1
|
Akyol O, Yang CY, Woodside DG, Chiang HH, Chen CH, Gotto AM. Comparative Analysis of Atherogenic Lipoproteins L5 and Lp(a) in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 26:317-329. [PMID: 38753254 PMCID: PMC11192678 DOI: 10.1007/s11883-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA
| | - Chao-Yuh Yang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| | - Darren G Woodside
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Huan-Hsing Chiang
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA
| | - Chu-Huang Chen
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA.
| | | |
Collapse
|
2
|
Raftopulos NL, Washaya TC, Niederprüm A, Egert A, Hakeem-Sanni MF, Varney B, Aishah A, Georgieva ML, Olsson E, Dos Santos DZ, Nassar ZD, Cochran BJ, Nagarajan SR, Kakani MS, Hastings JF, Croucher DR, Rye KA, Butler LM, Grewal T, Hoy AJ. Prostate cancer cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Cancer Metab 2022; 10:1. [PMID: 35033184 PMCID: PMC8760736 DOI: 10.1186/s40170-021-00278-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters. As cholesterol is a key substrate for de novo steroidogenesis in prostate cells, this study hypothesized that castrate-resistant/advanced prostate cancer cell growth is influenced by the availability of extracellular, low-density lipoprotein (LDL)-derived, cholesterol, which is coupled to intracellular cholesteryl ester homeostasis. METHODS C4-2B and PC3 prostate cancer cells were cultured in media supplemented with fetal calf serum (FCS), charcoal-stripped FCS (CS-FCS), lipoprotein-deficient FCS (LPDS), or charcoal-stripped LPDS (CS-LPDS) and analyzed by a variety of biochemical techniques. Cell viability and proliferation were measured by MTT assay and Incucyte, respectively. RESULTS Reducing lipoprotein availability led to a reduction in cholesteryl ester levels and cell growth in C4-2B and PC3 cells, with concomitant reductions in PI3K/mTOR and p38MAPK signaling. This reduced growth in LPDS-containing media was fully recovered by supplementation of exogenous low-density lipoprotein (LDL), but LDL only partially rescued growth of cells cultured with CS-LPDS. This growth pattern was not associated with changes in androgen receptor signaling but rather increased p38MAPK and MEK1/ERK/MSK1 activation. The ability of LDL supplementation to rescue cell growth required cholesterol esterification as well as cholesteryl ester hydrolysis activity. Further, growth of cells cultured in low androgen levels (CS-FCS) was suppressed when cholesteryl ester hydrolysis was inhibited. CONCLUSIONS Overall, these studies demonstrate that androgen-independent prostate cancer cell growth can be influenced by extracellular lipid levels and LDL-cholesterol availability and that uptake of extracellular cholesterol, through endocytosis of LDL-derived cholesterol and subsequent delivery and storage in the lipid droplet as cholesteryl esters, is required to support prostate cancer cell growth. This provides new insights into the relationship between extracellular cholesterol, intracellular cholesterol metabolism, and prostate cancer cell growth and the potential mechanisms linking hypercholesterolemia and more aggressive prostate cancer.
