1
|
Gruppi A, Giuberti G, Duserm Garrido G, Spigno G. Effect of different fibre addition on cookie dough and texture. FOOD SCI TECHNOL INT 2024; 30:614-622. [PMID: 36890775 DOI: 10.1177/10820132231162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Different commercial fibres from bamboo (BAM), cocoa (COC), psyllium (PSY), chokeberry (ARO) and citrus (CIT) were characterized for technological (oil- and water-holding capacity, solubility and bulk density) and physical (moisture, colour and particle size) features and added to a cookie recipe. The doughs were prepared using sunflower oil and white wheat flour was substituted with 5% (w/w) of the selected fibre ingredient. The attributes of the resulting doughs (colour, pH, water activity and rheological tests) and cookies (colour, water activity, moisture content, texture analysis and spread ratio) were compared to control doughs and to cookies made with refined flour and whole flour formulation. The selected fibres consistently impacted dough rheology and, consequently on, the spread ratio and the texture of the cookies. While the viscoelastic behaviour of the control dough made with refined flour was maintained in all sample doughs, adding fibre decreased loss factor (tan δ), except for ARO-added dough. Substitution of wheat flour with fibre decreased the spread ratio except for the PSY addition. The lowest spread ratio values were observed for CIT-added cookie, which were similar to whole flour cookies. The addition of phenolic-rich fibres positively affected the in vitro antioxidant activity of the final products.
Collapse
Affiliation(s)
- Alice Gruppi
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Guillermo Duserm Garrido
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Spigno
- DiSTAS - Department for Sustainable Food Process - Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
2
|
Rocchetti G, Leni G, Rebecchi A, Dordoni R, Giuberti G, Lucini L. The distinctive effect of different insect powders as meat extenders in beef burgers subjected to cooking and in vitro gastrointestinal digestion. Food Chem 2024; 442:138422. [PMID: 38241998 DOI: 10.1016/j.foodchem.2024.138422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Mealworm (MWP), migratory locust (LP), and house cricket (CP) are novel foods recently authorized by the European Commission. This work tested their powders as meat extenders at 5% inclusion in beef burgers. Insect powders were abundant in phenolics, recording the highest values in LP (1184.9 μg/g). The sensory analysis highlighted a higher visual and olfactory acceptability for MWP-burgers, followed by CP- and LP-burgers, whereas the texture of cooked burgers remained unaffected. Following pan-cooking, MWP-burgers and control exhibited comparable chemical profiles, while a significant down-accumulation of the heterocyclic amine 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline was observed in CP-burgers. In vitro gastrointestinal digestion highlighted metabolomic trends like control for MWP- and LP-burgers. In contrast, a reduced accumulation of lipids and increased content of dipeptides like glutaminylarginine (possibly acting as enzyme modulators) was observed for the CP-burgers.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Giulia Leni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Roberta Dordoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
3
|
Principato L, Carullo D, Gruppi A, Duserm Garrido G, Giuberti G, Lambri M, Spigno G, Bassani A. A Potentially Ecosustainable Hazelnut/Carob-Based Spread. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:4863035. [PMID: 38515832 PMCID: PMC10957253 DOI: 10.1155/2024/4863035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 03/23/2024]
Abstract
Commercial cocoa and hazelnut-based sweet spreads typically present a poor nutribiochemical level due to their ingredients and recipes, while nowadays, there is the need of developing sustainable food products addressing both an improved nutritional and environmental profile. The aim of this work was then to develop an innovative hazelnut/carob-based spread with potential high sustainability and nutritional profile, including the exploitation of grape-processing residues (grape skin flour and grapeseed oil) and carob pulp as cocoa surrogate. Rheological (rotational/oscillatory), oxidative, and thermal features of the spread were assessed and compared with two commercial nut-cocoa-based products. Tribology was used to mimic and evaluate the spreads' behavior during oral consumption, and sensory profile (by quantitative descriptive analysis) was also assessed. All products exhibited a pseudoplastic behavior, with the elastic component prevailing over the viscous one. The innovative product showed the highest lubricity from both rheological and sensory analysis, thus well correlating to the obtained lowest viscosity and friction factor trends. Grapeseed oil provided a better nutritional profile, but the largest amount of unsaturated fatty acids promoted oxidation, despite the higher total phenolic content and antioxidant capacity coming from the use of carob and grape skin powders. The sensory perception investigation revealed a characteristic mouthfeel/flavor for the new spread identified having a more fluid consistency and a bitter/sour taste, together with a greater stickiness and a poorer smoothness due to a higher fiber content and solid fat absence.
