1
|
Ping P, Yang T, Ning C, Zhao Q, Zhao Y, Yang T, Gao Z, Fu S. Chlorogenic acid attenuates cardiac hypertrophy via up-regulating Sphingosine-1-phosphate receptor1 to inhibit endoplasmic reticulum stress. ESC Heart Fail 2024; 11:1580-1593. [PMID: 38369950 PMCID: PMC11098655 DOI: 10.1002/ehf2.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. METHODS AND RESULTS To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO-induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO-treated H9c2 cells. Moreover, CGA inhibited ISO-induced up-regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R-like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase-12/9/3) but increased the expression of anti-apoptosis marker bcl-2 in a dose-dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine-1-phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO-induced inhibition on the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA-induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05). CONCLUSIONS CGA treatment attenuated ISO-induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and ControlJoint Logistic Support Force of Chinese People's Liberation ArmyBeijingChina
| | - Ting Yang
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Chaoxue Ning
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Qingkai Zhao
- Department of Health and MedicineHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Yali Zhao
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Tao Yang
- Department of OncologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Zhitao Gao
- School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
| | - Shihui Fu
- Department of CardiologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
- Department of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
2
|
Brandão SR, Reis-Mendes A, Neuparth MJ, Carvalho F, Ferreira R, Costa VM. The Metabolic Fingerprint of Doxorubicin-Induced Cardiotoxicity in Male CD-1 Mice Fades Away with Time While Autophagy Increases. Pharmaceuticals (Basel) 2023; 16:1613. [PMID: 38004479 PMCID: PMC10675798 DOI: 10.3390/ph16111613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The cardiotoxicity of doxorubicin (DOX) may manifest at the beginning/during treatment or years after, compromising patients' quality of life. We intended to study the cardiac pathways one week (short-term, control 1 [CTRL1] and DOX1 groups) or five months (long-term, CTRL2 and DOX2 groups) after DOX administration in adult male CD-1 mice. Control groups were given saline, and DOX groups received a 9.0 mg/Kg cumulative dose. In the short-term, DOX decreased the content of AMP-activated protein kinase (AMPK) while the electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) increased compared to CTRL1, suggesting the upregulation of fatty acids oxidation. Moreover, mitofusin1 (Mfn1) content was decreased in DOX1, highlighting decreased mitochondrial fusion. In addition, increased B-cell lymphoma-2 associated X-protein (BAX) content in DOX1 pointed to the upregulation of apoptosis. Conversely, in the long-term, DOX decreased the citrate synthase (CS) activity and the content of Beclin1 and autophagy protein 5 (ATG5) compared to CTRL2, suggesting decreased mitochondrial density and autophagy. Our study demonstrates that molecular mechanisms elicited by DOX are modulated at different extents over time, supporting the differences on clinic cardiotoxic manifestations with time. Moreover, even five months after DOX administration, meaningful heart molecular changes occurred, reinforcing the need for the continuous cardiac monitoring of patients and determination of earlier biomarkers before clinical cardiotoxicity is set.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Reis-Mendes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4585-116 Gandra, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vera Marisa Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Liu X, Qian N, Zhu L, Fan L, Fu G, Ma M, Bao J, Cao C, Liang X. Geniposide ameliorates acute kidney injury via enhancing the phagocytic ability of macrophages towards neutrophil extracellular traps. Eur J Pharmacol 2023; 957:176018. [PMID: 37634840 DOI: 10.1016/j.ejphar.2023.176018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Acute kidney injury (AKI) is a clinically serious disorder associated with high mortality rates and an increased risk of progression to end-stage renal disease. As an essential supportive treatment for patients with respiratory failure, mechanical ventilation not only save many critically ill patients, but also affect glomerular filtration function by changing renal hemodynamics, neurohumoral and positive end-expiratory pressure, eventually leading to AKI. AMP-activated protein kinase (AMPK), a crucial energy homeostasis regulator, could enhance macrophage phagocytic ability and inhibit inflammation, but whether it can engulf neutrophil extracellular traps (NETs) and alleviate mechanical ventilation-associated AKI is still unclear. In this study, we found that geniposide significantly ameliorated histopathological damage, reduced serum Cre and BUN levels. Besides, geniposide can also induce AMPK activation and enhance macrophage phagocytic ability toward NETs. Moreover, geniposide can markedly reduce the levels of high mobility group box 1 (HMGB1), and these effects were dependent on AMPK-PI3K/Akt signaling. Altogether, these results indicated that geniposide promoted macrophage efferocytosis by inducing AMPK-PI3K/Akt signaling activation, clearing NETs and ameliorating AKI.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Na Qian
- The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Li Zhu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China; Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Guanghao Fu
