1
|
Alcarranza M, Alarcón-de-la-Lastra C, Recio Jiménez R, Fernández I, Castejón Martínez ML, Villegas I. Immunomodulatory Effects and Regulatory Mechanisms of ( R)-6-HITC, an Isothiocyanate from Wasabi ( Eutrema japonicum), in an Ex Vivo Mouse Model of LPS-Induced Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21520-21532. [PMID: 39298284 PMCID: PMC11450934 DOI: 10.1021/acs.jafc.4c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
The present study aimed to investigate the effects of (R)-(-)-1-isothiocyanato-6-(methylsulfinyl)-hexane [(R)-6-HITC], the major isothiocyanate present in wasabi, in an ex vivo model of inflammation using lipopolysaccharide-stimulated murine peritoneal macrophages. (R)-6-HITC improved the immune response and mitigated oxidative stress, which involved suppression of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines (IL-1β, IL-6, IL-17, IL-18, and TNF-α) production and downregulation of pro-inflammatory enzymes such as inducible nitric oxide synthase, COX-2, and mPGES-1. In addition, (R)-6-HITC was able to activate the Nrf2/HO-1 axis while simultaneously inhibiting key signaling pathways, including JAK2/STAT3, mitogen-activated protein kinases, and canonical and noncanonical inflammasome pathways, orchestrating its potent immunomodulatory effects. Collectively, these findings demonstrate the potential of (R)-6-HITC as a promising nutraceutical for the management of immuno-inflammatory diseases and justify the need for further in vivo validation studies.
Collapse
Affiliation(s)
- Manuel Alcarranza
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento
de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Catalina Alarcón-de-la-Lastra
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento
de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Rocío Recio Jiménez
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Inmaculada Fernández
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María Luisa Castejón Martínez
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento
de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Isabel Villegas
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento
de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Zhang Z, Ge M, Wu D, Li W, Chen W, Liu P, Zhang H, Yang Y. Resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles: Preparation, characterization and synergistic anti-inflammatory effects. Carbohydr Polym 2024; 332:121916. [PMID: 38431417 DOI: 10.1016/j.carbpol.2024.121916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RES) is a natural polyphenol with excellent biological activity. But the poor stability and bioavailability of RES severely limit its application. Thus, the resveratrol-loaded sulfated Hericium erinaceus β-glucan-chitosan nanoparticles (DS-CS-RES NPs) were prepared using electrostatic self-assembly to solve these problems in this study. The structure of DS-CS-RES NPs was spherical or sub spherical shape with small average particle size (191.07 nm), which was characterized by FT-IR, FS, XRD and TEM. DS-CS-RES NPs exhibited good stability and RES had a sustainable release from the nanoparticles in gastrointestinal digestion. Meanwhile, DS-CS-RES NPs could improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the production of NO, IL-1β, IL-6 and TNF-α. Furthermore, DS-CS-RES NPs had strong anti-inflammatory activity by regulating protein levels of NF-κB p65, STAT1 and TLR4 through NF-κB and JAK-STAT1 signaling pathway in vitro, and sulfated H. erinaceus β-glucan-chitosan nanoparticle (DS-CS NPs) and RES had synergistic anti-inflammatory effect. Overall, DS-CS NPs can serve as a potential green and safe functional carrier for encapsulating resveratrol, which can improve its anti-inflammatory activity. This work may be conducive to the development of functional carrier for encapsulating RES and applications of hydrophobic active molecules in functional foods or medicines.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Meili Ge
- College of Food Science & Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Haiyun Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