Collapse
Affiliation(s)
- Laura Principato
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Daniele Carullo
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Alice Gruppi
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Guillermo Duserm Garrido
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Gianluca Giuberti
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Milena Lambri
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Giorgia Spigno
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| | - Andrea Bassani
- DiSTAS-Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza 29121, Italy
| |
Collapse
|
4
|
Cela N, Giorgione V, Fassio F, Torri L. Impact of circular economy information on sensory acceptability, purchase intention and perceived value of upcycled foods by young consumers. Food Res Int 2024; 175:113765. [PMID: 38129001 DOI: 10.1016/j.foodres.2023.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The acceptability of upcycled foods is influenced by individual, context and product-related factors. This study aimed at investigating the impact of circular economy (CE) information on consumers' sensory acceptability, purchase intention and perceived value of upcycled foods, taking into account eating behaviours and personality traits that could be related to the consumers' sustainable consumption habits. To this aim, a group of young subjects (n = 80, 18-35 years old) participated in a two-step study. Firstly, an online questionnaire was administered to participants to gather information about their individual characteristics. Then, participants were divided into two groups, one receiving CE information (CE+) and one not receiving it (CE-), and they were asked to indicate the sensory acceptability, purchase intention and the perceived value of three upcycled foods, such as biscuits with grape pomace flour, beer brewed with leftover bread and a dairy product made from recovered crushed cheese. Questionnaire results showed that high individual responsibility, interest in healthy foods and high awareness of the social impact of their behaviours could be linked to a positive purchase intention for upcycled foods, as opposed to individual disgust sensitivity. No significant effect of CE information (p > 0.05) on sensory acceptability and purchase intention of all three upcycled foods was observed. Moreover, application of Principal Component Analysis (PCA) to the sensory data resulted in satisfactory classification of upcycled foods in terms of perceived values, explaining 86.83 % of data variability: the first principal component discriminated samples according to product category whereas the second principal component was able to clearly separate products according to CE information. Findings from this study provided valuable insights into the key individual characteristics that impact sustainable consumption habits, also highlighting the role of communication strategies in shaping consumer perceptions of upcycled foods so as to encourage a more sustainable consumption behaviour.
Collapse
Affiliation(s)
| | | | | | - Luisa Torri
- University of Gastronomic Sciences, Bra, CN, Italy.
| |
Collapse
|
5
|
Indiarto R, Reni R, Utama GL, Subroto E, Pangawikan AD, Djali M. The physicochemical, antioxidant, and sensory properties of chocolate biscuits incorporated with encapsulated mangosteen ( Garcinia mangostana L.) peel extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2159429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Reni Reni
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Gemilang Lara Utama
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Aldila Din Pangawikan
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mohamad Djali
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
6
|
Younesi M, Peighambardoust SH, Sarabandi K, Akbarmehr A, Ahaninjan M, Soltanzadeh M. Application of structurally modified WPC in combination with maltodextrin for microencapsulation of Roselle (Hibiscus sabdariffa) extract as a natural colorant source for gummy candy. Int J Biol Macromol 2023:124903. [PMID: 37220850 DOI: 10.1016/j.ijbiomac.2023.124903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
The aim of this work was to improve the stability of Roselle extract (RE) by spray-drying using maltodextrin (MD) alone, and in combination with WPC in the forms of unmodified and modified (via ultrasonication, UWPC, or enzymatic hydrolysis, HWPC). Enzymatic hydrolysis by improving the surface activity of WPC increased spray-drying yield (75.1 %), and improved physical (flow) and functional (solubility, and emulsifying) properties of obtained microparticles. Degree of hydrolysis of the primary WPC (2.6 %) was increased to 6.1 % and 24.6 % after ultrasonication and hydrolysis, respectively. Both modifications caused a significant increase in the solubility of WPC, in a way that initial solubility (10.6 %, at pH = 5) was significantly increased to 25.5 % in UWPC, and to 87.3 % in HWPC (P < 0.05). Furthermore, emulsifying activity (20.6 m2/g) and emulsifying stability (17 %) indices of primary WPC (at pH = 5) were significantly increased to 32 m2/g and 30 % in UWPC, and to 92.4 m2/g and 69.0 % in HWPC, respectively (P < 0.05). FT-IR analysis indicated successful encapsulation of RE within carriers' matrix. According to FE-SEM study, the surface morphology of microparticles was improved when modified HWPC was used as a carrier. Microencapsulation of RE with HWPC showed the highest contents of total phenolic compounds (13.3 mg GAE/mL), total anthocyanins (9.1 mg C3G/L) as well as a higher retention of antioxidant activity according to ABTS+ (85.0 %) and DPPH (79.5 %) radicals scavenging assays. Considering all properties of microparticles obtained by HWPC next to their color attributes, it can be concluded that HWPC-RE powders could be used as natural colorant and antioxidant source for the fortification of gummy candy. Gummy candy obtained using 6 % concentration of the above powder gave the highest overall sensory scores.
