1
|
Anjaneyulu J, Godbole A. Small organism models for mode of action research on anti-ageing and nootropic herbs, foods, and formulations. Nutr Neurosci 2024:1-19. [PMID: 39432435 DOI: 10.1080/1028415x.2024.2409128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With global increase in ageing population along with increasing age-related neurodegenerative diseases (NDs), development of sustainable, safe and effective solutions for promoting healthy ageing and preventing diseases has become a priority. Traditional healthcare systems/medicines prescribe several herbs, foods and formulations to promote healthy ageing and prevent and/or treat age-related diseases. However, the scientific data elucidating their mechanism of action is very limited and deeper research using different models is warranted for timely and wider use. The clinical studies and research with higher model organisms, although useful, have several practical, technical, and financial limitations. Conversely, small organism models like Yeast, Roundworm, Fruit fly, and Zebrafish, which have genetic similarities to humans, can replicate the disease features and provide behavioural, cellular and molecular insights. The common features of ageing and NDs, like amyloid protein aggregations, oxidative stress, energy dysregulation, inflammation and neurodegeneration can be mimicked in the small organism models for Alzheimer's, Parkinson's, Huntington's diseases, and Amyotrophic Lateral Sclerosis. This review focuses on small organism model- based research unveiling interesting modes of action and synergistic effects of herbal extracts, foods, and formulations, which are indicated especially for healthy ageing and management of NDs. This will provide leads for the quick and sustainable development of scientifically evaluated solutions for clinically relevant, age-related conditions.
Collapse
Affiliation(s)
- Jalagam Anjaneyulu
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Ashwini Godbole
- The University of Trans-disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
2
|
Duran-Izquierdo M, Sierra-Marquez L, Taboada-Alquerque M, Olivero-Verbel J. Simira cordifolia protects against metal induced-toxicity in Caenorhabditis elegans. Front Pharmacol 2023; 14:1235190. [PMID: 38035022 PMCID: PMC10684763 DOI: 10.3389/fphar.2023.1235190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
Simira cordifolia (Hook.f.) Steyerm (Rubiaceae) is a vascular plant used in Northern Colombia as a source of pigments and wood. However, there is a lack of information regarding its pharmacology and toxicity. This research aimed to study the hydroalcoholic extract of Simira cordifolia as a protector against metal-induced toxicity in Caenorhabditis elegans. Preliminary phytochemical screening of the hydroalcoholic extract of S. cordifolia (HAE-Sc) was conducted using HPLC-ESI-QTOF. Wild-type N2 C. elegans larvae were exposed to different concentrations of HAE-Sc evaluating lethality (50-5000 μg/mL), growth, lifespan, resistance to heat stress, and its protective effect against Mercury (Hg)-, Lead (Pb)- and Cadmium (Cd)-induced lethality (50-1000 μg/mL). The main metabolites present in the extract were iridoids, β-carboline-alkaloids and polyphenols. Bioassays demonstrated that HAE-Sc exhibited low toxicity, with significant lethality (4.2% and 9.4%) occurring at 2500-5000 μg/mL. Growth inhibition reached up to 23.3%, while reproduction declined 13% and 17% at concentrations 500 and 1000 μg/mL, respectively. HAE-Sc enhanced the survival rate of the nematode under thermal stress by up to 79.8%, and extended the mean lifespan of worms by over 33% compared to control. The average lifespan was prolonged by 15.3% and 18.5% at 50 and 100 μg/mL HAE-Sc, respectively. The extract (1000 μg/mL) was able to reduce the death of C. elegans in the presence of heavy metals up to 65.9, 96.8% and 87% for Pb, Hg, and Cd, respectively. In summary, S. cordifolia shows potential protective effects in C. elegans against toxicity caused by heavy metals and heat.
