x values were determined from XRD (X-ray diffraction) peak positions and intensities respectively. The grain size was evaluated by XRD line profile analysis and supported by SEM (scanning electron microscope) observations. At the temperatures of 673 and 873 K grain size was in the nanometric range and from 1073 K and above grain size was in the micrometric range. A non-monotonic lattice variation versus grain size was found for each concentration. When grain size decreased there was a slight contraction, however for grain size in the nanometric range there was a severe lattice expansion. Both lattice parameter changes were explained by two effects acting together: contraction due to surface stress and expansion due to weakening of the ionic bonding at nanocrystalline particles. In this current research study, the lattice parameter was mapped in two dimensions: concentration and grain size. The findings of this study provided valuable insights into the lattice variation in the MgO-NiO solid solution system.
Collapse
Affiliation(s)
- Chen Barad
- NRCN, P.O. Box 9001, Beer-Sheva, 84190, Israel
| | - Giora Kimmel
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Agnieszka Opalińska
- Institute of High Pressure Physics, Polish Academic of Sciences (PAS), Warszawa, Poland
| | - Stanislaw Gierlotka
- Institute of High Pressure Physics, Polish Academic of Sciences (PAS), Warszawa, Poland
| | - Witold Łojkowski
- Institute of High Pressure Physics, Polish Academic of Sciences (PAS), Warszawa, Poland
| |
Collapse
|
4
|
Sudhabose S, Sooryakanth B, Rajan MR. Acute Toxicity, Hematological Profile, and Histopathological Effects of MgO Nanoparticles on Gills, Muscle, Liver of Mrigal, Cirrhinus mrigala. Biol Trace Elem Res 2024; 202:736-742. [PMID: 37231319 DOI: 10.1007/s12011-023-03704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Nanotechnology is an advancing and emerging field of all environmental, medical, and industrial applications. Magnesium oxide nanoparticles have been widely used in medicine, consumer products, industrial products, textiles, ceramics, alleviation of heartburn, stomach ulcers, and bone regeneration. In the present study, acute toxicity (LC50) of MgO nanoparticles and hematological and histopathological changes in Cirrhinus mrigala was analyzed. The lethal concentration for 50% of MgO nanoparticles was 4.2321 mg/L. Hematological parameters such as white blood cells, red blood cells, hematocrit, hemoglobin, platelets, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as histopathological abnormalities in gills, muscle, and liver were observed on the 7th and 14th days of exposure. The WBC, RBC, HCT, Hb, and platelets count increased on the 14th day of exposure compared to the control and 7th day of exposure. The MCV, MCH, and MCHC levels decreased on the 7th day of exposure compared to the control and increased on the 14th day. Histopathological changes of MgO nanoparticles in gills, muscle, and liver highly damaged in the quantity of 3.6 mg/L compared to 12 mg/L on 7th and 14th days of exposure. This study finds the level of exposure in hematology and histopathological changes in tissues in relation to the exposure of MgO NPs.
Collapse
Affiliation(s)
- Shanmugam Sudhabose
- Department of Biology, The Gandhigram Rural Institute (Deemed to Be University), Dindigul District, Gandhigram, 624302, Tamil Nadu, India
| | - Balakrishnan Sooryakanth
- Department of Biology, The Gandhigram Rural Institute (Deemed to Be University), Dindigul District, Gandhigram, 624302, Tamil Nadu, India
| | - Muthuswami Ruby Rajan
- Department of Biology, The Gandhigram Rural Institute (Deemed to Be University), Dindigul District, Gandhigram, 624302, Tamil Nadu, India.
| |
Collapse
|
5
|
Mirrani HM, Noreen Z, Usman S, Shah AA, Mahmoud EA, Elansary HO, Aslam M, Waqas A, Javed T. Magnesium nanoparticles extirpate salt stress in carrots (Daucus carota L.) through metabolomics regulations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108383. [PMID: 38286092 DOI: 10.1016/j.plaphy.2024.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Underground vegetables are sensitive and vulnerable to salt stress. The vegetables are the main source of vitamins, nutrients and minerals in human diet. Also contain healthy carbohydrates, antioxidant and resistant starch which are beneficial for human health. Salinity influences water balance, morphological appearance and cellular interference of crop plants. It also caused disproportion of nutrients which usually affects the physiochemical processes in plant. Salt stress also affect biochemical attributes and hampers the growth of underground organs, due to which yield of crop decreased. The nanoparticles had been potentially used for better crop yield, in the recent. In our research study, we elaborate the positive response of magnesium oxide nanoparticles (MgO-NPs) on the morphological and biochemical parameters as well as anti-oxidant enzymes action on two accessions of carrot (Daucus carota L.) under salt stress of 40 mM and 80 mM. In a pilot experiment, various levels (0, 50, 100, 150, 200 and 250 mg/L) of MgO-NPs were tested through foliar application on carrot plants. Foliar application of MgO-NPs at concentration of 150 mg/L was most effective treatment and ameliorate the salt stress in both carrot accessions (DC-03 and DC-90). The MgO-NPs significantly enhanced the morphological and biochemical parameters. The yield was significantly increased with the exposure of MgO-NPs. Our results thus confirmed the potential of MgO-NPs to endorse the plant development and growth under salinity. However, further research study is needed to explore effectiveness of MgO-NPs in various other plants for the ameliorant of salinity.