- The Second People's Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222006, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Jiaxin Bao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
4
|
Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, Kantarci M, Spanakis M, Nikitovic D, Lazopoulos G, Tsarouhas K, Tsatsakis A, Taghizadehghalehjoughi A. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J Pers Med 2023; 13:jpm13040649. [PMID: 37109035 PMCID: PMC10140899 DOI: 10.3390/jpm13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mecit Kantarci
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Dragana Nikitovic, Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios Lazopoulos
- Department of Cardiac Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
5
|
Wan Y, He B, Zhu D, Wang L, Huang R, Zhu J, Wang C, Gao F. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch Biochem Biophys 2021; 712:109050. [PMID: 34610336 DOI: 10.1016/j.abb.2021.109050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Doxorubicin (DOX) is an effective and widely used antineoplastic drug. However, its clinical application is limited due to its dose-dependent cardiotoxicity. Great efforts have been made to explore the pathological mechanism of DOX-induced cardiotoxicity (DIC), but new drugs and strategies to alleviate cardiac damage are still needed. Here, we aimed to investigate the effect of nicotinamide mononucleotide (NMN) on DIC in rats. The results of the present study showed that DOX treatment significantly induced cardiac dysfunction and cardiac injury, whereas NMN alleviated these changes. In addition, NMN inhibited Dox-induced activation of nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome-mediated inflammation, as evidenced by decreased caspase 1 and IL-1β activity. Moreover, NMN treatment increased glutathione (GSH) levels and superoxide dismutase (SOD) activity and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in DOX-treated rats. Furthermore, NMN treatment mitigated DOX-induced cardiomyocyte apoptosis and cardiac fibrosis. In conclusion, the results indicated that NMN protects against DIC in rats by inhibiting NLRP3 inflammasome activation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijue Huang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Jing Zhu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR, Imran M, Alshammari MK, Alshehri MM, Harshan AA, Alanazi A, Alhazmi BD, Sreeharsha N. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals (Basel) 2021; 14:ph14100970. [PMID: 34681194 PMCID: PMC8539940 DOI: 10.3390/ph14100970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022] Open
Abstract
The advancement in therapy has provided a dramatic improvement in the rate of recovery among cancer patients. However, this improved survival is also associated with enhanced risks for cardiovascular manifestations, including hypertension, arrhythmias, and heart failure. The cardiotoxicity induced by chemotherapy is a life-threatening consequence that restricts the use of several chemotherapy drugs in clinical practice. This article addresses the prevalence of cardiotoxicity mediated by commonly used chemotherapeutic and immunotherapeutic agents. The role of susceptible genes and radiation therapy in the occurrence of cardiotoxicity is also reviewed. This review also emphasizes the protective role of antioxidants and future perspectives in anticancer drug-induced cardiotoxicities.
Collapse
Affiliation(s)
- Archana Adhikari
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.M.B.A.); (M.C.)
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Manodeep Chakraborty
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
- Correspondence: (S.M.B.A.); (M.C.)
| | - Gayatri Thapa
- Pharmacology Department, Himalayan Pharmacy Institute Majhitar, Rangpo 737136, Sikkim, India; (A.A.); (G.T.)
| | - Nihar Ranjan Bhuyan
- Department of Pharmaceutical Analysis, Himalayan Pharmacy Institute, Majhitar, Rangpo 737136, Sikkim, India;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Aishah Ali Harshan
- Department of Pharmaceutical Care, Northern Area Armed Forces Hospital, King Khalid Military City Hospital, Hafr Al-Batin 39745, Saudi Arabia;
| | - Abeer Alanazi
- Department of Pharmaceutical Care, First Health Cluster in Eastern Province, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| | | | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bengaluru 560035, Karnataka, India
| |
Collapse
|
7
|
Huang L, Lyu Q, Zheng W, Yang Q, Cao G. Traditional application and modern pharmacological research of Eucommia ulmoides Oliv. Chin Med 2021; 16:73. [PMID: 34362420 PMCID: PMC8349065 DOI: 10.1186/s13020-021-00482-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
As a Traditional Chinese Medicine, Eucommia ulmoides Oliv. has been used for the treatment of various diseases since ancient times, involving lumbar pain, knee pain, osteoporosis, hepatoprotection, paralysis, intestinal haemorrhoids, vaginal bleeding, abortion, spermatorrhoea, foot fungus, anti-aging etc. With the developing discovery of E. ulmoides extracts and its active components in various pharmacological activities, E. ulmoides has gained more and more attention. Up to now, E. ulmoides has been revealed to show remarkable therapeutic effects on hypertension, hyperglycemia, diabetes, obesity, osteoporosis, Parkinson's disease, Alzheimer's disease, sexual dysfunction. E. ulmoides has also been reported to possess antioxidant, anti-inflammatory, neuroprotective, anti-fatigue, anti-aging, anti-cancer and immunoregulation activities etc. Along these lines, this review summarizes the traditional application and modern pharmacological research of E. ulmoides, providing novel insights of E. ulmoides in the treatment of various diseases.