Collapse
Affiliation(s)
- Nikki L Raftopulos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tinashe C Washaya
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andreas Niederprüm
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Ruprecht Karl University of Heidelberg, Baden-Wuerttemberg, Heidelberg, Germany
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bianca Varney
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Atqiya Aishah
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariya L Georgieva
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellinor Olsson
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Diandra Z Dos Santos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Meghna S Kakani
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Lands B. Lipid nutrition: "In silico" studies and undeveloped experiments. Prog Lipid Res 2021; 85:101142. [PMID: 34818526 DOI: 10.1016/j.plipres.2021.101142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
This review examines lipids and lipid-binding sites on proteins in relation to cardiovascular disease. Lipid nutrition involves food energy from ingested fatty acids plus fatty acids formed from excess ingested carbohydrate and protein. Non-esterified fatty acids (NEFA) and lipoproteins have many detailed attributes not evident in their names. Recognizing attributes of lipid-protein interactions decreases unexpected outcomes. Details of double bond position and configuration interacting with protein binding sites have unexpected consequences in acyltransferase and cell replication events. Highly unsaturated fatty acids (HUFA) have n-3 and n-6 motifs with documented differences in intensity of destabilizing positive feedback loops amplifying pathophysiology. However, actions of NEFA have been neglected relative to cholesterol, which is co-produced from excess food. Native low-density lipoproteins (LDL) bind to a high-affinity cell surface receptor which poorly recognizes biologically modified LDLs. NEFA increase negative charge of LDL and decrease its processing by "normal" receptors while increasing processing by "scavenger" receptors. A positive feedback loop in the recruitment of monocytes and macrophages amplifies chronic inflammatory pathophysiology. Computer tools combine multiple components in lipid nutrition and predict balance of energy and n-3:n-6 HUFA. The tools help design and execute precise clinical nutrition monitoring that either supports or disproves expectations.
Collapse
Affiliation(s)
- Bill Lands
- Fellow ASN, AAAS, SFRBM, ISSFAL, College Park, MD, USA.
| |
Collapse
|
4
|
Chang PY, Chang SF, Chang TY, Su HM, Lu SC. Synergistic effects of electronegative-LDL- and palmitic-acid-triggered IL-1β production in macrophages via LOX-1- and voltage-gated-potassium-channel-dependent pathways. J Nutr Biochem 2021; 97:108767. [PMID: 34052311 DOI: 10.1016/j.jnutbio.2021.108767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Electronegative LDL (LDL(-)) and free fatty acids (FFAs) are circulating risk factors for cardiovascular diseases (CVDs) and have been associated with inflammation. Interleukin-1 beta (IL-1β) represents a key cytokine in the development of CVD; however, the initial trigger of IL-1β in CVD remains to be explored. In this study, we investigated the combined effects of LDL(-) from the plasma of ST-segment elevation myocardial infarction (STEMI) patients or diet-induced hypercholesterolemic rabbits and bovine serum albumin bound palmitic acid (PA-BSA) on IL-1β production in macrophages. Macrophages derived from THP-1 cells or human peripheral blood mononuclear cells were independently treated with LDL(-), PA-BSA or cotreated with LDL(-) and PA-BSA. The results showed that nLDL and/or PA-BSA had no effect on IL-1β, and LDL(-) slightly increased IL-1β; however, cotreatment with LDL(-) and PA-BSA resulted in abundant secretion of IL-1β in macrophages. Rabbit LDL(-) induced the elevation of cellular pro-IL-1β and p-Iκ-Bα, but PA-BSA had no effect on pro-IL-1β or p-Iκ-Bα. In potassium-free buffer, LDL(-)-induced IL-1β reached a level similar to that induced by cotreatment with LDL(-) and PA-BSA. Moreover, LDL(-) and PA-BSA-induced IL-1β was inhibited in lectin-type oxidized LDL receptor-1 (LOX-1) knockdown cells and by blockers of voltage-gated potassium (Kv) channels. LDL(-) from diet-induced hypercholesterolemic rabbit had a similar effect as STEMI LDL(-) on IL-1β in macrophages. These results show that PA-BSA cooperates with LDL(-) to trigger IL-1β production in macrophages via a mechanism involving the LOX-1 and Kv channel pathways, which may play crucial roles in the regulation of inflammation in CVD.