3
|
Kim JS, Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. A Mixture of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Synergistically Protects against Oxidative Stress-Mediated Liver Injury. Antioxidants (Basel) 2023; 12:1556. [PMID: 37627551 PMCID: PMC10451536 DOI: 10.3390/antiox12081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50-200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jang-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| | - Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| |
Collapse
|
4
|
Kim MY, Kim MR, Hwang HS, Lee HJ. Hovenia dulcis Thunb. Fruit Extract Attenuates Psoriatic Skin Inflammation in Tumor Necrosis Factor- α-Stimulated Human Keratinocyte HaCaT Cells In Vitro. J Med Food 2023; 26:540-549. [PMID: 37428516 DOI: 10.1089/jmf.2022.k.0148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Hovenia dulcis Thunb. fruit (HDF) is traditionally used for treating liver diseases and alcohol poisoning. The purpose of this study was to explore the effects of HDF on hyperproliferation, levels of inflammatory cytokines, and signaling mechanisms in human psoriatic keratinocyte HaCaT cells. HDF showed a preventive effect on tumor necrosis factor-α (TNF-α)-induced abnormal proliferation of psoriatic keratinocytes. Furthermore, real-time reverse transcription-PCR analysis showed that HDF suppressed the expressions of inflammatory cytokines; interleukin (IL)-1α and IL-1β and chemokines; CCL-20 and CXCL-8 in TNF-α-induced HaCaT cells. Western blotting revealed that HDF suppressed the levels of phosphorylated IκB and STAT3 together with a decline in the levels of phosphorylated mitogen-activated protein kinases (MAPKs). These outcomes indicate that HDF prevents the abnormal proliferation of keratinocytes and modulates inflammatory responses by suppressing nuclear factor-κB (NF-κB) and STAT3 activation through downregulation of the MAPK signaling pathway in TNF-α-induced psoriatic keratinocytes. Our study demonstrates that HDF is prospective and beneficial for psoriatic skin inflammation.
Collapse
Affiliation(s)
- Min Young Kim
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon, Korea
| | - Mi Ran Kim
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon, Korea
| | - Hyung Seo Hwang
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon, Korea
| | - Hwa Jin Lee
- School of Industrial Bio-Pharmaceutical Science, Semyung University, Jecheon, Korea
| |
Collapse
|
5
|
Alcarranza M, Villegas I, Recio R, Muñoz-García R, Fernández I, Alarcón-de-la-Lastra C. ( R)-8-Methylsulfinyloctyl isothiocyanate from Nasturtium officinale inhibits LPS-induced immunoinflammatory responses in mouse peritoneal macrophages: chemical synthesis and molecular signaling pathways involved. Food Funct 2023. [PMID: 37469300 DOI: 10.1039/d3fo02009f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The aim of this study was to develop an optimal synthetic route to obtain natural (R)-8-methylsulfinyloctyl isothiocyanate ((R)-8-OITC), present in watercress, based on the "DAG methodology" as well as to evaluate its potential antioxidant and immunomodulatory effects, exploring possible signaling pathways that could be involved in an ex vivo model of murine peritoneal macrophages stimulated with LPS. Treatment with (R)-8-OITC inhibited the levels of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-17 and IL-18), intracellular ROS production and expression of pro-inflammatory enzymes (COX-2, iNOS and mPGES-1) through modulation of the expression of Nrf2, MAPKs (p38, JNK and ERK) and JAK/STAT, and the canonical and non-canonical pathways of the inflammasome. Taking all these together, our results provide a rapid and cost-effective synthetic route to obtain natural (R)-8-OITC and demonstrate that it could be a potential nutraceutical candidate for managing immuno-inflammatory pathologies. Therefore, further in vivo trials are warranted.
Collapse
Affiliation(s)
- Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Rocío Recio
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Inmaculada Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain.
