1
|
Gao J, Liang Y, Liu P. Along the microbiota-gut-brain axis: Use of plant polysaccharides to improve mental disorders. Int J Biol Macromol 2024; 265:130903. [PMID: 38508549 DOI: 10.1016/j.ijbiomac.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
With the development of gut microbiota-specific interventions for mental disorders, the interactions between plant polysaccharides and microbiota in the intestinal and their consequent effects are becoming increasingly important. In this review, we discussed the role of plant polysaccharides in improving various mental disorders via the microbiota-gut-brain axis. The chemical and structural characteristics and metabolites of these plant polysaccharides were summarised. Plant polysaccharides and their metabolites have great potential for reshaping gut microbiota profiles through gut microbiota-dependent fermentation. Along the microbiota-gut-brain axis, the consequent pharmacological processes that lead to the elimination of the symptoms of mental disorders include 1) regulation of the central monoamine neurotransmitters, amino acid transmitters and cholinergic signalling system; 2) alleviation of central and peripheral inflammation mainly through the NLRP3/NF-κB-related signalling pathway; 3) inhibition of neuronal apoptosis; and 4) enhancement of antioxidant activities. According to this review, monosaccharide glucose and structure -4-α-Glcp-(1→ are the most potent compositions of the most reported plant polysaccharides. However, the causal structure-activity relationship remains to be extensively explored. Moreover, mechanistic elucidation, safety verification, and additional rigorous human studies are expected to advance plant polysaccharide-based product development targeting the microbiota-gut-brain axis for people with mental disorders.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Key Laboratory of Mental Health, Ministry of Health, Institute of Mental Health, Peking University, Beijing, China.
| | - Pu Liu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
2
|
Guo R, Pang J, Zhao J, Xiao X, Li J, Li J, Wang W, Zhou S, Zhao Y, Zhang Z, Chen H, Yuan T, Wu S, Liu Z. Unveiling the neuroprotective potential of dietary polysaccharides: a systematic review. Front Nutr 2023; 10:1299117. [PMID: 38075226 PMCID: PMC10702503 DOI: 10.3389/fnut.2023.1299117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024] Open
Abstract
Central nervous system (CNS) disorders present a growing and costly global health challenge, accounting for over 11% of the diseases burden in high-income countries. Despite current treatments, patients often experience persistent symptoms that significantly affect their quality of life. Dietary polysaccharides have garnered attention for their potential as interventions for CNS disorders due to their diverse mechanisms of action, including antioxidant, anti-inflammatory, and neuroprotective effects. Through an analysis of research articles published between January 5, 2013 and August 30, 2023, encompassing the intervention effects of dietary polysaccharides on Alzheimer's disease, Parkinson's disease, depression, anxiety disorders, autism spectrum disorder, epilepsy, and stroke, we have conducted a comprehensive review with the aim of elucidating the role and mechanisms of dietary polysaccharides in various CNS diseases, spanning neurodegenerative, psychiatric, neurodevelopmental disorders, and neurological dysfunctions. At least four categories of mechanistic bases are included in the dietary polysaccharides' intervention against CNS disease, which involves oxidative stress reduction, neuronal production, metabolic regulation, and gut barrier integrity. Notably, the ability of dietary polysaccharides to resist oxidation and modulate gut microbiota not only helps to curb the development of these diseases at an early stage, but also holds promise for the development of novel therapeutic agents for CNS diseases. In conclusion, this comprehensive review strives to advance therapeutic strategies for CNS disorders by elucidating the potential of dietary polysaccharides and advocating interdisciplinary collaboration to propel further research in this realm.