Collapse
Affiliation(s)
| | | | | | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Zaragocilla Campus, Cartagena, Colombia
| |
Collapse
|
3
|
Zheng J, Luo Z, Chiu K, Li Y, Yang J, Zhou Q, So KF, Wan QL. Lycium barbarum glycopetide prolong lifespan and alleviate Parkinson's disease in Caenorhabditis elegans. Front Aging Neurosci 2023; 15:1156265. [PMID: 37469953 PMCID: PMC10353607 DOI: 10.3389/fnagi.2023.1156265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Lycium barbarum glycopeptide (LbGp) is the main bioactive compound extracted from the traditional Chinese medicine. L. barbarum berries and has been proven to have numerous health benefits, including antioxidative, anti-inflammatory, anticancer, and cytoprotective activities. However, the antiaging effect of LbGp remains unknown. Methods The lifespan and body movement of C. elegans were used to evaluate the effect of LbGp on lifespan and health span. The thrashing assay was used to determine the role of LbGp in Parkinson's disease. To investigate the mechanisms of LbGp-induced antiaging effects, we analyzed changes in lifespan, movement, and the expression of longevity-related genes in a series of worm mutants after LbGp treatment. Results We found that LbGp treatment prolonged the lifespan and health span of C. elegans. Mechanistically, we found that LbGp could activate the transcription factors DAF-16/FOXO, SKN-1/Nrf2, and HSF-1, as well as the nuclear receptor DAF-12, thereby upregulating longevity-related genes to achieve lifespan extension. In addition, we found that the lifespan extension induced by LbGp partially depends on mitochondrial function. Intriguingly, LbGp also ameliorated neurodegenerative diseases such as Parkinson's disease in a DAF-16-, SKN-1-, and HSF-1-dependent manner. Conclusion Our work suggests that LbGp might be a viable candidate for the treatment and prevention of aging and age-related diseases.
Collapse
Affiliation(s)
- Jingming Zheng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhenhuan Luo
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Kin Chiu
- State Key Lab of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jing Yang
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Qinghua Zhou
- Faculty of Medical Science, The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of Central Nervous System (CNS) Regeneration, Ministry of Education Central Nervous System (CNS) Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
5
|
Guo Z, Wang Z, Liu Y, Wu H, Zhang Q, Han J, Liu J, Zhang C. Carbon Dots from Lycium barbarum Attenuate Radiation-Induced Bone Injury by Inhibiting Senescence via METTL3/Clip3 in an m 6A-Dependent Manner. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20726-20741. [PMID: 37088945 DOI: 10.1021/acsami.3c01322] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Radiation-induced bone injury management remains a challenge in clinical practice, and there is no effective medicine. Recently, biomass-derived carbon dots (CDs) have attracted attention in biomedical engineering due to the advantages of abundant heteroatoms, low toxicity, and no need to drug loading. Here, we report that CDs, synthesized from Lycium barbarum via hydrothermal strategy, can effectively alleviate radiation-induced bone injury. CCK-8, apoptosis analysis, β-galactosidase staining, quantitative polymerase chain reaction, and western blots demonstrate that CDs can mediate radiation-induced damage and senescence of bone marrow mesenchymal stem cells (BMSCs). CDs regulate osteogenic- and adipogenic-balance after irradiation, shown by alizarin red and oil red O staining. In vivo experiments reveal that CDs prevent the occurrence of osteoradionecrosis in rats, demonstrated by micro-CT and histology examination. The osseointegration of titanium implants installed in irradiated bone is promoted by CDs. Mechanistically, CDs increase the N6-methyladenosine (m6A) level of irradiated BMSCs via the increased methyltransferase-like 3 (METTL3). High-throughput sequencing facilitates detection of increased m6A levels located in the 3'-untranslated regions (UTR) of the CAP-Gly domain containing linker protein 3 (Clip3) mRNA. The dual-luciferase reporter assay shows that 3'UTR is the direct target of METTL3. Subsequently, the increased m6A modification led to enhanced degradation of mRNA and downregulated CLIP3 expression, eventually resulting in the alleviation of radiation-induced bone injury. Interfering with the METTL3/Clip3 axis can antagonize the effect of CDs, indicating that CDs mediate radiation-induced bone injury via the METTL3/Clip3 axis. Taken together, CDs from L. barbarum alleviate radiation-induced bone injury by inhibiting senescence via regulation of m6A modification of Clip3. The present study paves a new pathway for the management of radiation-induced bone injury.