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| |
Collapse
|
6
|
George G, Shyni GL, Mohan S, Abraham B, Nisha P, Ranjith S, Rajankutty K, Raghu KG. In vitro and in vivo anti-inflammatory and anti-arthritic effect of Tinospora cordifolia via modulation of JAK/STAT pathway. Inflammopharmacology 2023; 31:1009-1025. [PMID: 36840884 DOI: 10.1007/s10787-023-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disorder causing cartilage and joint degeneration. In spite of the availability of several robust drugs like biologics, most of the patients are unresponsive, and reports of severe adverse effects following long-term use are also there. Subsequently the use of natural plant-based products in RA therapy is broadening over the years. Tinospora cordifolia is a widely used medicinal plant in Ayurveda against various inflammatory disorders including RA. However, there is very limited knowledge regarding the actual molecular events responsible for its therapeutic effect, and this has limited its acceptance among the professionals. PURPOSE To explore the anti-inflammatory and anti-arthritic effect of hydro-alcoholic extract from Tinospora cordifolia. METHODS The rich polyphenol nature of the extract was elucidated using HPLC. LPS-stimulated murine macrophage cell line RAW 264.7 was used for in vitro studies, and collagen-induced arthritis (CIA) model was used for in vivo studies. RESULTS The polyphenols in TCE were identified using HPLC. TCE effectively downregulated the level of pro-inflammatory mediators (IL-6, TNF-α, PGE2, and NO) in LPS-stimulated RAW 264.7 cells. Subsequently the upregulated expression of COX-2 and iNOS following LPS stimulation were also downregulated by TCE. Furthermore, TCE targeted the upstream kinases of the JAK/STAT pathway, a crucial inflammatory pathway. The expression of VEGF, a key angiogenic factor as well as an inflammatory mediator was also decreased following pre-treatment with TCE. The anti-arthritic effect of TCE (150 mg/kg) was evaluated in the CIA model as well. From the results of histopathology, oral administration of TCE was found to be effective in reducing the clinical symptoms of arthritis including paw edema, erythema, and hyperplasia. In vivo results validated the in vitro results and there was a significant reduction in serum level of pro-inflammatory cytokines and mediators (IL-6, TNF-α, IL-17, NO, and PGE2). The phosphorylation of STAT3 and the expression of VEGF were also downregulated following TCE treatment. CONCLUSION Our study provided a detailed insight into the molecular events associated with anti-inflammatory and anti-arthritic effect of Tinospora cordifolia.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Sreelekshmi Mohan
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Billu Abraham
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Nisha
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Ranjith
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - K Rajankutty
- Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, 680005, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Fu X, Tan Y, Shi M, Zeng C, Qin S. Multi-Index Comprehensive Assessment Optimized Critical Flavonoids Extraction from Semen Hoveniae and Their In Vitro Digestive Behavior Evaluation. Foods 2023; 12:foods12040773. [PMID: 36832847 PMCID: PMC9955648 DOI: 10.3390/foods12040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Critical flavonoids from Semen Hoveniae have huge potential bioactivities on hypoglycemic. A multi-index comprehensive assessment based on Analytic Hierarchy Process (AHP) method was performed to optimize the extraction process of flavonoids from Semen Hoveniae, which taking dihydromyricetin, taxifolin, myricetin and quercetin as indexes, and, then, an in vitro simulated gastrointestinal digestion model was established to investigate the changes of flavonoids contents and their antioxidant capacity before and after digestion. The results showed that three influence factors acted significantly with the order of ethanol concentration > solid-liquid ratio > ultrasound time. The optimized extraction parameters were as follows: 1:37 w/v of solid-liquid ratio, 68% of ethanol concentration and 45 min for ultrasonic time. During in vitro digestion, the order of remaining ratio of four flavonoids in the extract was dihydromyricetin > taxifolin > myricetin > quercetin in gastric digestion, and remaining ratio of taxifolin was 34.87% while others were restructured in intestinal digestion. Furthermore, the 1,1-dipheny-2-picryhydrazyl free radical (DPPH ·) scavenging ability and oxygen radical absorption capacity (ORAC) of extract were more stable in gastric digestion. After an hour's intestinal digestion, the extract had no DPPH antioxidant capacity, but amazingly, its ORAC antioxidant capacity was retained or increased, which implied that substances were transformed and more hydrogen donors were produced. This study has carried out a preliminary discussion from the perspective of extraction and put forward a new research idea, to improve the in vivo bioavailability of the critical flavonoids from Semen Hoveniae.