Collapse
Affiliation(s)
- Hurmat Mehdi Mirrani
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Eman A Mahmoud
- Department of Food Science, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Abdul Waqas
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Talha Javed
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
6
|
Girma A, Abera B, Mekuye B, Mebratie G. Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review. IET Nanobiotechnol 2024; 2024:5417924. [PMID: 38863967 PMCID: PMC11095078 DOI: 10.1049/2024/5417924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 06/13/2024] Open
Abstract
Foodborne disease outbreaks due to bacterial pathogens and their toxins have become a serious concern for global public health and security. Finding novel antibacterial agents with unique mechanisms of action against the current spoilage and foodborne bacterial pathogens is a central strategy to overcome antibiotic resistance. This study examined the antibacterial activities and mechanisms of action of inorganic nanoparticles (NPs) against foodborne bacterial pathogens. The articles written in English were recovered from registers and databases (PubMed, ScienceDirect, Web of Science, Google Scholar, and Directory of Open Access Journals) and other sources (websites, organizations, and citation searching). "Nanoparticles," "Inorganic Nanoparticles," "Metal Nanoparticles," "Metal-Oxide Nanoparticles," "Antimicrobial Activity," "Antibacterial Activity," "Foodborne Bacterial Pathogens," "Mechanisms of Action," and "Foodborne Diseases" were the search terms used to retrieve the articles. The PRISMA-2020 checklist was applied for the article search strategy, article selection, data extraction, and result reporting for the review process. A total of 27 original research articles were included from a total of 3,575 articles obtained from the different search strategies. All studies demonstrated the antibacterial effectiveness of inorganic NPs and highlighted their different mechanisms of action against foodborne bacterial pathogens. In the present study, small-sized, spherical-shaped, engineered, capped, low-dissolution with water, high-concentration NPs, and in Gram-negative bacterial types had high antibacterial activity as compared to their counterparts. Cell wall interaction and membrane penetration, reactive oxygen species production, DNA damage, and protein synthesis inhibition were some of the generalized mechanisms recognized in the current study. Therefore, this study recommends the proper use of nontoxic inorganic nanoparticle products for food processing industries to ensure the quality and safety of food while minimizing antibiotic resistance among foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tuluawlia, Ethiopia
| |
Collapse
|
7
|
García-Sobrino R, Muñoz M, Rodríguez-Jara E, Rams J, Torres B, Cifuentes SC. Bioabsorbable Composites Based on Polymeric Matrix (PLA and PCL) Reinforced with Magnesium (Mg) for Use in Bone Regeneration Therapy: Physicochemical Properties and Biological Evaluation. Polymers (Basel) 2023; 15:4667. [PMID: 38139919 PMCID: PMC10747080 DOI: 10.3390/polym15244667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Improvements in Tissue Engineering and Regenerative Medicine (TERM)-type technologies have allowed the development of specific materials that, together with a better understanding of bone tissue structure, have provided new pathways to obtain biomaterials for bone tissue regeneration. In this manuscript, bioabsorbable materials are presented as emerging materials in tissue engineering therapies related to bone lesions because of their ability to degrade in physiological environments while the regeneration process is completed. This comprehensive review aims to explore the studies, published since its inception (2010s) to the present, on bioabsorbable composite materials based on PLA and PCL polymeric matrix reinforced with Mg, which is also bioabsorbable and has recognized osteoinductive capacity. The research collected in the literature reveals studies based on different manufacturing and dispersion processes of the reinforcement as well as the physicochemical analysis and corresponding biological evaluation to know the osteoinductive capacity of the proposed PLA/Mg and PCL/Mg composites. In short, this review shows the potential of these composite materials and serves as a guide for those interested in bioabsorbable materials applied in bone tissue engineering.
Collapse
Affiliation(s)
- Rubén García-Sobrino
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Marta Muñoz
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Elías Rodríguez-Jara
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, c/Kelsen 5, 28049 Madrid, Spain;
| | - Joaquín Rams
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Belén Torres
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| | - Sandra C. Cifuentes
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain; (M.M.); (J.R.); (B.T.)
