1
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
2
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Liu C, Wang S, Xiang Z, Xu T, He M, Xue Q, Song H, Gao P, Cong Z. The chemistry and efficacy benefits of polysaccharides from Atractylodes macrocephala Koidz. Front Pharmacol 2022; 13:952061. [PMID: 36091757 PMCID: PMC9452894 DOI: 10.3389/fphar.2022.952061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.
Collapse
Affiliation(s)
- Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| |
Collapse
|
4
|
Tolerance Assessment of Atractylodes macrocephala Polysaccharide in the Diet of Largemouth Bass (Micropterus salmoides). Antioxidants (Basel) 2022; 11:antiox11081581. [PMID: 36009300 PMCID: PMC9404858 DOI: 10.3390/antiox11081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Atractylodes macrocephala polysaccharide (AMP) can enhance antioxidant defense and anti-inflammation, as the tolerance levels of AMP in aquaculture is important for additive utilization. However, the tolerance dose of AMP is unknown. We assess the tolerance levels of AMP in juvenile largemouth bass (3.38 ± 0.11 g) by feeding them a 0, 400, 4000, or 8000 mg/kg AMP supplemented diet for 10 weeks. The 400 mg/kg AMP dose increased growth performance. The Nrf2/Keap1 signaling pathway was activated, as indicated by Keap1 and Nrf2 protein levels in the liver. Enhanced activity of antioxidant enzymes (SOD, GPx), together with increased mRNA levels of antioxidant genes (sod, gpx) and decreased accumulation of reactive oxygen species (ROS) and MDA, was found in the liver, implying the antioxidant effect of AMP. Nutrient absorption was enhanced by AMP, as reflected by the increased length of intestinal villi and microvilli. However, 4000 and 8000 mg/kg AMP induced oxidant stress, as indicated by increased plasma ALT and AST content and decreased mRNA levels of antioxidant genes (sod, gpx) in the liver and intestinal tissues. Inflammatory reactions were also induced by high doses of AMP, as reflected by enhanced levels of pro-inflammatory cytokines (tnfα, nfκb) in the liver, intestinal, and kidney tissues and inhibited levels of anti-inflammatory cytokines (tgfβ, iκb). Histological analysis reveals inflammatory cell infiltration and tissue damage. Thus, the safe tolerance margin of AMP supplement for largemouth bass was 400–4000 mg/kg.
Collapse
|
5
|
Feng Y, Qiu Y, Duan Y, He Y, Xiang H, Sun W, Zhang H, Ma H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int 2022; 153:110913. [DOI: 10.1016/j.foodres.2021.110913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
|
6
|
Fang H, Zheng K, Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Can J Microbiol 2022; 68:353-366. [PMID: 35080442 DOI: 10.1139/cjm-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atractylodes macrocephala Koidz. (AMK) is widely used owing to its pharmacological activity in traditional Chinese medicine (TCM). Here, we aimed to characterize the differentially expressed genes (DEGs) of one- and three-year growth (OYG and TYG) rhizomes of AMK combined with the endophytic bacterial diversity analysis using high-throughput RNA-sequencing. 114,572 unigenes were annotated in six public databases. 3570 DEGs revealed a clear difference, of which 936 and 2634 genes were up- and down-regulated, respectively. The results of KEGG pathway analysis indicated that DEGs corresponding to the terpenoid synthesis gene were downregulated in TYG rhizomes. 414,424 sequences corresponding to the 16S rRNA gene were divided into 1267 operational taxonomic units (OTUs). Moreover, the diversity of endophytic bacteria changed with species in OYG (773) and TYG (1201) rhizomes at OTU level, and Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla. Comparison of species differences among different growth years revealed that some species were significantly different, such as Actinomycetes, Variovorax, Cloacibacterium, etc. Interestingly, the decrease in the function-related metabolism of terpenoids and polyketides was found to be correlated the low expression of terpene synthesis genes in TYG rhizomes assessed using PICRUSt2. These data provide a scientific basis for elucidating the mechanism underlying metabolite accumulation and endophytic bacterial diversity in relation to the growth years in AMK.
Collapse
Affiliation(s)
- Huiyong Fang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, College of Pharmacy, China;
| | - Kaiyan Zheng
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Jianyun Zhang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China, 050200.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China, 050200;
| | - Xian Gu
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yanyun Zhao
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| | - Yuguang Zheng
- Hebei Chemical and Pharmaceutical College, 118457, Shijiazhuang, Hebei, China.,Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China;
| | - Qian Wang
- Hebei University of Chinese Medicine, 441322, Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China.,Hebei University of Chinese Medicine, 441322, College of Pharmacy, Shijiazhuang, China;
| |
Collapse
|
7
|
Hou R, Zhou L, Fu Y, Wang T, Li Z, Zhou L, Zhang G, Tian X. Chemical characterization of two fractions from Sanghuangporus sanghuang and evaluation of antidiabetic activity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Hou R, Xu T, Li Q, Yang F, Wang C, Huang T, Hao Z. Polysaccharide from Echinacea purpurea reduce the oxidant stress in vitro and in vivo. Int J Biol Macromol 2020; 149:41-50. [PMID: 31953178 DOI: 10.1016/j.ijbiomac.2020.01.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Echinacea purpurea polysaccharides (EPPS) were extracted through water extract and alcohol precipitate method. Three polysaccharides were purified by DEAE cellulose, named EPPS-1, EPPS-2 and EPPS-3. The antioxidant activities in three polysaccharides were screened by free radical scavenging test and EPPS-3 possessed the best antioxidant function. Then the antioxidant activities of EPPS-3 were further explored in oxidative damage model in vitro and in vivo for the first time. The results showed that the antioxidases and the metabolism content were significantly improved in EPPS-3 group. EPPS-3 could protect hepatic tissue from the injury of CCl4 compared with the oxidative damage model. The mechanism research demonstrated that EPPS-3 restrained cell apoptosis and promoted Nrf2 cell signal pathway to play an antioxidant impact. Therefore, EPPS-3 an ingredient could be served as amazing gift for food industry and feed additive.
Collapse
Affiliation(s)
- Ranran Hou
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Tianli Xu
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Qiu Li
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Fengfang Yang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Chunyuan Wang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Tingting Huang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, China; Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|