Collapse
|
8
|
Marques-Santos F, Amendoeira MRR, Galvão RMS, Rocha LM, Faria RX. Comparative evaluation of plant extract effects on peritoneal, medullary and J774 cells. G8 macrophages. BRAZ J BIOL 2023; 83:e268859. [PMID: 37132741 DOI: 10.1590/1519-6984.268859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/23/2023] [Indexed: 05/04/2023] Open
Abstract
The use of medicinal plants as raw material for extracts production and pure substances isolation and subsequence development of new drugs represents a constantly growing area. However, some stages are indispensable before pharmacologically evaluating natural products such as medicines. Toxicity tests in mammalian cells are essential to initiate new drugs development or verify the substance's biocompatibility. Thus, we verified the toxicity of crude extracts and fractions with different polarities obtained from the leaves and stems of eight plant species. The toxic effect was evaluated on macrophages obtained from the bone marrow and peritoneal cavity of a Swiss webster mouse and J774 macrophages. G8 cell lineage. These macrophages were cultured in a 96-well plate, and the compounds were added at a concentration of 100 µg/mL for 24 hours. After this time, the supernatant was removed. The toxicity was evaluated for lactate dehydrogenase (LDH) release assay and the resazurin assay, which uses an indicator dye to measure oxidation-reduction reactions. The results showed a difference in the percentage of toxicity when comparing the same extract in different types of macrophages. This outcome indicates that these cells from different origins may exhibit different responses when exposed to the same natural compounds.
Collapse
Affiliation(s)
- F Marques-Santos
- Fundação Oswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - M R R Amendoeira
- Fundação Oswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - R M S Galvão
- Universidade Federal do Rio de Janeiro - UFRJ, Laboratório de Estudos de Farmacologia Experimental, Rio de Janeiro, RJ, Brasil
| | - L M Rocha
- Universidade Federal Fluminense - UFF, Laboratório de Tecnologia em Produtos Naturais, Niterói, RJ, Brasil
| | - R X Faria
- Fundação Oswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
9
|
Zhang Z, Wu D, Li W, Chen W, Liu Y, Zhang J, Wan J, Yu H, Zhou S, Yang Y. Structural elucidation and anti-inflammatory activity of a proteoglycan from spent substrate of Lentinula edodes. Int J Biol Macromol 2023; 224:1509-1523. [PMID: 36550792 DOI: 10.1016/j.ijbiomac.2022.10.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
A proteoglycan LEPS1 was firstly isolated and purified from the spent substrate of Lentinula edodes, an agricultural waste that may cause environmental pollution. The average molecular weight of LEPS1 was 1.18 × 104 g/mol, and carbohydrate moiety (88.9 %) was composed of glucose, arabinose, galactose, xylose and mannose at a molar ratio of 1.2:1.2:1.0:2.3:1.1. The protein moiety (8.5 %) of LEPS1 was bonded to the polysaccharide chain via O-glycosidic linkage. LEPS1 could significantly improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the secretion of NO and decreasing the levels of pro-inflammatory factors (TNF-α, IL-1β and IL-6). LEPS1 inhibited JAK-STAT1 and p38 MAPK signaling pathway via modulating JAK expression, phosphorylation of STAT1 and phosphorylation of p38, respectively. Moreover, LEPS1 could promote the expression of CD 206 and IL-10 which were the markers for repairing macrophages. Overall, LEPS1 had anti-inflammatory activity and can potentially treat as a novel anti-inflammation agent. This work could provide scientific basis and valuable information for the highly efficient utilization of spent L. edodes substrates as the by-product in mushroom industries.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jianing Wan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
10
|