| |
Collapse
|
8
|
Kurhade PI, Kodape SM, Das A, Bansod PG. Synergistic action of sumatriptan delivery and targeting magnesium deficiency using green, pH-responsive MgO nanoparticles synthesized from mahua flower extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30648-9. [PMID: 37936045 DOI: 10.1007/s11356-023-30648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Magnesium oxide (MgO) nanoparticles were green synthesized using mahua (Madhuca longifolia) flower extracts by solvent evaporation and characterized by UV-visible spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), and Energy dispersive X-ray analysis (EDX). The drug loading of sumatriptan succinate (SS), an anti-migraine drug, was optimized using MINITAB's response surface methodology (RSM) Box Behnken model (BBD) model. The investigation of drug adsorption and release kinetics was further conducted using the optimized set obtained through RSM. The optimized parameters consisted of 23.53 mg of nanoparticles, a loading time of 6 h, and a pH of 9, yielding the experimental drug loading efficiency ~47%. The primary objective of this study is to investigate the potential of utilizing these green synthesized MgO nanoparticles for a dual purpose. The primary objective of this study is to investigate the viability of utilizing MgO nanoparticles synthesized through green route for the delivery of an anti-migraine medication. Additionally, the study aims to examine the degradation of these nanoparticles at physiological pH levels, with the intention of potentially enhancing cellular absorption. The investigation involved the assessment of drug release kinetics using various mathematical models, with a focus on the release of SS from MgO nanoparticles. This evaluation was conducted at different pH levels, specifically pH 5, 7, and 9. It has been found that the SS release increases as pH decreases, which is attributed to the dissolution of MgO nanoparticles, which therefore exhibits varied behavior at different pHs. The confirmation of the degradation of the green synthesized MgO nanoparticles was achieved through the execution of a degradation study, followed by the analysis of the obtained samples using FESEM and EDS. At neutral, the release data obtained adhered to the Higuchi model, which suggests that the release of the drug is based on diffusion. This finding is particularly advantageous for the controlled release of an anti-migraine drug. The results obtained from the study indicate that MgO nanoparticles have the potential to serve as a significant component in drug delivery systems, specifically as drug carriers. Attachment of SS over MgO nanoparticles to form SS loaded MgO nanoparticles and its possible working mechanism.
Collapse
Affiliation(s)
- Pranali I Kurhade
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Shyam M Kodape
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India.
| | - Arijit Das
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | | |
Collapse
|
9
|
Rabea A, Naeem E, Balabel NM, Daigham GE. Management of potato brown rot disease using chemically synthesized CuO-NPs and MgO-NPs. BOTANICAL STUDIES 2023; 64:20. [PMID: 37458850 DOI: 10.1186/s40529-023-00393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Potatoes are a crucial vegetable crop in Egypt in terms of production and consumption. However, the potato industry suffers significant annual losses due to brown rot disease. This study aimed to suppress Ralstonia solanacearum (R. solanacearum), the causative agent of brown rot disease in potatoes, using efficient and economical medications such as CuO and MgO metal oxide nanoparticles, both in vitro and in vivo, to reduce the risk of pesticide residues. RESULTS CuO and MgO metal oxide nanoparticles were synthesized via a simple chemical process. The average particle size, morphology, and structure of the nanoparticles were characterized using UV-visible spectroscopy, transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The growth of R. solanacearum was strongly inhibited by CuO and MgO NPs at a concentration of 3 mg/mL, resulting in zones of inhibition (ZOI) of 19.3 mm and 17 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CuO-NPs and MgO-NPs were 0.5, 0.6, and 0.6, 0.75 mg/mL, respectively. When applied in vivo through seed dressing and tuber soaking at their respective MIC concentrations, CuO-NPs and MgO-NPs significantly reduced the incidence of brown rot disease to 71.2% and 69.4%, respectively, compared to 43.0% and 39.5% in bulk CuSO4 and bulk MgSO4 treatments, respectively. Furthermore, CuO-NPs and MgO-NPs significantly increased the yield, total chlorophyll content, and enzyme efficiency of potato plants compared with the infected control plants. TEM revealed that the bacterial cytomembrane was severely damaged by nanomechanical forces after interaction with CuO-NPs and MgO-NPs, as evidenced by lipid peroxidation and ultrastructural investigations. CONCLUSION The results of this study suggest that CuO-NPs and MgO-NPs can be used as intelligent agents to manage plant pathogens in agriculture. The use of metal oxide nanoparticles could provide a risk-free alternative for treating plant diseases, which are currently one of the biggest challenges faced by the potato industry in Egypt. The significant increase in yield, photosynthetic pigments, enzymatic activity, and total phenol-promoted resistance to R. solanacearum in potato plants treated with CuO-NPs and MgO-NPs compared to infected control plants highlights the potential benefits for the potato industry in Egypt. Further investigations are needed to explore using metal oxide nanoparticles for treating other plant diseases.