Collapse
Affiliation(s)
- Zhiyong Guo
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zilin Wang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yige Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hao Wu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Qiaoyu Zhang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Han
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiannan Liu
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenping Zhang
- Department of Oromaxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
6
|
Zhang Z, Gao T, Yan N, Duan Z, Tang Z, Zhou L, Chen T, Feng S, Ding C, Yuan S, Yuan M. Characterization and Anti-Aging Activity of Polysaccharides from Akebia trifoliata Fruit Separated by an Aqueous Two-Phase System. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:154-159. [PMID: 36385463 DOI: 10.1007/s11130-022-01031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Bioactive polysaccharides have numerous pharmacological effects that are beneficial to human health. Akebia trifoliata (Thunb.) Koidz. has great development prospects as a food resource with medicinal value. The polysaccharides (ATFP) were extracted from A. trifoliata fruit by an aqueous two-phase system. ATFP-3, purified with DEAE-52 and Sephadex G-200 from ATFP, was mainly composed of glucose (47.55%) and galactose (20.39%). Its hydroxyl radical scavenging rate was 89.30% at 1.60 mg/mL and its IC50 was 0.29 mg/mL. ATFP-3 significantly enhanced the survival rate of Caenorhabditis elegans under thermal or oxidative stress. Furthermore, ATFP-3 could prolong the lifespan of C. elegans and improve the activities of the antioxidant enzyme, while also decrease the accumulation of lipofuscin and the level of malondialdehyde (MDA) in aging worms. Thus, ATFP-3 has application potential in health benefits for humans.
Collapse
Affiliation(s)
- Zhonghao Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Tao Gao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Ningning Yan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Zhihao Duan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, People's Republic of China.
| |
Collapse
|
7
|
Zhang L, Gong Y, Zhang L, Liang B, Xu H, Hu W, Jin Z, Wu X, Chen X, Li M, Shi L, Shi Y, Li M, Huang Y, Wang Y, Yang L. Gou Qi Zi inhibits proliferation and induces apoptosis through the PI3K/AKT1 signaling pathway in non-small cell lung cancer. Front Oncol 2022; 12:1034750. [PMID: 36591458 PMCID: PMC9796997 DOI: 10.3389/fonc.2022.1034750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background Gou Qi Zi (Lycium barbarum) is a traditional herbal medicine with antioxidative effects. Although Gou Qi Zi has been used to prevent premature aging and in the treatment of non-small cell lung cancer (NSCLC), its mechanism of action in NSCLC remains unclear. The present study utilized network pharmacology to assess the potential mechanism of action of Gou Qi Zi in the treatment of NSCLC. Methods The TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM and TTD databases were searched for the active components of Gou Qi Zi and their potential therapeutic targets in NSCLC. Protein-protein interaction networks were identified and the interactions of target proteins were analyzed. Involved pathways were determined by GO enrichment and KEGG pathway analyses using the Metascape database, and molecular docking technology was used to study the interactions between active compounds and potential targets. These results were verified by cell counting kit-8 assays, BrdU labeling, flow cytometry, immunohistochemistry, western blotting, and qRT-PCR. Results Database searches identified 33 active components in Gou Qi Zi, 199 predicted biological targets and 113 NSCLC-related targets. A network of targets of traditional Chinese medicine compounds and potential targets of Gou Qi Zi in NSCLC was constructed. GO enrichment analysis showed that Gou Qi Zi targeting of NSCLC was mainly due to the effect of its associated lipopolysaccharide. KEGG pathway analysis showed that Gou Qi Zi acted mainly through the PI3K/AKT1 signaling pathway in the treatment of NSCLC. Molecular docking experiments showed that the bioactive compounds of Gou Qi Zi could bind to AKT1, C-MYC and TP53. These results were verified by experimental assays. Conclusion Gou Qi Zi induces apoptosis and inhibits proliferation of NSCLC in vitro and in vivo by inhibiting the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Lingling Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Bing Liang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangming Hu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongbin Chen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Li
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaping Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingjian Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Lan Yang, ;
| |
Collapse
|
8
|
By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238202. [PMID: 36500294 PMCID: PMC9736987 DOI: 10.3390/molecules27238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Red ginseng (RG), which is obtained from heated Panax ginseng and is produced by steaming followed by drying, is a valuable herb in Asian countries. Steamed ginseng dew (SGD) is a by-product produced in processing red ginseng. In the present study, phytochemical profiling of extracts of red ginseng and steamed ginseng dew was carried out using gas chromatography-mass spectrometry (GC-MS) and rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) analysis. Additionally, antioxidant activities (DPPH, ·OH, and ABTS scavenging ability) and whitening activities (tyrosinase and elastase inhibitory activity) were analyzed. Phytochemical profiling revealed the presence of 66 and 28 compounds that were non-saponin components in chloroform extracts of red ginseng and steamed ginseng dew (RG-CE and SGD-CE), respectively. Meanwhile, there were 20 ginsenosides identified in n-butanol extracts of red ginseng and steamed ginseng dew (RG-NBE and SGD-NBE). By comparing the different polar extracts of red ginseng and steamed ginseng dew, it was found that the ethyl acetate extract of red ginseng (RG-EAE) had the best antioxidant capacity and whitening effect, the water extract of steamed ginseng dew (SGD-WE) had stronger antioxidant capacity, and the SGD-NBE and SGD-CE had a better whitening effect. This study shows that RG and SGD have tremendous potential to be used in the cosmetic industries.
