1
|
Murga-Garrido SM, Ulloa-Pérez EJ, Díaz-Benítez CE, Orbe-Orihuela YC, Cornejo-Granados F, Ochoa-Leyva A, Sanchez-Flores A, Cruz M, Castañeda-Márquez AC, Plett-Torres T, Burguete García AI, Lagunas-Martínez A. Virulence Factors of the Gut Microbiome Are Associated with BMI and Metabolic Blood Parameters in Children with Obesity. Microbiol Spectr 2023; 11:e0338222. [PMID: 36786619 PMCID: PMC10101034 DOI: 10.1128/spectrum.03382-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
The development of metabolic diseases is linked to the gut microbiota. A cross-sectional study involving 45 children (6 to 12 years old) was conducted to investigate the relationship between gut microbiota and childhood obesity. Anthropometric and metabolic measurements, food-frequency questionnaires (FFQs), and feces samples were obtained. Using the body mass index (BMI) z-score, we categorized each participant as normal weight (NW), or overweight and obese (OWOB). We determined 2 dietary profiles: one with complex carbohydrates and proteins (pattern 1), and the other with saturated fat and simple carbohydrates (pattern 2). The microbial taxonomic diversity and metabolic capacity were determined using shotgun metagenomics. We found differences between both BMI groups diversity. Taxa contributing to this difference, included Eubacterium sp., Faecalibacterium prausnitzii, Dialister, Monoglobus pectinilyticus, Bifidobacterium pseudocatenulatum, Intestinibacter bartlettii, Bacteroides intestinalis, Bacteroides uniformis, and Methanobrevibacter smithii. Metabolic capacity differences found between NW and OWOB, included the amino acid biosynthesis pathway, the cofactor, carrier, and vitamin biosynthesis pathway, the nucleoside and nucleotide biosynthesis and degradation pathways, the carbohydrate-sugar degradation pathway, and the amine and polyamine biosynthesis pathway. We found significant associations between taxa such as Ruminococcus, Mitsuokella multacida, Klebsiella variicola, and Citrobacter spp., metabolic pathways with the anthropometric, metabolic, and dietary data. We also found the microbiome's lipooligosaccharide (LOS) category as differentially abundant between BMI groups. Metabolic variations emerge during childhood as a result of complex nutritional and microbial interactions, which should be explained in order to prevent metabolic illnesses in adolescence and maturity. IMPORTANCE The alteration of gut microbiome composition has been commonly observed in diseases involving inflammation, such as obesity and metabolic impairment. Inflammatory host response in the gut can be a consequence of dietary driven dysbiosis. This response is conducive to blooms of particular bacterial species, adequate to survive in an inflammatory environment by means of genetical capability of utilizing alternative nutrients. Understanding the genomic and metabolic contribution of microbiota to inflammation, including virulence factor prevalence and functional potential, will contribute to identifying modifiable early life exposures and preventive strategies associated with obesity risk in childhood.
Collapse
Affiliation(s)
- S. M. Murga-Garrido
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E. J. Ulloa-Pérez
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - C. E. Díaz-Benítez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Y. C. Orbe-Orihuela
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - F. Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - A. Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - A. Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - M. Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - A. C. Castañeda-Márquez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - T. Plett-Torres
- PECEM (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - A. I. Burguete García
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A. Lagunas-Martínez
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
2
|
Mobegi FM, Leong LE, Thompson F, Taylor SM, Harriss LR, Choo JM, Taylor SL, Wesselingh SL, McDermott R, Ivey KL, Rogers GB. Intestinal microbiology shapes population health impacts of diet and lifestyle risk exposures in Torres Strait Islander communities. eLife 2020; 9:58407. [PMID: 33074097 PMCID: PMC7572126 DOI: 10.7554/elife.58407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023] Open
Abstract
Poor diet and lifestyle exposures are implicated in substantial global increases in non-communicable disease burden in low-income, remote, and Indigenous communities. This observational study investigated the contribution of the fecal microbiome to influence host physiology in two Indigenous communities in the Torres Strait Islands: Mer, a remote island where a traditional diet predominates, and Waiben a more accessible island with greater access to takeaway food and alcohol. Counterintuitively, disease markers were more pronounced in Mer residents. However, island-specific differences in disease risk were explained, in part, by microbiome traits. The absence of Alistipes onderdonkii, for example, significantly (p=0.014) moderated island-specific patterns of systolic blood pressure in multivariate-adjusted models. We also report mediatory relationships between traits of the fecal metagenome, disease markers, and risk exposures. Understanding how intestinal microbiome traits influence response to disease risk exposures is critical for the development of strategies that mitigate the growing burden of cardiometabolic disease in these communities.
Collapse
Affiliation(s)
- Fredrick M Mobegi
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia.,SAHMRI Microbiome Research Laboratory, School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Lex Ex Leong
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Fintan Thompson
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
| | - Sean M Taylor
- Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
| | - Linton R Harriss
- Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia.,SAHMRI Microbiome Research Laboratory, School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia.,SAHMRI Microbiome Research Laboratory, School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Steve L Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Robyn McDermott
- Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Australia.,School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Kerry L Ivey
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, Adelaide, Australia.,SAHMRI Microbiome Research Laboratory, School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|