Collapse
Affiliation(s)
- Mohsen Younesi
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir Akbarmehr
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mehdi Ahaninjan
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Maral Soltanzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
7
|
Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr 2023; 10:1118761. [PMID: 37057062 PMCID: PMC10086256 DOI: 10.3389/fnut.2023.1118761] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are recognized as natural sources of antioxidants (e.g., polyphenols, flavonoids, vitamins, and other active compounds) that can be extracted by green solvents like water, ethanol, or their binary mixtures. Plant extracts are becoming more used as food additives in various food systems due to their antioxidant abilities. Their application in food increases the shelf life of products by preventing undesirable changes in nutritional and sensory properties, such as the formation off-flavors in lipid-rich food. This review summarizes the most recent literature about water or ethanol-water plant extracts used as flavors, colorings, and preservatives to fortify food and beverages. This study is performed with particular attention to describing the benefits of plant extract-fortified products such as meat, vegetable oils, biscuits, pastries, some beverages, yogurt, cheese, and other dairy products. Antioxidant-rich plant extracts can positively affect food safety by partially or fully replacing synthetic antioxidants, which have lately been linked to safety and health issues such as toxicological and carcinogenic consequences. On the other hand, the limitations and challenges of using the extract in food should be considered, like stability, level of purity, compatibility with matrix, price, sensory aspects like distinct taste, and others. In the future, continuous development and a tendency to use these natural extracts as food ingredients are expected, as indicated by the number of published works in this area, particularly in the past decade.
Collapse
Affiliation(s)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czechia
| |
Collapse
|
8
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Capanoglu E, Nemli E, Tomas-Barberan F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6787-6804. [PMID: 35195402 PMCID: PMC9204820 DOI: 10.1021/acs.jafc.1c07104] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Worldwide, a huge amount of agricultural food wastes and byproducts containing valuable bioactive compounds are generated, especially throughout the entire supply chain. Minimizing food wastes and byproducts is the first option to avoid environmental problems, and to help the economy and the society. Although many countries implement policies to reduce food wastes and byproducts, and different management methods are available to utilize agricultural food wastes, they are still produced annually. Nanotechnological and biotechnological approaches are recently used as novel and green applications to valorize agricultural food wastes and improve their stability and applicability. In this Review, these approaches are covered in detail with given examples. Another valorization way of consumable food waste is using it for functional food production. This Review focuses on specific examples of functional foods with food waste as an ingredient. In addition, the problems and limitations of waste management and valorization methods are investigated, considering future perspectives.
Collapse
Affiliation(s)
- Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- E-mail: (E. Capanoglu)
| | - Elifsu Nemli
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Francisco Tomas-Barberan
- Quality,
Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
- E-mail: (F. Tomas-Barberan)
| |
Collapse
|
10
|
de Jesus Freitas T, Assunção LS, de Lima Silva V, Oliveira TS, Conceição ISR, Machado BAS, Nunes IL, Otero DM, Ribeiro CDF. Prospective Study on Microencapsulation of Oils and Its Application in Foodstuffs. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:219-234. [PMID: 33888053 DOI: 10.2174/1872210515666210422123001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Edible oils have gained the interest of several industrial sectors for the different health benefits they offer, such as the supply of bioactive compounds and essential fatty acids. Microencapsulation is one of the techniques that has been adopted by industries to minimize the degradation of oils, facilitating their processing. OBJECTIVE To evaluate the intellectual property related to patent documents referring to microencapsulated oils used in foods. METHODS This prospective study investigated the dynamics of patents filed in the Espacenet and National Institute of Industrial Property (INPI) databases, and it mapped technological developments in microencapsulation in comparison with scientific literature. RESULTS The years 2015 and 2018 showed the greatest growth in the number of patents filed in the Espacenet and INPI databases, respectively, with China leading the domains of origin, inventors, and owners of microencapsulation technology. The largest number of applications of microcapsules were observed in the food industry, and the foods containing microencapsulated oils were powdered seasonings, dairy products, rice flour, nutritional formulae, pasta, nutritional supplements, and bread. The increase in oxidative stabilities of oils was the most cited objective to microencapsulate oils. Spray drying was the most widely used microencapsulation technique, and maltodextrin, gum arabic, and modified starch were the most widely used wall materials. CONCLUSION Microencapsulation of oils has been expanding over the years and increasing the possibilities of the use of microcapsules, but further investments and development of policies and incentive programs to boost this technology need to be made in less developed countries. For future perspectives, the microencapsulation technique is already a worldwide trend in the food industry, enabling the development of new products to facilitate their insertion in the consumer market.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI CIMATEC, National Service of Industrial Learning, Laboratory of Pharmaceutical's Formulations, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), Salvador, Brazil
| | - Itaciara Larroza Nunes
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Camila Duarte Ferreira Ribeiro
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Brazil
- Nutrition School, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
11
|
Kamali Rousta L, Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Rafiee Z, Xiao J, Jafari SM. Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Sik B, Székelyhidi R, Lakatos E, Kapcsándi V, Ajtony Z. Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: an overview. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractFortification of foods with phenolic compounds is becoming increasingly popular due to their beneficial physiological effects. The biological activities reported include antioxidant, anticancer, antidiabetic, anti-inflammatory, or neuroprotective effects. However, the analysis of polyphenols in functional food matrices is a difficult task because of the complexity of the matrix. The main challenge is that polyphenols can interact with other food components, such as carbohydrates, proteins, or lipids. The chemical reactions that occur during the baking technologies in the bakery and biscuit industry may also affect the results of measurements. The analysis of polyphenols found in fortified foods can be done by several techniques, such as liquid chromatography (HPLC and UPLC), gas chromatography (GC), or spectrophotometry (TPC, DPPH, FRAP assay etc.). This paper aims to review the available information on analytical methods to fortified foodstuffs while as presenting the advantages and limitations of each technique.