Collapse
|
9
|
Comparative Analysis of the Phenolic Profile of Lycium barbarum L. Fruits from Different Regions in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185842. [PMID: 36144578 PMCID: PMC9501245 DOI: 10.3390/molecules27185842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Lycium barbarum L. (LB) fruits have high nutritive values and therapeutic effects. The aim of this study was to comprehensively evaluate the differences in phenolic composition of LB fruits from different geographical regions. Different methods of characterization and statistical analysis of data showed that different geographic sources of China could be significantly separated from each other. The highest total phenolic compound (TPC) content was observed in LB fruits from Ningxia (LBN), followed by those from Gansu (LBG) and Qinghai (LBQ). The Fourier transform infrared (FTIR) spectra of LB fruits revealed that LBQ had a peak at 2972 cm−1 whereas there was no similar peak in LBG and LBQ. A new HPLC method was established for the simultaneous determination of 8 phenolic compounds by quantitative analysis of multiple components by a single marker (QAMS), including 4 phenolic acids (chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, and ferulic acid), 1 coumarin (scopoletin), and 3 flavonoids (kaempferol-3-O-rutinoside, rutin, and narcissoside). It was showed that rutin was the most dominant phenolic compound in LBQ, although the average content of 4 phenolic acids was also high in LBQ, and scopoletin was the richest in LBG. UHPLC-Q-TOF-MS was used to qualitatively analyze the phenolics, which showed LBN was abundant in phenolic acids, LBQ was rich in flavonoids, and coumarins were the most plentiful in LBG. In conclusion, this study can provide references for the quality control and evaluation of phenolics in LB fruits and their by-products.
Collapse
|
10
|
Ginseng volatile oil prolongs the lifespan and healthspan of Caenorhabditis elegans. Biogerontology 2022; 23:485-497. [PMID: 35939242 PMCID: PMC9358063 DOI: 10.1007/s10522-022-09956-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
Abstract
Ginseng volatile oil (GVO) is one of the main components of ginseng and has antibacterial and anti-inflammatory properties. In this study, gas chromatography-mass spectrometry (GC-MS) was applied to characterize GVO chemical composition, and 73 volatile components were detected from GVO. Caenorhabditis elegans was used as animal model to further elucidate the antioxidant and anti-aging effects of GVO in vivo. The results suggested that GVO significantly prolonged the lifespan of C. elegans and promoted its health without damaging its reproductive capacity. In addition, GVO increased the antioxidant capacity and survival rate of nematodes after heat shock. Transcriptional sequencing showed that autophagy-related genes atg-4.2, atg-7, lgg-2, and cyd-1 were up-regulated, and superoxide dismutase 1 (sod-1) expression was increased after GVO pretreatment. Considering the role of autophagy and antioxidant in aging, the expression of autophagy substrate P62 protein in BC12921 strain was analyzed and found to decrease by more than 50.00% after treatment with GVO. In addition, the lifespan of SOD-1 mutant nematodes was not significantly different from that of the control group. SOD activity and autophagy were activated, which is a clear expression of hormesis. All these results suggest that GVO prolongs the lifespan and healthspan of C. elegans, and its biological functions may be related to hormesis.