Collapse
Affiliation(s)
- Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhe Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Xiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingmeng Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenxiu Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilong Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwang Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Shan Wu
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia, China
- Research and Development Center, Xi'an Yinqiao Dairy Technology Co., Ltd., Xi'an, Shaanxi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Tian M, Yang A, Lu Q, Zhang X, Liu G, Liu G. Study on the mechanism of Baihe Dihuang decoction in treating menopausal syndrome based on network pharmacology. Medicine (Baltimore) 2023; 102:e33189. [PMID: 37335709 DOI: 10.1097/md.0000000000033189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Menopausal syndrome (MS) refers to a series of symptoms with autonomic nervous system dysfunction caused by decreased sex hormones before and after menopause. Baihe Dihuang (BHDH) decoction positively affects MS, but its mechanism remains unclear. This study aimed to reveal the underlying mechanism through network pharmacology. The components of the BHDH Decoction were found through HERB, while corresponding targets were obtained from the HERB, Drug Bank, NPASS, Targetnet, and Swisstarget databases. The MS targets were obtained from GeneCards and OMIM. STRING was used to construct the protein-protein interaction networks. OmicShare tools were used for Gene Ontology and Kyoto encyclopedia of genes and genomes analyses. Finally, Autodock Vina 1.1.2 software (https://vina.scripps.edu/downloads/) was used for molecular alignment to verify whether the main active ingredients and key targets had good binding activity. We screened out 27 active ingredients and 251 effective targets of BHDH Decoction, 3405 MS-related targets, and 133 intersection targets between BHDH Decoction and MS. Protein-protein interaction network identified tumor protein P53, Serine/threonine-protein kinase AKT, epidermal growth factor receptor, Estrogen Receptor 1, and jun proto-oncogene as critical targets. Gene ontology analysis showed that these targets were mainly involved in the cellular response to chemical stimulus, response to oxygen-containing compound, cellular response to endogenous stimulus, response to an organic substance, and response to chemical, etc. Kyoto encyclopedia of genes and genomes pathways were mainly enriched in endocrine resistance, pathways in cancer, and the ErbB signaling pathway, etc. Molecular docking results showed that emodin and stigmasterol are strongly associated with Serine/threonine-protein kinase AKT, Estrogen Receptor 1, epidermal growth factor receptor, sarcoma gene, and tumor protein P53. This study preliminarily revealed the multi-component, multi-target, and multi-channel mechanism of BHDH Decoction in treating MS. It provides a reference for in vitro and in vivo research and clinical application of BHDH Decoction in the treatment of MS.
Collapse
Affiliation(s)
- Mingmin Tian
- School of Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Anming Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Qinwei Lu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xin Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Guangjie Liu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Gaofeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
4
|
Tian X, Gao Z, Yin D, Hu Y, Fang B, Li C, Lou S, Rao Z, Shi R. 17beta-estradiol alleviates contusion-induced skeletal muscle injury by decreasing oxidative stress via SIRT1/PGC-1α/Nrf2 pathway. Steroids 2023; 191:109160. [PMID: 36574869 DOI: 10.1016/j.steroids.2022.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aimed to investigate the role of 17β-estradiol (E2) in the repair of contusion-induced myoinjury in mice and to identify the underlying molecular mechanisms. METHODS In vivo, contusion protocol was performed for preparing mice myoinjury model, and Injection (i.p.) of 17β-estradiol (E2) or estrogen receptor antagonist ICI 182,780, or ovariectomy (OVX), was used to alter estrogen level of animal models. In vitro, C2C12 myoblasts were treated with H2O2 (oxidative stress inducer), SIRT1 inhibitor EX527, or aromatase inhibitor anastrozole. Serum E2 level was assessed by enzyme-linked immunosorbent assay (ELISA). Muscle damage repair was evaluated by H&E staining and the activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH). The oxidative stress was estimated by the levels of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Western blot was performed to measure the protein expressions of SIRT1, PGC-1α, Nrf2, and HO-1. RESULTS We observed the elevated serum E2 levels and the upregulated oxidative stress in damaged muscle in female mice after contusion-induction. The E2 administration in vivo alleviated contusion-induced myoinjury in OVX mice by reducing CK and LDH activities, suppressing oxidative stress, and enhancing the expression levels of SIRT1, PGC-1α, Nrf2, and HO-1. These effects were inhibited by treatment with an ERα/β antagonist. Moreover, EX527 or anastrozole treatment exacerbated H2O2-induced growth inhibition and oxidative stress, and expression downregulation of SIRT1, PGC-1α, Nrf2, and HO-1 in C2C12 cells in vitro. CONCLUSION Our results suggest that E2 is a positive intervention factor for muscle repair followed contusion-induced myoinjury, through its effects on suppressing oxidative stress via activating the SIRT1/PGC-1α/Nrf2 pathway.