Chen X, Zhang J, Li R, Zhang H, Sun Y, Jiang L, Wang X, Xiong Y. Flos Puerariae- Semen Hoveniae medicinal pair extract ameliorates DSS-induced inflammatory bowel disease through regulating MAPK signaling and modulating gut microbiota composition. Front Pharmacol 2022; 13:1034031. [PMID: 36569313 PMCID: PMC9768334 DOI: 10.3389/fphar.2022.1034031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a global gastrointestinal disease characterized by relapsing and remitting inflammatory conditions. Flos Puerariae (the flower of Pueraria lobata [Willd.] Ohwi and P. thomsonii Benth.) and Hovenia dulcis Thunb. (Rhamnaceae) are traditional Chinese medicines. This medicinal pair has been used to treat various diseases due to its excellent anti-oxidant and anti-inflammatory activity. However, the effects of extracts from these plants on dextran sulfate sodium (DSS)-induced colitis have not been investigated; further study is needed to improve the understanding of their mechanisms of action and potential applications. Methods: The chemical constitution of extracts from Flos Puerariae and Semen Hoveniae (PHE) was analyzed using UPLC-LTQ-Orbitrap-MS/MS. The protective effects of PHE on mice with DSS-induced colitis were evaluated through assessment of body weight loss, disease activity index (DAI) score, colon length shortening, and pathological changes. The levels of inflammatory cytokines were determined by ELISA and RT-qPCR. Biomarkers of oxidative stress (ROS, CAT, SOD, MDA, and T-AOC) were analyzed using biochemical kits. The expression of MAPK proteins was determined by Western blotting analysis. Gut microbiota were analyzed via 16S rRNA sequencing. Results: Chemical composition analysis indicated that PHE contains various bioactive compounds, including puerarin, kakkalide, tectoridin, and genistin. The findings from this study suggest that PHE could effectively modulate histopathological score, inflammatory cell infiltration, and inflammatory factor secretion. Notably, PHE ameliorated oxidative stress by inhibiting activation of the MAPK pathway, leading to decreased inflammatory mediators and restored antioxidant enzyme activity. Furthermore, PHE treatment regulated the composition of the gut microbiota by increasing the abundance of benign bacteria, such as Akkermansia, and reducing the abundance of harmful bacteria, such as Proteobacteria. Conclusion: The findings from this study demonstrate the mechanism underlying the amelioration of DSS-induced intestinal oxidative stress by PHE and its positive impact on the restoration of the composition of gut microbiota.
Collapse
Affiliation(s)
- Xiaofan Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jiahui Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rui Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Li Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoya Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Xiaoya Wang, ; Yaokun Xiong,
| | - Yaokun Xiong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Xiaoya Wang, ; Yaokun Xiong,
| |
Collapse
|
11
|
Ning DS, Chen YJ, Lin CJ, Wang CC, Zhao HW, Wang KT, Lee MC, Tayo LL, Chiu WC, Yeh CL, Lee CJ. Hepatoprotective effect of botanical drug formula on high-fat diet-induced non-alcoholic fatty liver disease by inhibiting lipogenesis and promoting anti-oxidation. Front Pharmacol 2022; 13:1026912. [PMID: 36506588 PMCID: PMC9729544 DOI: 10.3389/fphar.2022.1026912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
With the prevalence of obesity and other components of metabolic syndrome, Non-alcoholic fatty liver disease (NAFLD) has become increasingly common. In recent years, much attention has been paid to various plant sources, hoping to find a treatment for NAFLD in plants. The Livsooth authentic herbal formula (LAH, ), a botanical drug formula combined with Puerariae lobatae radix, Lonicerae japonicae flos, Hoveniae semen, and Siraitiae fructus. This study used a network pharmacology approach to predict the potential mechanisms of LAH against NAFLD. Gene Ontology (GO) and KEGG pathway enrichment analyses have identified potential biochemical and signaling pathways. Subsequently, the potential mechanism of action of LAH on NAFLD predicted by network pharmacology analysis was validated in a high-fat diet (HFD)-induced NAFLD model in C57BL/6 mice. Our results demonstrated that LAH ameliorated hepatocyte steatosis in liver tissue by activating the AMPK pathway and decreasing serum triglycerides, low-density lipoprotein, glucose, and cholesterol. Besides, LAH increased the hepatic antioxidant enzymes activities, suggested that LAH improved oxidative stress markers in HFD induced NAFLD mice. In vitro experiments confirmed that the active component of LAH, puerarin, regulates lipid accumulation through the AMPK pathway. In conclusion, our study shows that network pharmacology predictions are consistent with experimental validation. LAH can be a candidate supplement for the prevention of NAFLD.