Collapse
|
13
|
Kumar LRG, Sanath Kumar H, Tejpal CS, Anas KK, Nayak BB, Sarika K, Greeshma SS, Chatterjee NS, Mathew S, Ravishankar CN. Exploring the physical and quality attributes of muffins incorporated with microencapsulated squalene as a functional food additive. Journal of Food Science and Technology 2021; 58:4674-4684. [PMID: 34629532 DOI: 10.1007/s13197-020-04955-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Squalene, a triterpenoid compound is proven to possess immense bioactivities by virtue of its high antioxidant activity. The present study was designed to investigate the quality attributes of muffins as influenced by addition of encapsulated squalene. Nutritional analysis showed that calorific value of prepared muffins has ranged from 480.78 ± 0.10 to 501.61 ± 0.38 kcal. Baking loss was lowest in case of muffins prepared with encapsulated squalene with its crumb region recorded higher moisture content. Color kinetics study indicated that browning index (BI) was higher in crust portion of encapsulated squalene enriched muffins. Scanning electron micrographs showing that muffins with encapsulated squalene had stronger structural organization. This was further supported by the textural studies showed that the muffins with encapsulated squalene was cohesive, springier and chewy with less gumminess and stiffness indicating their efficacy in improving the textural quality. Oxidative stability and microbiological quality were also high in squalene enriched foods suggesting that squalene might have some antimicrobial effects. Outcome of the study indicated that encapsulated squalene can be very well utilised as a functional food ingredient in ready -to-eat functional foods. Supplementary information The online version contains supplementary material available at (10.1007/s13197-020-04955-9).
Collapse
Affiliation(s)
- Lekshmi R G Kumar
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - H Sanath Kumar
- Central Institute of Fisheries Education, Seven Bungalows, Andheri (W), Mumbai, 400061 India
| | - C S Tejpal
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - K K Anas
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - B B Nayak
- Central Institute of Fisheries Education, Seven Bungalows, Andheri (W), Mumbai, 400061 India
| | - K Sarika
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - S S Greeshma
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - N S Chatterjee
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - Suseela Mathew
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| | - C N Ravishankar
- Central Institute of Fisheries Technology, Matsyapuri P.O., Willingdon Island, Cochin, 682029 India
| |
Collapse
|
14
|
|
15
|
|
16
|
Walnut paste: oxidative stability and effect of grape skin extract addition. Heliyon 2019; 5:e02506. [PMID: 31687596 PMCID: PMC6819819 DOI: 10.1016/j.heliyon.2019.e02506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Walnut paste, obtained by roasting and grinding of kernels, was characterized and supplemented with encapsulated grape skin extract aiming to evaluate its potential effect on oxidative stability and/or antioxidant capacity. Based on the oxidation induction period in screening trials 5000 ppm (w/w) extract addition was selected as effective in inhibiting oxidation processes. Walnut paste with and without 5000 ppm grape skin extract were maintained for 15 days at 60 °C, simulating 2 year storage at 20 °C, based on an estimated activation energy of 80,327 kJ/mol for walnut lipid oxidation. Monitoring of data from peroxides, conjugated dienes and trienes, total phenolics, ABTS, ORAC, FRAP, and tocopherols values showed the deterioration of walnut paste started at the end of the observed period, even remaining below the threshold of unacceptability. Moreover, 5000 ppm extract addition did not prove to enhance oxidative stability nor antioxidant properties of the walnut paste. In the future, specific parameters of oxidation kinetics and antioxidant activity in the advanced phase of storage could be investigated.
Collapse
|