Collapse
Affiliation(s)
- Xu Tian
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Zelin Gao
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Danyang Yin
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Yi Hu
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Biqing Fang
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Cong Li
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Shujie Lou
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Rengfei Shi
- School of Kinesiology, Shanghai University of Sport, 188 Hengren Road, Yangpu District, Shanghai, China.
| |
Collapse
|
5
|
Medicinal Foods, YT and RH Combination, Suppress Cigarette Smoke-Induced Inflammation and Oxidative Stress by Inhibiting NF- κB/ERK Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4525758. [PMID: 35321502 PMCID: PMC8938073 DOI: 10.1155/2022/4525758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Background Cigarette smoke is a risk factor for Chronic Obstructive Pulmonary Disease (COPD). Given the lack of COPD curative treatment, dietary management for COPD patients has become important. This study investigated whether the medicinal foods (YT and RH) could suppress cigarette smoke exposure-induced inflammation and oxidative stress. Methods Chronic pulmonary inflammation in male C57 mice was induced by a 4-week exposure to cigarette smoke (CS). The medicinal foods YT and RH were orally administered 1 week prior to CS exposure. The protective effects were assessed by measuring the pulmonary function and histopathological evaluations. Inflammatory cell numbers and cytokines levels in BALF and blood serum were analyzed by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) and superoxide dismutase (SOD) levels of the lung were analyzed. Furthermore, the levels of phosphorylated ERK and NF-κB in both the mice lungs and RAW264.7 cells were also detected. Results YT and RH combination (YT + RH) significantly improved pulmonary function and suppressed the inflammation, including cell number and cytokines in BALF relative to the CS group; histological examination revealed protective effects of YT + RH in the lungs of mice exposed to CS. Moreover, the MDA level in the lung of the YT + RH group of mice was lower, the SOD activity was higher, and in vitro treatment of YT and RH combination attenuated reactive oxygen species (ROS) expression in mouse macrophage RAW264.7 cells stimulated with cigarette smoke (CSE). YT + RH combination significantly reduced the expression of pNF-κB and pERK in the lung tissues and macrophage stimulated with CSE. Conclusions YT and RH combination attenuates cigarette smoke-induced inflammation and oxidative stress through inhibition of the NF-κB/ERK signaling pathway.
Collapse
|
6
|
Rang Y, Liu H, Liu C. Potential for non-starch polysaccharides in the prevention and remediation of cognitive impairment: A comprehensive review. Int J Biol Macromol 2022; 208:182-195. [PMID: 35301004 DOI: 10.1016/j.ijbiomac.2022.03.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/05/2022]
Abstract
Non-starch polysaccharides (NSPs) are food ingredients proven to be beneficial in a large number of health issues. However, there is no literature systematic review about the effects and corresponding mechanisms of NSPs on the prevention and remediation of cognitive impairment. In this review, studies on prevention and remediation of NSPs for cognitive deficit caused by diseases, menopause, ageing, chronic stress and environmental pollutants were summarized and the corresponding mechanisms were established. The anti-cognitive deficit effects of NSPs were associated with the modulation of amyloid β (Aβ) deposition, p-Tau aggregation, oxidative stress, inflammation, neuron apoptosis, neurogenesis, neurotransmitters, synaptic plasticity, autophagy and gut microbiota. Although the structure-function relationship has not been elucidated, several structural properties of NSPs such as molecular weight, sulfate content, hydroxyl group content, monosaccharide composition and molecular chain linkage might be crucial for the anti-cognitive deficit property. Notably, this review revealed that NSPs had a positive effect on cognitive impairment and proposed the future perspectives for further research on the anti-cognitive dysfunction effects of NSPs.