Collapse
Affiliation(s)
- Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Ahmed AZ, Mumbrekar KD, Satyam SM, Shetty P, D'Souza MR, Singh VK. Chia Seed Oil Ameliorates Doxorubicin-Induced Cardiotoxicity in Female Wistar Rats: An Electrocardiographic, Biochemical and Histopathological Approach. Cardiovasc Toxicol 2021; 21:533-542. [PMID: 33740233 PMCID: PMC8169504 DOI: 10.1007/s12012-021-09644-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) is a potent anti-cancer antibiotic that was widely used for treatment of various cancers. It produces free radicals which result in extreme dose-limiting cardiotoxicity. This study investigated the cardioprotective potential of chia seed oil, an active polyphenolic nutraceutical against doxorubicin-induced cardiotoxicity in Wistar rats. Twenty-four female Wistar rats were divided into four groups (n = 6) which consist of normal control, DOX control, test-A and test-B group. Animals were prophylactically treated with two different doses of test drug, i.e. chia seed oil 2.5 ml/kg/day and 5 ml/kg/day in test-A and test-B groups orally for 7 days. Doxorubicin (25 mg/kg; single dose) was administered intraperitoneally to DOX control, Test-A and Test-B animals on the seventh day to induce cardiotoxicity. ECG analysis was done before and after treatment. Besides ECG, CK, CK-MB, LDH, AST, MDA and GSH were analyzed. DOX had significantly altered ECG, CK, CK-MB, LDH, AST, MDA and GSH. Pre-treatment with chia seed oil significantly alleviated DOX-induced ECG changes and also guarded against DOX-induced rise of serum CK, CK-MB and AST levels. Chia seed oil alleviated histopathological alteration in DOX-treated rats. It also significantly inhibited DOX-induced GSH depletion and elevation of MDA. The present study revealed that chia seed oil exerts cardioprotection against doxorubicin-induced cardiotoxicity in female Wistar rats. Our study opens the perspective to clinical studies to precisely consider chia seed oil as a potential chemoprotectant nutraceutical in the combination chemotherapy with doxorubicin to limit its cardiotoxicity.
Collapse
Affiliation(s)
- Akheruz Zaman Ahmed
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology &Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shakta Mani Satyam
- Department of Pharmacology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakashchandra Shetty
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Melanie Rose D'Souza
- Department of Anatomy, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Varun Kumar Singh
- Department of Pathology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Edalati S, Khajeniazi S. An Overview of Chemical and Biological Materials lead to Damage and Repair of Heart Tissue. Cardiovasc Eng Technol 2021; 12:505-514. [PMID: 34046843 DOI: 10.1007/s13239-021-00544-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality in developing countries. One of the challenges during CVDs studies is the creation of a damaged model of the heart. Many injured models of cardiac diseases are created by using chemical and biological materials. Many approaches were applied to simulate heart injury for investigating CVDs. In previous years, animal models could be used as a useful pattern in many investigations about the pathogenesis of the heart. Nowadays it has been proven that there are many differences between human and animal models in terms of responses or reactions to treatments. For such reasons, researchers prefer to use cellular models alongside the animal models for studying heart diseases. PURPOSE In this review, we collected information about some chemical and biological materials used to create damaged-heart models both in vitro and in vivo. After explaining the materials that induce cardiac damage, we explicate some methods for repairing the damage of heart. Finally, the role of extracellular vesicles as an important biological candidate for repairing heart damage is briefly discussed. CONCLUSION This mini-review tried to explain some methods which can induce cardiac damage and repair of heart cells by use chemical and biological materials. We considered that various molecular pathways play a role in restoration and that most of these pathways are connected in a complex network and, to this end, different chemicals and drugs have been studied to date. Nonetheless, more studies are needed to ensure the performance and safety of the drugs and chemicals produced.