Collapse
Affiliation(s)
- Amira Rabea
- Bacterial Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - E Naeem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Naglaa M Balabel
- Bacterial Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
- Potato Brown Rot Project, Ministry of Agriculture, Dokki, Giza, Egypt
| | - Ghadir E Daigham
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| |
Collapse
|
10
|
Vijayakumar S, Chen J, González Sánchez ZI, Tungare K, Bhori M, Durán-Lara EF, Anbu P. Moringa oleifera gum capped MgO nanoparticles: Synthesis, characterization, cyto- and ecotoxicity assessment. Int J Biol Macromol 2023; 233:123514. [PMID: 36739049 DOI: 10.1016/j.ijbiomac.2023.123514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Nano-based drug delivery research is increasing due to the therapeutic applications for human health care. However, traditional chemical capping-based synthesis methods lead to unwanted toxicity effects. Hence, there is an urgent need for green synthesis-based and biocompatible synthesis methods. The current work describes for the first time the green synthesis of Moringa gum-capped MgO nanoparticles (Mgm-MgO NPs). Their antioxidant activity, hemolysis potential, cytotoxicity, phytotoxicity, toxicity by chorioallantoic membrane (CAM) chick embryo assay and in vivo toxicity in zebrafish embryos were described. The Mgm-MgO NPs exhibited significant antioxidant activity. The Mgm-MgO NPs at 500 μg/ml produced significant hemolysis (72.54 %), while lower concentrations did not. Besides, the cytotoxicity assessment of the Mgm-MgO NPs was conducted in PA-1 cells from human ovarian teratocarcinoma by MTT assay. The Mgm-MgO NPs (0.1-500 μg/ml) considerably reduced the viability of PA-1 cells. Furthermore, Mgm-MgO NPs had no significant effect on seed germination but had a significant effect on root and shoot length of mungbean (Vigna radiata). Additionally, the CAM assay was used to analyze the antiangiogenic potential of Mgm-MgO NPs, exhibiting no significant alterations after 72 h. Finally, the zebrafish embryotoxicity assay revealed that the Mgm-MgO NPs (0.1-500 μg/ml) did not affect morphology, mortality or survival rate.
Collapse
Affiliation(s)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, PR China.
| | - Zaira I González Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, Plot No-50, Sector-15, CBD Belapur, 400614, Maharashtra, India.
| | - Mustansir Bhori
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Navi Mumbai, Plot No-50, Sector-15, CBD Belapur, 400614, Maharashtra, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab
- Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Periasamy Anbu
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
11
|
Liu J, Xiao Y, Wang Y, Qin X, Tan S, Wang W, Lou L, Wu Z, Aihaiti A, Ma C, Liu YG. The Inhibition Effect and Mechanism of Nano Magnesium Peroxide Against Spoilage Fungi Emerging in Hami Melon. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
S A, Kavitha HP. Magnesium Oxide Nanoparticles: Effective Antilarvicidal and Antibacterial Agents. ACS OMEGA 2023; 8:5225-5233. [PMID: 36816696 PMCID: PMC9933234 DOI: 10.1021/acsomega.2c01450] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/14/2022] [Indexed: 05/27/2023]
Abstract
People are vulnerable to mosquito-borne infections in tropical and subtropical climate countries. Due to resistive issues, vector control is an immediate concern in today's environment. The current study describes the synthesis of magnesium oxide by four different approaches including green, microwave, sol-gel, and hydrothermal methods. The synthesized magnesium oxide (MgO) nanoparticles were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), and energy-dispersive X-ray analysis (EDAX) techniques. The FT-IR studies reveal the presence of functional groups in the synthesized nanoparticles. The structural and morphological studies were investigated using XRD and HRSEM. EDAX reveals the presence of Mg and O in the prepared samples. The synthesized MgO NPs were screened for antibacterial studies against Gram-positive strains, Enterococcus faecalis and Staphylococcus aureus, two Gram-negative cultures, Escherichia coli and Klebsiella pneumoniae, using different concentrations. The results indicated excellent antibacterial activity against both Gram-positive and Gram-negative bacteria at 50 mg/mL hydrothermally produced MgO nanoparticles, with a maximal zone of inhibition (ZOI) of 5 mm for S. aureus, 7 mm for E. faecalis, and 6 mm for K. pneumoniae. The ZOI of E. coli was found to be the greatest at 9 mm when 50 mg/mL sol-gel-produced MgO nanoparticles were used. The synthesized MgO nanostructures were tested against fourth-instar larvae of Aedes aegypti and Aedes albopictus, and the hydrothermally synthesized MgO nanostructures exhibited better results when compared with other methods of synthesis. The reports show that A. aegypti and A. albopictus mortality rates were reported to be the lowest with green-manufactured MgO nanoparticles (7.5 g mL-1) and the highest with hydrothermally synthesized MgO nanoparticles (120 g mL-1). The research indicates that MgO nanostructures are promising drugs for antibacterial and mosquitocidal larvae control properties.