Collapse
|
11
|
Zhou H, Ding S, Sun C, Fu J, Yang D, Wang X, Wang CC, Wang L. Lycium barbarum Extracts Extend Lifespan and Alleviate Proteotoxicity in Caenorhabditis elegans. Front Nutr 2022; 8:815947. [PMID: 35096951 PMCID: PMC8790518 DOI: 10.3389/fnut.2021.815947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Lycium barbarum berry (Ningxia Gouqi, Fructus lycii, goji berry, or wolfberry), as a traditional Chinese herb, was recorded beneficial for longevity in traditional Chinese medical scriptures and currently is a natural dietary supplement worldwide. However, under modern experimental conditions, the longevity effect of L. barbarum berry and the underlying mechanisms have been less studied. Here, we reported that total water extracts of L. barbarum berry (LBE), which contains 22% polysaccharides and other components, such as anthocyanins, extended the lifespan of Caenorhabditis elegans without side effects on worm fertility and pharyngeal pumping. Interestingly, we found that the lifespan extension effect was more prominent in worms with shorter mean lifespan as compared to those with longer mean lifespan. Furthermore, we showed that the lifespan extension effect of LBE depended on deacetylase sir-2.1. Remarkably, LBE rescued heat shock transcription factor-1 (hsf-1) deficiency in wild-type worms with different mean lifespans, and this effect also depended on sir-2.1. In addition, we found that LBE extended lifespan and alleviated toxic protein aggregation in neurodegenerative worms with hsf-1 deficiency. Our study suggested that LBE may be a potential antiaging natural dietary supplement especially to individuals with malnutrition or chronic diseases and a potential therapeutic agent for neurodegenerative diseases characterized by hsf-1 deficiency.
Collapse
Affiliation(s)
- Haitao Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.,Central Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shanshan Ding
- Central Laboratory, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Chuanxin Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jiahui Fu
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food From Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xi'e Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Xie W, Huang YY, Chen HG, Zhou X. Study on the Efficacy and Mechanism of Lycium barbarum Polysaccharide against Lead-Induced Renal Injury in Mice. Nutrients 2021; 13:nu13092945. [PMID: 34578823 PMCID: PMC8470764 DOI: 10.3390/nu13092945] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lead is one of the most common heavy metal pollutants in the environment. Prolonged exposure to lead will induce oxidative stress, inflammation, and apoptosis in the kidneys, which in turn causes kidney injury. Lycium barbarum polysaccharide (LBP) is well known for its numerous pharmacological properties. This study aims to explore the efficacy and mechanism of LBP against lead-induced kidney damage in mice. Symptoms of renal injury were induced in mice by using 25 mg/kg lead acetate (PbAc2), and different doses of LBP (200, 400, and 600 mg/kg BW) were orally administrated to PbAc2-treated mice for five weeks. The results of the pharmacodynamics experiment showed that the renal pathological damages, serum creatinine (Cre), blood urea nitrogen (BUN), and kidney index of PbAc2-treated mice could be significantly alleviated by treatment with LBP. Further, LBP treatment significantly increased the weight and feed intake of PbAc2-treated mice. The dose effect results indicated that a medium dose of LBP was superior to high and low doses. The results of mechanistic experiments showed that LBP could attenuate oxidative stress, inflammation, and apoptosis in the kidneys of mice with lead toxicity by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Yuan-Yuan Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| |
Collapse
|
13