Collapse
Affiliation(s)
- Po-Yuan Chang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Min Su
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
6
|
Wang JG, Jian WJ, Li Y, Zhang J. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci 2021; 37:572-582. [PMID: 33728753 DOI: 10.1002/kjm2.12371] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/16/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Nobiletin is a polymethoxylated flavone present in citrus fruits, which has been reported to have inhibitory effects on tumorigenesis of cancers. However, the biological function of nobiletin in breast cancer (BC) is largely unknown. To investigate the effect of nobiletin on growth of BC cells, the cell viability of BC was measured by MTT assay. In addition, gene and protein expressions were detected by qRT-PCR and western blot, respectively. The apoptosis and pyroptosis of BC cells were tested by flow cytometry. Finally, the correlation between miR-200b and JAZF1 was detected by dual luciferase report. The data indicated that nobiletin inhibited the proliferation of BC cells in a dose-dependent manner. Moreover, miR-200b mimics-induced pyroptosis of BC cells was further increased by nobiletin. Meanwhile, JAZF1 was found to be the target of miR-200b. Moreover, nobiletin induced apoptosis and pyroptosis of BC cells via miR-200b/JAZF1/NF-κB axis. In conclusion, nobiletin inhibited the tumorigenesis of BC via regulation of miR-200b/JAZF1 axis. Thus, nobiletin might serve as a new agent for the treatment of BC.
Collapse
Affiliation(s)
- Ji-Guo Wang
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Wen-Jing Jian
- Department of Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Yang Li
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jing Zhang
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
7
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
8
|
Liu H, Xu S, Li G, Lou D, Fu X, Lu Q, Hao L, Zhang J, Mei J, Sui Z, Lou Y. Sarpogrelate and rosuvastatin synergistically ameliorate aortic damage induced by hyperlipidemia in apolipoprotein E-deficient mice. Exp Ther Med 2020; 20:170. [PMID: 33093907 PMCID: PMC7571328 DOI: 10.3892/etm.2020.9300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/17/2020] [Indexed: 11/06/2022] Open
Abstract
The current study aimed to investigate whether sarpogrelate and rosuvastatin possess anti-arterial injury, and attempted to elucidate the mechanism of action underlying this activity. Sarpogrelate, a 5-hydroxytryptamine type 2A antagonist, is extensively used to prevent arterial thrombosis; however, its effects on atherosclerosis remain unknown. In the present study, sarpogrelate combined with rosuvastatin or rosuvastatin alone were administered to male ApoE-/- mice fed a high-fat diet (HFD) for 8 weeks. Metabolic parameters in the blood samples were analyzed using an automatic analyzer. Aortic tissues were stained with hematoxylin and eosin for morphological analysis. The expression levels of oxidized-low density lipoprotein (LDL) specific scavenging receptors, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 68 were detected via immunostaining. mRNA expression levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were determined via reverse transcription-quantitative PCR analysis, while protein expression levels of LOX-1 and phosphor(p)-ERK were determined via western blot analysis. The results demonstrated that sarpogrelate combined with rosuvastatin treatment significantly decreased total cholesterol and LDL cholesterol levels in the serum, and alleviated intimal hyperplasia and lipid deposition, accompanied by decreased inflammatory cell infiltration and lower expression levels of inflammatory cytokines, compared with rosuvastatin monotherapy or HFD treatment. Furthermore, sarpogrelate combined with rosuvastatin treatment significantly decreased the expression levels of LOX-1 and p-ERK. Taken together, these results suggest that the positive effects of sarpogrelate combined with rosuvastatin treatment on aortic injury may be associated with the regulation of the LOX-1/p-ERK signaling pathway. Sarpogrelate and rosuvastatin synergistically decreased aortic damage in ApoE-/- HFD mice, and thus provide a basis for the treatment of aortic injury caused by hyperlipidemia with sarpogrelate.