Collapse
Affiliation(s)
- Saeideh Edalati
- Department of Medical Biotechnology, School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safoura Khajeniazi
- Stem Cell Research Center, Department of Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
10
|
MicroRNA-31-5p Exacerbates Lipopolysaccharide-Induced Acute Lung Injury via Inactivating Cab39/AMPK α Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8822361. [PMID: 33101593 PMCID: PMC7568166 DOI: 10.1155/2020/8822361] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) and the subsequent acute respiratory distress syndrome remain devastating diseases with high mortality rates and poor prognoses among patients in intensive care units. The present study is aimed at investigating the role and underlying mechanisms of microRNA-31-5p (miR-31-5p) on lipopolysaccharide- (LPS-) induced ALI. Mice were pretreated with miR-31-5p agomir, antagomir, and their negative controls at indicated doses for 3 consecutive days, and then they received a single intratracheal injection of LPS (5 mg/kg) for 12 h to induce ALI. MH-S murine alveolar macrophage cell lines were cultured to further verify the role of miR-31-5p in vitro. For AMP-activated protein kinase α (AMPKα) and calcium-binding protein 39 (Cab39) inhibition, compound C or lentiviral vectors were used in vivo and in vitro. We observed an upregulation of miR-31-5p in lung tissue upon LPS injection. miR-31-5p antagomir alleviated, while miR-31-5p agomir exacerbated LPS-induced inflammation, oxidative damage, and pulmonary dysfunction in vivo and in vitro. Mechanistically, miR-31-5p antagomir activated AMPKα to exert the protective effects that were abrogated by AMPKα inhibition. Further studies revealed that Cab39 was required for AMPKα activation and pulmonary protection by miR-31-5p antagomir. We provide the evidence that endogenous miR-31-5p is a key pathogenic factor for inflammation and oxidative damage during LPS-induced ALI, which is related to Cab39-dependent inhibition of AMPKα.
Collapse
|
11
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
12
|
Wu ZZ, Rao M, Xu S, Hu HY, Tang QZ. Coumestrol ameliorates doxorubicin-induced cardiotoxicity via activating AMPKα. Free Radic Res 2020; 54:629-639. [PMID: 32924662 DOI: 10.1080/10715762.2020.1822525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) acts as the cornerstone in multiple tumour chemotherapy regimens, however, its clinical application is often impeded due to the induction of a severe cardiotoxicity that eventually provokes left ventricular dysfunction and congestive heart failure. Coumestrol (CMT) is a common dietary phytoestrogen with pleiotropic pharmacological effects. The present study aims to investigate the role and mechanism of CMT on DOX-induced cardiotoxicity. Mice were intragastrically administrated with CMT (5 mg/kg/day) for consecutive 2 weeks and then received a single intraperitoneal injection of DOX (15 mg/kg) to mimic the clinical toxic effects after 8-day additional feeding. To verify the role of 5' AMP-activated protein kinase alpha (AMPKα), AMPKα2 global knockout mice were used. H9C2 cells were cultured to further validate the beneficial role of CMT in vitro. CMT administration notably ameliorated oxidative damage, cell apoptosis and cardiac dysfunction in DOX-treated mice. Besides, we observed that DOX-induced reactive oxygen species overproduction and cardiomyocyte apoptosis were also reduced by CMT incubation in H9C2 cells. Mechanistically, CMT activated AMPKα and Ampkα deficiency abolished the beneficial effects of CMT in vivo and in vitro. Finally, we proved that protein kinase A (PKA) was required for CMT-mediated AMPKα activation and cardioprotective effects. CMT activated PKA/AMPKα pathway to alleviate DOX-induced oxidative damage, cell apoptosis and cardiac dysfunction. Our findings provide a promising therapeutic agent for cancer patients receiving anthracycline chemotherapy.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.,Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Rao
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Xu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Yao Hu
- Department of Interventional Radiology, Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
13
|
Peroxiredoxin-1 Overexpression Attenuates Doxorubicin-Induced Cardiotoxicity by Inhibiting Oxidative Stress and Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2405135. [PMID: 32802259 PMCID: PMC7411498 DOI: 10.1155/2020/2405135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023]
Abstract
Background. Previous research has shown that peroxiredoxin 1 (Prdx1) is an important modulator of physiological and pathophysiological cardiovascular events. This study is aimed at investigating the role and underlying mechanism of Prdx1 in doxorubicin- (DOX-) induced cardiotoxicity. Cardiac-specific expression of Prdx1 was induced in mice, and the mice received a single dose of DOX (15 mg/kg) to generate cardiotoxicity. First, our study demonstrated that Prdx1 expression was upregulated in the heart and in cardiomyocytes after DOX treatment. Second, we provided direct evidence that Prdx1 overexpression ameliorated DOX-induced cardiotoxicity by attenuating oxidative stress and cardiomyocyte apoptosis. Mechanistically, we found that DOX treatment increased the phosphorylation level of apoptosis signal-regulating kinase-1 (ASK1) and the downstream protein p38 in the heart and in cardiomyocytes, and these effects were decreased by Prdx1 overexpression. In contrast, inhibiting Prdx1 promoted DOX-induced cardiac injury via the ASK1/p38 pathway. These results suggest that Prdx1 may be an effective therapeutic option to prevent DOX-induced cardiotoxicity.
Collapse
|