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Zheng X, Wang J, Bi F, Li Y, Xiao J, Chai Z, Li Y, Miao Z, Wang Y. Protective effects of Lycium barbarum polysaccharide on ovariectomy‑induced cognition reduction in aging mice. Int J Mol Med 2021; 48:121. [PMID: 33955518 PMCID: PMC8121556 DOI: 10.3892/ijmm.2021.4954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Women experience cognitive decline as they age due to the decrease in estrogen levels following menopause. Currently, effective pharmaceutical treatments for age‑related cognitive decline are lacking; however, several Traditional Chinese medicines have shown promising effects. Lycium barbarum polysaccharides (LBPs) were found to exert a wide variety of biological activities, including anti‑inflammatory, antioxidant and anti‑aging effects. However, to the best of our knowledge, the neuroprotective actions of LBP on cognitive impairment induced by decreased levels of estrogen have not yet been determined. To evaluate the effects of LBP on learning and memory impairment in an animal model of menopause, 45 female ICR mice were randomly divided into the following three groups: i) Sham; ii) ovariectomy (OVX); and iii) OVX + LBP treatment. The results of open‑field and novel object recognition tests revealed that mice in the OVX group had learning and memory impairments, and lacked the ability to recognize and remember new objects. Notably, these deficits were attenuated following LBP treatment. Immunohistochemical staining confirmed the protective effects of LBP on hippocampal neurons following OVX. To further investigate the underlying mechanism of OVX in mice, mRNA sequencing of the hippocampal tissue was performed, which revealed that the Toll‑like receptor 4 (TLR4) inflammatory signaling pathway was significantly upregulated in the OVX group. Moreover, reverse transcription‑quantitative PCR and immunohistochemical staining demonstrated that OVX induced hippocampal injury, upregulated the expression levels of TLR4, myeloid differentiation factor 88 and NF‑κB, and increased the expression of TNF‑α, IL‑6 and IL‑1β inflammatory factors. Conversely, LBP treatment downregulated the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, decreased the inflammatory response and reduced neuronal injury in mice that underwent OVX. In conclusion, the findings of the present study indicated that oral LBP treatment may alleviate OVX‑induced cognitive impairments by downregulating the expression levels of mRNAs and proteins associated with the TLR4/NF‑κB signaling pathway, thereby reducing neuroinflammation and damage to the hippocampal neurons. Thus, LBP may represent a potential agent for the prevention of learning and memory impairments in patients with accelerated aging caused by estrogen deficiency.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Department of Pediatrics, General Hospital of Ningxia Medical University, 750004, P.R. China
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Junyan Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Fengchen Bi
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yilu Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jingjing Xiao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhi Chai
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yunhong Li
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Zhenhua Miao
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yin Wang
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
15
|
Goji berry (Lycium barbarum L.) juice reduces lifespan and premature aging of Caenorhabditis elegans: Is it safe to consume it? Food Res Int 2021; 144:110297. [PMID: 34053563 DOI: 10.1016/j.foodres.2021.110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Goji berry fruit is considered a healthy food. However, studies on its effects on aging and safety are rare. This study is the first to evaluate the effects of goji berry juice (GBJ) on oxidative stress, metabolic markers, and lifespan of Caenorhabditis elegans. GBJ caused toxicity, reduced the lifespan of C. elegans by 50%, and increased the reactive oxygen species (ROS) production by 45-50% at all tested concentrations (1-20 mg/µL) of GBJ. Moreover, the highest concentration of GBJ increased lipid peroxidation by 80% and altered the antioxidant enzymes. These effects could be attributed to a pro-oxidant effect induced by GBJ polyphenols and carotenoids. Moreover, GBJ increased lipofuscin, glucose levels, number of apoptotic bodies, and lipase activity. The use of mutant strains demonstrated that these effects observed in the worms treated with GBJ were not associated with the Daf-16/FOXO or SKN-1 pathways. Our findings revealed that GBJ (mainly the highest concentration) exerted toxic effects and promoted premature aging in C. elegans. Therefore, its consumption should be carefully considered until further studies in mammals are conducted.