Collapse
Affiliation(s)
- Abinaya S
- SRM Institute of Science and Technology, Ramapuram, Chennai 600089, India, https://renuwit.org/contact/
| | - Helen P. Kavitha
- SRM Institute of Science and Technology, Ramapuram, Chennai 600089, India, https://renuwit.org/contact/
| |
Collapse
|
13
|
Khine EE, Kaptay G. Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air-A Thermodynamic Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:776. [PMID: 36676513 PMCID: PMC9861040 DOI: 10.3390/ma16020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash-dry-calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well. Our methodology was chemical thermodynamics, analyzing solubilities of metal chlorides, metal oxides and metal hydroxides in water and also standard molar Gibbs energy changes accompanying the following: (i) the reaction between metal chlorides and NaOH; (ii) the dissociation reaction of metal hydroxides into metal oxide and water vapor and (iii) the reaction between metal oxides and gaseous carbon dioxide to form metal carbonates. The major result of this paper is that the following metal-oxide NPs can be produced by the above technology from the corresponding metal chlorides: Al2O3, BeO, CaO, CdO, CoO, CuO, FeO, Fe2O3, In2O3, La2O3, MgO, MnO, Nd2O3, NiO, Pr2O3, Sb2O3, Sm2O3, SnO, Y2O3 and ZnO. From the analysis of the literature, the following nine nano-oxides have been already obtained experimentally with this technology: CaO, CdO, Co3O4, CuO, Fe2O3, NiO, MgO, SnO2 and ZnO (note: Co3O4 and SnO2 were obtained under oxidizing conditions during calcination in air). Thus, it is predicted here that the following nano-oxides can be potentially synthesized with this technology in the future: Al2O3, BeO, In2O3, La2O3, MnO, Nd2O3, Pr2O3, Sb2O3, Sm2O3 and Y2O3. The secondary result is that among the above 20 nano-oxides, the following five nano-oxides are able to capture carbon dioxide from air at least down to 42 ppm residual CO2-content, i.e., decreasing the current level of 420 ppm of CO2 in the Earth's atmosphere at least tenfold: CaO, MnO, MgO, CdO, CoO. The tertiary result is that by mixing the AuCl3 solution with NaOH solution, Au nano-particles will precipitate without forming Au-oxide NPs. The results are significant for the synthesis of metal nano-oxide particles and for capturing carbon dioxide from air.
Collapse
Affiliation(s)
- Ei Ei Khine
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary
| | - George Kaptay
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, 3515 Miskolc, Hungary
- ELKH-ME Materials Science Research Group, University of Miskolc, 3515 Miskolc, Hungary
| |
Collapse
|
14
|
AbuMousa RA, Khezami L, Ismail M, Ben Aissa MA, Modwi A, Bououdina M. Efficient Mesoporous MgO/g-C 3N 4 for Heavy Metal Uptake: Modeling Process and Adsorption Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3945. [PMID: 36432231 PMCID: PMC9693060 DOI: 10.3390/nano12223945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Removing toxic metal ions arising from contaminated wastewaters caused by industrial effluents with a cost-effective method tackles a serious concern worldwide. The adsorption process onto metal oxide and carbon-based materials offers one of the most efficient technologies adopted for metal ion removal. In this study, mesoporous MgO/g-C3N4 sorbent is fabricated by ultrasonication method for the uptake Pb (II) and Cd (II) heavy metal ions from an aqueous solution. The optimum conditions for maximum uptake: initial concentration of metal ions 250 mg g-1, pH = 5 and pH = 3 for Pb++ and Cd++, and a 60 mg dose of adsorbent. In less than 50 min, the equilibrium is reached with a good adsorption capacity of 114 and 90 mg g-1 corresponding to Pb++ and Cd++, respectively. Moreover, the adsorption isotherm models fit well with the Langmuir isotherm, while the kinetics model fitting study manifest a perfect fit with the pseudo-second order. The as fabricated mesoporous MgO/g-C3N4 sorbent exhibit excellent Pb++ and Cd++ ions uptake and can be utilized as a potential adsorbent in wastewater purification.
Collapse
Affiliation(s)
- Rasha A. AbuMousa
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Lotfi Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Mukhtar Ismail
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
15
|
Wang Z, Zhao P, Li X, Sun Q, She D. Magnesium chloride-modified potassium humate-based carbon material for efficient removal of phosphate from water. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Ahmadi H, Ghamsarizade R, Haddadi-Asl V, Eivaz Mohammadloo H, Ramezanzadeh B. Designing a novel bio-compatible hydroxyapatite (HA)/hydroxyquinoline (8-HQ)-inbuilt polyvinylalcohol (PVA) composite coatings on Mg AZ31 implants via electrospinning and immersion protocols: smart anti-corrosion and anti-bacterial properties reinforcements. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Das S, Vishakha K, Banerjee S, Nag D, Ganguli A. Tetracycline-loaded magnesium oxide nanoparticles with a potential bactericidal action against multidrug-resistant bacteria: In vitro and in vivo evidence. Colloids Surf B Biointerfaces 2022; 217:112688. [PMID: 35841801 DOI: 10.1016/j.colsurfb.2022.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Worldwide, the emergence of diarrhoea-causing multi-drug resistant (MDR) bacteria has become a crucial problem in everyday life. Tetracycline (TC) is a bacteriostatic agent that has a wide spectrum of antibacterial activity. One potential strategy to enhance the penetration and antibacterial activity of antibiotics is the use of nanotechnology. In this context, this study dealt with the synthesis of TC loading in biocompatible magnesium oxide nanoparticles (MgONPs), its characterization, and the potency of killing against diarrhoea-causing MDR bacteria E. coli and S. flexneri. TC loaded- MgONPs (MgONPs-TC) were characterized by DLS, SEM-EDS, UV-vis spectroscopy, and FTIR techniques with adequate physical properties. Antibacterial and antibiofilm studies indicate that this nanoparticle successfully eradicated both planktonic and sessile forms of those bacteria. It also significantly reduced the production of bacterial EPS, different levels of antioxidant enzymes, and induced reactive oxygen species (ROS) in the bacterial cell as a mode of antibacterial action. In particular, MgONPs-TC were efficient in reducing the colonization of MDR E. coli and S. flexneri in the C. elegans model. Therefore, all these data suggest that MgONPs-TC are a highly promising approach to combating diseases associated with diarrhoea-causing MDR bacteria in the medical field with limited health care budgets.