Collapse
Affiliation(s)
- De-Shan Ning
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Yu-Ju Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan,School of Pharmacy, Taipei Medical University, Taipei, Taiwan,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | - Lemmuel L. Tayo
- School of Chemical, Biological Materials Science and Engineering, Mapúa University, Manila, Philippines
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan,Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chia-Jung Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan,*Correspondence: Chia-Jung Lee,
| |
Collapse
|
12
|
Muñoz-García R, Sánchez-Hidalgo M, Montoya T, Alcarranza M, Ortega-Vidal J, Altarejos J, Alarcón-de-la-Lastra C. Effects of Oleacein, a New Epinutraceutical Bioproduct from Extra Virgin Olive Oil, in LPS-Activated Murine Immune Cells. Pharmaceuticals (Basel) 2022; 15:ph15111338. [PMID: 36355509 PMCID: PMC9699377 DOI: 10.3390/ph15111338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate the immunomodulatory effects of the secoiridoid from extra virgin olive oil, oleacein (OLA), deepening into the possible signaling pathways involved in LPS-activated murine peritoneal macrophages. Moreover, we have explored OLA-induced epigenetic changes in histone markers and related cytokine production in murine LPS-stimulated murine splenocytes. Murine cells were treated with OLA in the presence or absence of LPS (5 μg/mL) for 18 or 24 h. OLA modulated the oxidative stress and the inflammatory response produced by LPS stimulation in murine peritoneal macrophages, by the inhibition of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IFN-γ, IL-17 and IL-18) and ROS production and the expression of pro-inflammatory enzymes such as iNOS, COX-2 and m-PGES1. These protective effects could be due to the activation of the Nrf-2/HO-1 axis and the inhibition of JAK/STAT, ERK and P38 MAPKs and inflammasome canonical and non-canonical signaling pathways. Moreover, OLA modulated epigenetic modifications throughout histone methylation deacetylation (H3K18ac) and (H3K9me3 and H3K27me) in LPS-activated spleen cells. In conclusion, our data present OLA as an interesting anti-inflammatory and antioxidant natural compound that is able to regulate histone epigenetic markers. Nevertheless, additional in vivo studies are required to further investigate the beneficial effects of this EVOO secoiridoid, which might be a promising epinutraceutical bioproduct for the management of immune-related inflammatory diseases.
Collapse
Affiliation(s)
- Rocío Muñoz-García
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Tatiana Montoya
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Manuel Alcarranza
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
| | - Juan Ortega-Vidal
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Jaén, 23071 Jaén, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain
- Correspondence: ; Tel.: +34954559877
| |
Collapse
|
13
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
14
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
15
|
Huangkui Capsule Attenuates Lipopolysaccharide-Induced Acute Lung Injury and Macrophage Activation by Suppressing Inflammation and Oxidative Stress in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6626483. [PMID: 35528830 PMCID: PMC9068299 DOI: 10.1155/2021/6626483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023]
Abstract
Background Huangkui capsule (HKC) comprises the total flavonoid extract of flowers of Abelmoschus manihot (L.) Medicus. This study aimed to explore the effects of HKC on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and LPS-stimulated RAW 264.7 cells. Methods Enzyme-linked immunosorbent assay, histopathology, spectrophotometry, and quantitative real-time polymerase chain reaction were used for the assessments. Statistical analysis was performed using a one-way analysis of variance. Results LPS significantly increased lung inflammation, neutrophil infiltration, and oxidative stress and downregulated lung miR-451 expression. Treatment with HKC dramatically, reduced the total cell count in the bronchoalveolar lavage fluid (BALF), and inhibited myeloperoxidase activity in the lung tissues 24 h after LPS challenge. Histopathological analysis demonstrated that HKC attenuated LPS-induced tissue oedema and neutrophil infiltration in the lung tissues. Additionally, the concentrations of tumour necrosis factor- (TNF-) α and interleukin- (IL-) 6 in BALF and IL-6 in the plasma reduced after HKC administration. Moreover, HKC could enhance glutathione peroxidase and catalase activities and upregulate the expression of miR-451 in the lung tissues. In vitro experiments revealed that HKC inhibited the production of nitric oxide, TNF-α, and IL-6 in LPS-induced RAW 264.7 cells and mouse primary peritoneal macrophages. Additionally, HKC downregulated LPS-induced transcription of TNF-α and IL-6 in RAW 264.7 cells. Conclusions These findings suggest that HKC has anti-inflammatory and antioxidative effects that may protect mice against LPS-induced ALI and macrophage activation.