Collapse
|
16
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Hepatoprotection of Lycii Fructus Polysaccharide against Oxidative Stress in Hepatocytes and Larval Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3923625. [PMID: 33680282 PMCID: PMC7906805 DOI: 10.1155/2021/3923625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022]
Abstract
Scavenging of oxidative stress by antioxidants may provide a therapeutic strategy for nonalcoholic fatty liver disease (NAFLD). Increasing evidence is supporting the potential application of natural resourced polysaccharides as promising prevention or treatment strategies against NAFLD. In the current study, an acidic heteropolysaccharide, LFP-a1, was isolated and purified from Lycii fructus with successively hot water refluxing extraction, alcohol precipitation, protein removal, and DEAE-52 cellulose chromatographic separation. LFP-a1 was a complicated structured polysaccharide with an average MW of 4.74 × 104 Da and composed of 6 monosaccharides and 1 uronic acid. Preexposure of LFP-a1 could increase the cell viability and reverse the abnormal oxidative stress though inhibition of mitochondrial-mediated apoptotic pathway and correction of cell cycle progression against H2O2 hepatoxicity in NAFLD model L02 cells. Consistently, in vivo study in thioacetamide- (TAA-) induced NAFLD model zebrafish larvae showed LFP-a1 preserved the liver integrity and alleviated TAA-induced oxidative stress through downregulation of abnormal apoptosis. These observations indicated the hepatoprotective activity of LFP-a1, which may be applied for the prevention or treatment of NAFLD or other oxidative stress-related diseases.
Collapse
|
18
|
Guo T, Cheng L, Zhao H, Liu Y, Yang Y, Liu J, Wu Q. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine. Sci Rep 2020; 10:16933. [PMID: 33037257 PMCID: PMC7547681 DOI: 10.1038/s41598-020-73712-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The increased application of graphene oxide (GO), a new carbon-based engineered nanomaterial, has generated a potential toxicity in humans and the environment. Previous studies have identified some dysregulated microRNAs (miRNAs), such as up-regulated mir-235, in organisms exposed to GO. However, the detailed mechanisms of the dysregulation of miRNA underlying GO toxicity are still largely elusive. In this study, we employed Caenorhabditis elegans as an in vivo model to investigate the biological function and molecular basis of mir-235 in the regulation of GO toxicity. After low concentration GO exposure, mir-235 (n4504) mutant nematodes were sensitive to GO toxicity, implying that mir-235 mediates a protection mechanism against GO toxicity. Tissue-specific assays suggested that mir-235 expressed in intestine is required for suppressing the GO toxicity in C. elegans. daf-12, a gene encoding a member of the steroid hormone receptor superfamily, acts as a target gene of mir-235 in the nematode intestine in response to GO treatment, and RNAi knockdown of daf-12 suppressed the sensitivity of mir-235(n4503) to GO toxicity. Further genetic analysis showed that DAF-12 acted in the upstream of DAF-16 in insulin/IGF-1 signaling pathway and PMK-1 in p38 MAPK signaling pathway in parallel to regulate GO toxicity. Altogether, our results revealed that mir-235 may activate a protective mechanism against GO toxicity by suppressing the DAF-12-DAF-16 and DAF-12-PMK-1 signaling cascade in nematodes, which provides an important molecular basis for the in vivo toxicity of GO at the miRNA level.
Collapse
Affiliation(s)
- Tiantian Guo
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Lu Cheng
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Huimin Zhao
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yingying Liu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Yunhan Yang
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Qiuli Wu
- Institute of Nephrology, Zhong Da Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
19
|
The Antioxidant Capacity In Vitro and In Vivo of Polysaccharides From Bergenia emeiensis. Int J Mol Sci 2020; 21:ijms21207456. [PMID: 33050354 PMCID: PMC7589108 DOI: 10.3390/ijms21207456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Polysaccharides from Bergenia emeiensis (PBE) showed a robust antioxidant ability on scavenging free radicals in vitro. However, the further antioxidant potential in cell level and in vivo was still unknown. Therefore, in this present study, the protective effect of PBE on human cervical carcinoma cell (Hela) cells and Caenorhabditis elegans against oxidative stress was evaluated. The results showed PBE could reduce the reactive oxygen species (ROS) level in Hela cells and promote the mitochondrial membrane potential. Then, the cell apoptosis was reduced. Moreover, PBE could enhance the survival of C. elegans under thermal stress to 13.44%, and significantly reduce the ROS level, which was connected with the overexpression of sod-3 and the increased nuclear localization of daf-16 transcription factor. Therefore, PBE exhibited a strong antioxidant capacity in the cellular level and for a whole organism. Thus, polysaccharides from B. emeiensis have natural potential to be a safe antioxidant.
Collapse
|