1
|
Malhotra S, Hurtado-Navarro L, Pappolla A, Villar LMM, Río J, Montalban X, Pelegrin P, Comabella M. Increased NLRP3 Inflammasome Activation and Pyroptosis in Patients With Multiple Sclerosis With Fingolimod Treatment Failure. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200100. [PMID: 36973075 PMCID: PMC10042441 DOI: 10.1212/nxi.0000000000200100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Inflammasomes are involved in the pathogenesis of different neuroimmune and neurodegenerative diseases, including multiple sclerosis (MS). In a previous study by our group, the nucleotide-binding oligomerization domain, leucine-rich repeat receptor and pyrin-domain-containing 3 (NLRP3) inflammasome was reported to be associated with the response to interferon-beta in MS. Based on recent data showing the potential for the oral therapy fingolimod to inhibit NLRP3 inflammasome activation, here we investigated whether fingolimod could also be implicated in the response to this therapy in patients with MS. METHODS NLRP3 gene expression levels were measured by real-time PCR in peripheral blood mononuclear cells at baseline and after 3, 6, and 12 months in a cohort of patients with MS treated with fingolimod (N = 23), dimethyl fumarate (N = 21), and teriflunomide (N = 21) and classified into responders and nonresponders to the treatment according to clinical and radiologic criteria. In a subgroup of fingolimod responders and nonresponders, the percentage of monocytes with an oligomer of ASC was determined by flow cytometry, and the levels of interleukin (IL)-1β, IL-18, IL-6, tumor necrosis factor (TNF)α, and galectin-3 were quantified by ELISA. RESULTS NLPR3 expression levels were significantly increased in fingolimod nonresponders after 3 (p = 0.03) and 6 months (p = 0.008) of treatment compared with the baseline but remained similar in responders at all time points. These changes were not observed in nonresponders to the other oral therapies tested. The formation of an oligomer of ASC in monocytes after lipopolysaccharide and adenosine 5'-triphosphate stimulation was significantly decreased in responders (p = 0.006) but increased in nonresponders (p = 0.0003) after 6 months of fingolimod treatment compared with the baseline. Proinflammatory cytokine release from stimulated peripheral blood mononuclear cells was comparable between responders and nonresponders, but galectin-3 levels on cell supernatants, as a marker of cell damage, were significantly increased in fingolimod nonresponders (p = 0.02). DISCUSSION The differential effect of fingolimod on the formation of an inflammasome-triggered ASC oligomer in monocytes between responders and nonresponders could be used as a response biomarker after 6 months of fingolimod treatment and suggests that fingolimod may exert their beneficial effects by reducing inflammasome signaling in a subset of patients with MS.
Collapse
Affiliation(s)
- Sunny Malhotra
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Laura Hurtado-Navarro
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Agustin Pappolla
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Luisa M M Villar
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Jordi Río
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Xavier Montalban
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pablo Pelegrin
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Manuel Comabella
- From the Servei de Neurologia-Neuroimmunologia (S.M., A.P., J.R., X.M., M.C.), Centre d´Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d´Hebron (VHIR), Hospital Universitari Vall d´Hebron, Universitat Autònoma de Barcelona, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca) (L.H.-N., P.P.), University Clinical Hospital Virgen de la Arrixaca, Spain; Departments of Neurology and Immunology (L.M.M.V.), Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigacion Sanitaria, Madrid, Spain; and Department of Biochemistry and Molecular Biology B and Immunology (P.P.), Faculty of Medicine, University of Murcia, Murcia, Spain.
| |
Collapse
|
2
|
Camacho-Toledano C, Machín-Díaz I, Calahorra L, Cabañas-Cotillas M, Otaegui D, Castillo-Triviño T, Villar LM, Costa-Frossard L, Comabella M, Midaglia L, García-Domínguez JM, García-Arocha J, Ortega MC, Clemente D. Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis. J Neuroinflammation 2022; 19:277. [PMCID: PMC9675277 DOI: 10.1186/s12974-022-02635-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background The increasing number of treatments that are now available to manage patients with multiple sclerosis (MS) highlights the need to develop biomarkers that can be used within the framework of individualized medicine. Fingolimod is a disease-modifying treatment that belongs to the sphingosine-1-phosphate receptor modulators. In addition to inhibiting T cell egress from lymph nodes, fingolimod promotes the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), whose monocytic subset (M-MDSCs) can be used as a biomarker of disease severity, as well as the degree of demyelination and extent of axonal damage in the experimental autoimmune encephalomyelitis (EAE) model of MS. In the present study, we have assessed whether the abundance of circulating M-MDSCs may represent a useful biomarker of fingolimod efficacy in EAE and in the clinical context of MS patients. Methods Treatment with vehicle or fingolimod was orally administered to EAE mice for 14 days in an individualized manner, starting the day when each mouse began to develop clinical signs. Peripheral blood from EAE mice was collected previous to treatment and human peripheral blood mononuclear cells (PBMCs) were collected from fingolimod to treat MS patients’ peripheral blood. In both cases, M-MDSCs abundance was analyzed by flow cytometry and its relationship with the future clinical affectation of each individual animal or patient was assessed. Results Fingolimod-treated animals presented a milder EAE course with less demyelination and axonal damage, although a few animals did not respond well to treatment and they invariably had fewer M-MDSCs prior to initiating the treatment. Remarkably, M-MDSC abundance was also found to be an important and specific parameter to distinguish EAE mice prone to better fingolimod efficacy. Finally, in a translational effort, M-MDSCs were quantified in MS patients at baseline and correlated with different clinical parameters after 12 months of fingolimod treatment. M-MDSCs at baseline were highly representative of a good therapeutic response to fingolimod, i.e., patients who met at least two of the criteria used to define non-evidence of disease activity-3 (NEDA-3) 12 months after treatment. Conclusion Our data indicate that M-MDSCs might be a useful predictive biomarker of the response of MS patients to fingolimod. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02635-3.
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Isabel Machín-Díaz
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Leticia Calahorra
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - María Cabañas-Cotillas
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - David Otaegui
- grid.432380.eMultiple Sclerosis Unit, Biodonostia Health Institute, 20014 Donostia-San Sebastián, Spain
| | - Tamara Castillo-Triviño
- grid.432380.eMultiple Sclerosis Unit, Biodonostia Health Institute, 20014 Donostia-San Sebastián, Spain ,grid.414651.30000 0000 9920 5292Neurology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - Luisa María Villar
- grid.411347.40000 0000 9248 5770Immunology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lucienne Costa-Frossard
- grid.411347.40000 0000 9248 5770Immunology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain ,grid.411347.40000 0000 9248 5770Multiple Sclerosis Unit, Neurology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Manuel Comabella
- grid.411083.f0000 0001 0675 8654Neurology-Neuroimmunology Service, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- grid.411083.f0000 0001 0675 8654Neurology-Neuroimmunology Service, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel García-Domínguez
- grid.410526.40000 0001 0277 7938Multiple Sclerosis Unit, Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jennifer García-Arocha
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - María Cristina Ortega
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Diego Clemente
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
3
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|