Collapse
Affiliation(s)
- Hongyang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116001, P.R. China
| | - Siwei Xu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Guihua Li
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Dayuan Lou
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xiaodan Fu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Qin Lu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Liman Hao
- Department of Cardiology, Jiche Hospital of Dalian, Dalian, Liaoning 116021, P.R. China
| | - Jingsi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Jiajie Mei
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Zheng Sui
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yu Lou
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
9
|
Akyol O, Chowdhury I, Akyol HR, Tessier K, Vural H, Akyol S. Why are cardiovascular diseases more common among patients with severe mental illness? The potential involvement of electronegative low-density lipoprotein (LDL) L5. Med Hypotheses 2020; 142:109821. [PMID: 32417641 DOI: 10.1016/j.mehy.2020.109821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts of experimental and clinical studies and knowledge, the pathophysiology of severe mental illness (SMI), including bipolar disorder (BD), unipolar depression (mood disorders, MD), and schizophrenia (SCZ), remains poorly understood. Besides their chronic course and high prevalence in society, mental and somatic comorbidities are really serious problems; patients with these disorders have increased risk of cardiovascular (CV) diseases (CVD) including coronary artery diseases (CAD, i.e. myocardial infarction and angina), stroke, sudden cardiac death, hypertension, cardiomyopathy, arrhythmia, and thromboembolic disease. Although it is determined that triglycerides, cholesterol, glucose, and low-density lipoprotein (LDL) levels are increased in MD and SCZ, the underlying reason remains unknown. Considering this, we propose that electronegative LDL (L5) is probably the main crucial element to understanding CVD induced by SMI and to discovering novel remedial approaches for these diseases. When it is hypothesized that L5 is greatly presupposed in CV system abnormalities, it follows that the anti-L5 therapies and even antioxidant treatment options may open new therapeutic opportunities to prevent CVD diseases secondary to SMI. In this review article, we tried to bring a very original subject to the attention of readers who are interested in lipoprotein metabolism in terms of experimental, clinical, and cell culture studies that corroborate the involvement of L5 in physiopathology of CVD secondary to SMI and also the new therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Omer Akyol
- Michigan Math & Science Academy, Department of Science, Warren, MI, USA.
| | - Imtihan Chowdhury
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Hafsa Rana Akyol
- Illinois Institute of Technology, Biology, Sophomore, Chicago, IL, USA
| | - Kylie Tessier
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Huseyin Vural
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Sumeyya Akyol
- Beaumont Health, Beaumont Research Institute, Royal Oak, MI, USA
| |
Collapse
|
10
|
Puig N, Montolio L, Camps-Renom P, Navarra L, Jiménez-Altayó F, Jiménez-Xarrié E, Sánchez-Quesada JL, Benitez S. Electronegative LDL Promotes Inflammation and Triglyceride Accumulation in Macrophages. Cells 2020; 9:cells9030583. [PMID: 32121518 PMCID: PMC7140452 DOI: 10.3390/cells9030583] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Electronegative low-density lipoprotein (LDL) (LDL(−)), a modified LDL that is present in blood and exerts atherogenic effects on endothelial cells and monocytes. This study aimed to determine the action of LDL(−) on monocytes differentiated into macrophages. LDL(−) and in vitro-modified LDLs (oxidized, aggregated, and acetylated) were added to macrophages derived from THP1 monocytes over-expressing CD14 (THP1-CD14). Then, cytokine release, cell differentiation, lipid accumulation, and gene expression were measured by ELISA, flow cytometry, thin-layer chromatography, and real-time PCR, respectively. LDL(−) induced more cytokine release in THP1-CD14 macrophages than other modified LDLs. LDL(−) also promoted morphological changes ascribed to differentiated macrophages. The addition of high-density lipoprotein (HDL) and anti-TLR4 counteracted these effects. LDL(−) was highly internalized by macrophages, and it was the major inductor of intracellular lipid accumulation in triglyceride-enriched lipid droplets. In contrast to inflammation, the addition of anti-TLR4 had no effect on lipid accumulation, thus suggesting an uptake pathway alternative to TLR4. In this regard, LDL(−) upregulated the expression of the scavenger receptors CD36 and LOX-1, as well as several genes involved in triglyceride (TG) accumulation. The importance and novelty of the current study is that LDL(−), a physiologically modified LDL, exerted atherogenic effects in macrophages by promoting differentiation, inflammation, and triglyceride-enriched lipid droplets formation in THP1-CD14 macrophages, probably through different receptors.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Building M, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lara Montolio
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, and IIB-Sant Pau, 08041 Barcelona, Spain;
| | - Laia Navarra
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology. Neuroscience Institute. Faculty of Medicine, UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, and IIB-Sant Pau, 08041 Barcelona, Spain;
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| | - Sonia Benitez
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| |
Collapse
|