Collapse
Affiliation(s)
- Shatabdi Das
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Debasish Nag
- Department of Biotechnology, University of Calcutta, West Bengal, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India.
| |
Collapse
|
18
|
Maslennikova TP, Kotova ME, Lomakin MS, Ugolkov VL. Role of Mixing Reagent Solutions in the Formation of Morphological Features of Nanocrystalline Particles of Magnesium Hydroxide and Oxide. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Nizami MZI, Campéon BDL, Satoh A, Nishina Y. Graphene oxide-based multi-component antimicrobial hydrogels. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammed Zahedul Islam Nizami
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Akira Satoh
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Jamila GS, Sajjad S, Leghari SAK, Mehboob M, Flox C. Enhanced electron transport by Fe2O3 on NCQDs–MgO nanostructure for solar photocatalysis and electrocatalytic water splitting. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02424-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
MgO Catalysts for FAME Synthesis Prepared Using PEG Surfactant during Precipitation and Calcination. Catalysts 2022. [DOI: 10.3390/catal12020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To develop a method for the preparation of MgO nanoparticles, precatalyst synthesis from magnesium nitrate with ammonia and calcination was performed in presence of PEG in air. Without PEG, the catalysts are inactive. The conversion to hydroxide was performed using a PEG/MgO molar ratio of 1, but, before the calcination, excess of PEG was either saved (PEG1) or increased to 2, 3, or 4 (PEG 2–4). Catalysts were calcined at 400–660 °C and characterized using XRD, N2 adsorption-desorption, TGA, FTIR, and SEM. The FAME yield in the reactions with methanol depend on the PEG ratio used and the calcination temperature. The optimal calcination temperature and highest FAME yield in the 6 h reactions for catalysts PEG1, PEG2, PEG3 and PEG4 were 400 °C, 74%; 500 °C, 80%; 500 °C, 51% and 550 °C, 31%, respectively. The yield dependence on calcination temperature for catalysts with a constant PEG ratio is similar to that of a bell curve, which becomes wider and flatters with an increase in PEG ratio. For most catalysts, the FAME yield increases as the size of the crystallites decreases. The dependence of FAME and the intermediate yield on oil conversion confirms that all catalysts have strong base sites.
Collapse
|
22
|
S.S. P, Rudayni HA, Bepari A, Niazi SK, Nayaka S. Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci 2022; 29:228-238. [PMID: 35002413 PMCID: PMC8716891 DOI: 10.1016/j.sjbs.2021.08.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
The current study described the systematic and detailed extracellular synthesis method of silver nanoparticles (AgNPs) using Streptomyces hirsutus strain SNPGA-8 by green synthesis method. The AgNPs were subjected for characterizations using UV-Vis, FTIR, TGA, TEM, EDX, XRD, and zeta-potential analyses. The antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Candida albicans, Alternaria alternata, Candida glabrata and Fusarium oxysporum was determined by the agar well diffusion technique. The cytotoxicity of AgNPs against human lung cancer (A549) was studied by MTT and ROS assays and capping of proteins of AgNPs from SDS-PAGE. In the UV-Vis., absorption peak was found at 418 nm, FTIR analysis revealed the infrared bands of specific functional groups from 3273 cm-1 to 428 cm-1; TEM data confirmed the spherical shape, smallest size of particle as 18.99 nm, while EDX analysis confirmed the elemental composition of AgNPs with 22.24% Ag. The XRD pattern confirmed the nature of AgNPs as crystalline, and zeta potential peak was found at -24.6 mV indicating the higher stability. The AgNPs exhibited increased antimicrobial activity with increase in dosage volume and considerable MIC and MBC values against microbial pathogens. In the MTT cytotoxicity assay, the IC50 value of 31.41 μg/mL is obtained against A549 cell line, suggesting the potential of AgNPs to inhibit the tumour cells; and ROS assay displayed increased ROS production with increase in treatment time. Based on the results, it is evident that Streptomyces hirsutus strain SNPGA-8 AgNPs are potentially promising to be applied for biomedical uses.
Collapse
Affiliation(s)
- Pallavi S.S.
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Hassan Ahmed Rudayni
- Biology Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Asmatanzeem Bepari
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | - Sreenivasa Nayaka
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
23
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
24
|
Moghadam A, Salmani Mobarakeh M, Safaei M, Kariminia S. Synthesis and characterization of novel bio-nanocomposite of polyvinyl alcohol-Arabic gum-magnesium oxide via direct blending method. Carbohydr Polym 2021; 260:117802. [PMID: 33712150 DOI: 10.1016/j.carbpol.2021.117802] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Due to the significance growth in application of polymer-based nanocomposites, different methods of synthesis and different reinforces have been studied in recent years for specific purposes. In this study, using the direct blending process, polyvinyl alcohol-arabic gum-magnesium oxide nanocomposites were synthesized. These synthesized nanocomposites were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray energy diffraction (EDS) spectroscopy, X-ray surface elemental mapping (X-Ray Map), transmission electron microscopy (TEM), ultraviolet -visible (UV-vis) spectrophotometry and thermal gravimetery analysis (TGA). The results revealed that size distributions of magnesium oxide nanoparticles and synthesized nanocomposites were between 25-40 nm and 20-90 nm, respectively. Elemental map results show the magnesium oxide nanoparticles were well distributed on polymer matrix walls.