Collapse
Affiliation(s)
- Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
7
|
Selective activation of the estrogen receptor-β by the polysaccharide from Cynanchum wilfordii alleviates menopausal syndrome in ovariectomized mice. Int J Biol Macromol 2020; 165:1029-1037. [PMID: 32991896 DOI: 10.1016/j.ijbiomac.2020.09.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
The menopausal syndrome caused by rapid changes in hormone levels greatly influences the quality of life of women. Though hormone replacement therapy (HRT) is widely used to treat the menopausal syndrome, it exhibits many side effects, including the risk of thrombosis, cardiovascular diseases, and increased incidence of breast cancer; thus, diversifying the interest for phytotherapy-based materials as alternatives to HRT. Here, we isolated a crude polysaccharide fraction (CWPF) from Cynanchum wilfordii root that alleviated the ovariectomy-induced uterine atrophy and bone loss without changes in plasma estradiol concentration in mice. Increased plasma levels of follicle-stimulating hormone (FSH), alkaline phosphatase (ALP), osteocalcin (OC) in ovariectomized mice were also reduced to normal levels by CWPF administration. We found that the inhibitory effects of CWPF on menopausal symptoms were mediated by the estrogen receptor β (ER-β) specific activation, not ER-α. Moreover, CWPF treatment suppressed the phosphorylation of Akt, suggesting that CWPF alleviates post-menopausal symptoms by regulating ER-β related Akt signaling pathway. These results demonstrate that the polysaccharides corresponding to CWPF among the water-soluble extracts of CW could be used as a beneficial herbal alternative for the development of therapeutic agents to prevent menopausal syndrome in women.
Collapse
|
8
|
Zhou XD, Yang XJ, Zheng Y, Qin ZS, Sha W, Chen G, Zhang ZJ. Jie-Yu Pill, A Proprietary Herbal Medicine, Ameliorates Mood Disorder-Like Behavior and Cognitive Impairment in Estrogen-Deprived Mice Exposed to Chronic Unpredictable Mild Stress: Implication for a Potential Therapy of Menopause Syndrome. Front Psychiatry 2020; 11:579995. [PMID: 33329121 PMCID: PMC7673394 DOI: 10.3389/fpsyt.2020.579995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Jie-Yu Pill (JYP) is a proprietary herbal medicine initially developed to treat menstrual mood disorders. This study sought to determine whether JYP could alleviate menopausal psychiatric symptoms in ovariectomized (OVX) mice, an animal model of estrogen deprivation, exposed to chronic unpredictable mild stress (CUMS) and the underlying mechanisms in comparison with estrogen therapy. The OVX+CUMS mice were treated with 0.3 mg/kg estradiol (E2), 2.5 g/kg or 5 g/kg JYP for 36 days, and tested in multiple behavioral paradigms. Serum, uterus, and brain tissues were collected for the measurement of hypothalamus-pituitary-ovarian axis (HPO) and hypothalamus-pituitary-adrenal (HPA) axis hormones, γ-aminobutyric acid (GABA), glutamate, neurotrophins, and estrogen receptors. JYP and E2 had comparable efficacy in reducing anxiety- and depression-like behavior and cognitive impairment of the OVX+CUMS mice. E2 strikingly increased ratio of uterus to body weight of the OVX+CUMS mice, but JYP did not. Both agents suppressed HPO-axis upstream hormones, inhibited HPA-axis hyperactivity by reinstating hypothalamic GABA, restored hippocampal and prefrontal glutamate contents and its receptor expression in the OVX+CUMS mice. While JYP and E2 protected against decreases in hippocampal and prefrontal neurotrophins and estrogen receptors of the OVX+CUMS mice, unlike E2, JYP had no significant effects on these biomarkers in the uterus. These results suggest that JYP has comparable efficacy in ameliorating mood disorder-like behavior and cognitive impairment induced by a combination of estrogen deprivation and chronic stress in association with certain differential uterus-brain mechanisms compared to estrogen therapy. JYP may be a potential therapy for menopause-associated psychiatric disorders.
Collapse
Affiliation(s)
- Xi-Dan Zhou
- Li Ka Shing (LKS) Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Jing Yang
- Li Ka Shing (LKS) Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- Li Ka Shing (LKS) Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- Li Ka Shing (LKS) Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Sha
- Department of Research and Development, Henan Taifeng Biological Technology Corporation Limited, Kaifeng, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Zhang-Jin Zhang
- Li Ka Shing (LKS) Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|