Collapse
Affiliation(s)
- Ayoub Moghadam
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran.
| | | | - Mohsen Safaei
- Advanced Dental Sciences Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
25
|
Hong X, Yang Y, Li X, Abitonze M, Diko CS, Zhao J, Ma Q, Liu W, Zhu Y. Enhanced anti- Escherichia coli properties of Fe-doping in MgO nanoparticles. RSC Adv 2021; 11:2892-2897. [PMID: 35424259 PMCID: PMC8694020 DOI: 10.1039/d0ra09590g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hetero-elements doping is an effective way to modify the composition and nanostructure of metal oxides. These modifications could lead to changes in physical and chemical properties correspondingly. In this study, Fe-doped MgO nanoparticles (NPs) were synthesized by simple calcination method in air. The antibacterial activity of MgO NPs against Escherichia coli (E. coli, ATCC 25922) was significantly improved as shown by the bactericidal efficacy test results. According to X-ray diffraction (XRD) results, Fe was successfully doped into MgO lattice and mainly adopted interstitial doping. The Fe-doping led to increased oxygen vacancies and OA content (from 13.5% to 41.3%) on MgO surface, which may have facilitated the reactive oxygen species (ROS) generation and bacteria death. The wrinkled and sunken E. coli surface after contact with Fe-doped MgO NPs also confirmed the existence of adsorption damage mechanism. Thus, the antibacterial activity enhancement against E. coli was originated from the synergistic effect of increased ROS concentration and the interaction with Fe-doped MgO NPs.
Collapse
Affiliation(s)
- Xiaoyu Hong
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Yan Yang
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Xiaoyi Li
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Maurice Abitonze
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Catherine Sekyerebea Diko
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Jiao Zhao
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Qiao Ma
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Weifeng Liu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| | - Yimin Zhu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University Dalian 116026 China
| |
Collapse
|
26
|
Tharani K, Jegatha Christy A, Sagadevan S, Nehru L. Fabrication of Magnesium oxide nanoparticles using combustion method for a biological and environmental cause. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Bhattacharya P, Dey A, Neogi S. An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J Mater Chem B 2021; 9:5329-5339. [PMID: 34143165 DOI: 10.1039/d1tb00875g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact mechanism behind the antibacterial efficacy of nanoparticles has remained unexplored to date. This study aims to shed light the mechanism adopted using magnesium oxide nanoparticles prepared in ethyl alcohol against gram-negative and gram-positive bacterial cells, and the generation of reactive oxygen species (ROS) is proposed to be the dominant mechanism. This paradigm is supported by the quantification of the hydroxyl radical and superoxide anions produced in the nanoparticle treated and untreated bacterial solutions, and by the reduction of the antibacterial efficiency after the addition of a radical scavenger. The production of free Mg2+ ions from the nanoparticle is supposed to be the causative agent behind this uncontrolled ROS generation, resulting in excessive oxidative stress, which the antioxidants of the bacterial cells are unable to nullify, leading to cell damage. The amount of proteins, carbohydrates and lipids leaked due to the distortion of the cellular membrane is also quantified, and it is observed that their leakage trend varies on the structure of the bacterial cell. FESEM images taken at certain time intervals show the gradual internalization of the nanoparticles, and increasing rupture of bacterial cell membranes, leading to cell necrosis.
Collapse
Affiliation(s)
| | - Aishee Dey
- Indian Institute of Technology Kharagpur, 721302, India.
| | - Sudarsan Neogi
- Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
28
|
Mathew AA, Panonnummal R. 'Magnesium'-the master cation-as a drug-possibilities and evidences. Biometals 2021; 34:955-986. [PMID: 34213669 PMCID: PMC8249833 DOI: 10.1007/s10534-021-00328-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg2+) is the 2nd most abundant intracellular cation, which participates in various enzymatic reactions; there by regulating vital biological functions. Magnesium (Mg2+) can regulate several cations, including sodium, potassium, and calcium; it consequently maintains physiological functions like impulse conduction, blood pressure, heart rhythm, and muscle contraction. But, it doesn't get much attention in account with its functions, making it a "Forgotten cation". Like other cations, maintenance of the normal physiological level of Mg2+ is important. Its deficiency is associated with various diseases, which point out to the importance of Mg2+ as a drug. The roles of Mg2+ such as natural calcium antagonist, glutamate NMDA receptor blocker, vasodilator, antioxidant and anti-inflammatory agent are responsible for its therapeutic benefits. Various salts of Mg2+ are currently in clinical use, but their application is limited. This review collates all the possible mechanisms behind the behavior of magnesium as a drug at different disease conditions with clinical shreds of evidence.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India.
| |
Collapse
|
29
|
Thamilvanan D, Jeevanandam J, Hii YS, Chan YS. Sol‐gel coupled ultrasound synthesis of photo‐activated magnesium oxide nanoparticles: Optimization and antibacterial studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Jaison Jeevanandam
- Department of Chemical Engineering Curtin University Malaysia Miri Malaysia
| | - Yiik S. Hii
- Department of Chemical Engineering Curtin University Malaysia Miri Malaysia
| | - Yen S. Chan
- Department of Chemical Engineering Curtin University Malaysia Miri Malaysia
| |
Collapse
|
30
|
Antifungal Efficacy of Chitosan-Stabilized Biogenic Silver Nanoparticles against Pathogenic Candida spp. Isolated from Human. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00781-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Dakroury G, Abo-Zahra S, Hassan H. Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Verma SK, Nisha K, Panda PK, Patel P, Kumari P, Mallick MA, Sarkar B, Das B. Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136521. [PMID: 31951838 DOI: 10.1016/j.scitotenv.2020.136521] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Increasing demand for magnesium oxide (MgO) nanoparticles (NP) due to their extensive use in different physical and biological applications has raised concern on their biocompatibility and toxicity to human health and ecological safety. This has instigated quest for detailed information on their toxicity mechanism, along with ecofriendly synthesis as a potential solution. This study explores the toxicity of MgO NP at the molecular level using embryonic zebrafish (Danio rerio) and depicts the green synthesis of MgO (G-MgO) NP using the extract from a medicinal plant Calotropis gigantea. Synthesized G-MgO NP were characterized using microscopy, spectroscopy, and dynamic light scattering. Stable 55 ± 10 nm sized MgO NP were generated with a zeta potential of 45 ± 15 mV and hydrodynamic size 110 ± 20 nm. UV-Vis spectrum showed a standard peak at 357 nm. Comparative cellular toxicity analysis showed higher biocompatibility of G-MgO NP compared to MgO NP with reference to the morphological changes, notochord development, and heartbeat rate in embryonic zebrafish LC50 of G-MgO NP was 520 μg/mL compared to 410 μg/mL of MgO NP. Molecular toxicity investigation revealed that the toxic effects of MgO NP was mainly due to the influential dysregulation in oxidative stress leading to apoptosis because of the accumulation and internalization of nanoparticles and their interaction with cellular proteins like Sod1 and p53, thereby affecting structural integrity and functionality. The study delineated the nanotoxicity of MgO NP and suggests the adoption and use of new green methodology for future production.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India.
| | - Kumari Nisha
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, India
| | - Pritam Kumar Panda
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Puja Kumari
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India
| | - M A Mallick
- Advance Science and Technology Research Centre, Vinoba Bhave University, Hazaribagh 825301, India; University Department of Biotechnology, Vinoba Bhave University, Hazaribagh 825301, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology (IIAB), IINRG Campus, Namkum, Ranchi, Jharkhand 834010, India
| | - Biswadeep Das
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
33
|
Safaei M, Taran M, Jamshidy L, Imani MM, Mozaffari HR, Sharifi R, Golshah A, Moradpoor H. Optimum synthesis of polyhydroxybutyrate-Co 3O 4 bionanocomposite with the highest antibacterial activity against multidrug resistant bacteria. Int J Biol Macromol 2020; 158:477-485. [PMID: 32278598 DOI: 10.1016/j.ijbiomac.2020.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 11/29/2022]
Abstract
Increased multidrug resistant (MDR) bacteria are considered one of the most challenging problems of the present century. The present study aimed to identify the optimum conditions for synthesis of Polyhydroxybutyrate-Co3O4 bionanocomposite with the highest antibacterial activity via in situ synthesis. Nine experiments with different amounts of polyhydroxybutyrate (PHB) biopolymer and Co3O4 nanoparticles and different stirring times were designed using Taguchi method. The antibacterial activity of synthesized nanocomposites against Staphylococcus aureus and Escherichia coli was evaluated using colony forming units (CFU) and disc diffusion methods. The characterizations of products were studied by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The synthesized bionanocomposites completely prevented the growth of bacteria under the conditions of experiments 5 (Co3O4 4 mg/ml, PHB 1 mg/ml and stirring time: 90 min) and 9 (Co3O4 8 mg/ml, PHB 2 mg/ml and stirring time: 60 min). The results showed that nanocomposite formation improved structural properties, thermal stability and antibacterial activity. PHB-Co3O4 bionanocomposite can be used in various fields of pharmacy, medicine and dentistry due to its desirable antibacterial properties.
Collapse
Affiliation(s)
- Mohsen Safaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mojtaba Taran
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ladan Jamshidy
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamid Reza Mozaffari
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Dhar Y, Han Y. Current developments in biofilm treatments: Wound and implant infections. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Sharmila G, Muthukumaran C, Sangeetha E, Saraswathi H, Soundarya S, Kumar NM. Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100380] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|