Collapse
|
16
|
Zhang L, Yin M, Feng X, Ibrahim SA, Liu Y, Huang W. Anti-Inflammatory Activity of Four Triterpenoids Isolated from Poriae Cutis. Foods 2021; 10:foods10123155. [PMID: 34945705 PMCID: PMC8700795 DOI: 10.3390/foods10123155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed countercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids on RAW 264.7 cells were also investigated. Triterpenoids, poricoic acid B, poricoic acid A, dehydrotrametenolic acid, and dehydroeburicoic acid were obtained; their levels of purity were 90%, 92%, 93%, and 96%, respectively. The results indicated that poricoic acid B had higher anti-inflammatory activity than those of poricoic acid A by inhibiting the generation of NO in lipopolysaccharide (LPS)-induced RAW 264.7 cells. However, dehydrotrametenolic acid and dehydroeburicoic acid had no anti-inflammatory activity. In addition, the production of cytokines (TNF-α, IL-1β, and IL-6) in cells treated with poricoic acid B decreased in a dose-dependent manner in the concentration range from 10 to 40 μg/mL. The results provide evidence for the use of Poriae Cutis as a natural anti-inflammatory agent in medicines and functional foods.
Collapse
Affiliation(s)
- Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Mengzhou Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
- Correspondence: ; Tel.: +86-136-5980-7072
| |
Collapse
|
17
|
Kim KJ, Kim E, Kang WS, Jeon M, Choi H, Lee KH, Kim MH, Kim JS, Na CS, Kim S. SR-5, the specific ratio of Korean multi-herbal formula: An evaluation of antiulcerogenic effects on experimentally induced gastric ulcers in mice. Dose Response 2021; 19:15593258211044329. [PMID: 34690616 PMCID: PMC8532236 DOI: 10.1177/15593258211044329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/30/2023] Open
Abstract
Purpose Previously, we demonstrated that the specific ratio of Korean multi-herbal formula (SR-5) exhibits hepatoprotective properties against ethanol-induced hepatic damage in rats. Chronic and excessive alcohol consumption is a major etiological factor involved in gastric disease and ulcer development induced by the inflammatory response and oxidative stress. Methods The present study evaluated the gastroprotective effects of SR-5 (100, 150, and 200 mg/kg) against hydrochloride acid/ethanol (HCl/EtOH)-induced and indomethacin/hydrochloride acid (INDO/HCl)-induced gastritis in a mouse model and the mechanisms involved. Results All the tested doses of SR-5 significantly inhibited gastric lesions in the HCl/EtOH-induced ulcer model mice. Similarly, all the tested doses of SR-5 significantly inhibited gastric lesions in the INDO/HCl-induced ulcer model mice. Furthermore, mice pretreated with SR-5 had significantly increased gastric levels of enzymatic and nonenzymatic antioxidants, namely, catalase (CAT) and glutathione (GSH), with concomitant reductions in malondialdehyde (MDA) and reactive oxygen species (ROS) levels compared with those in the HCl/EtOH or INDO/HCl group. SR-5 suppressed the expression of nuclear factor-kappa B (NF-κB)/p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) to their normal values. Conclusion These findings are the first to demonstrate the powerful protective effect of SR-5 against gastric injury development and provide hope for clinical application.
Collapse
Affiliation(s)
- Kyeong Jo Kim
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Eun Kim
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Mijin Jeon
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Hakjoon Choi
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Ki Hoon Lee
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Mi-Hyeon Kim
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Jin Seok Kim
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Lysimachiae Herba Inhibits Inflammatory Reactions and Improves Lipopolysaccharide/D-Galactosamine-Induced Hepatic Injury. Antioxidants (Basel) 2021; 10:antiox10091387. [PMID: 34573019 PMCID: PMC8471683 DOI: 10.3390/antiox10091387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the anti-inflammatory and hepatoprotective effects of Lysimachiae Herba ethanolic extract (LHE) in lipopolysaccharide (LPS)-stimulated macrophages and in a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. Then, the production of inflammatory mediators and the activation of related pathways in macrophages were explored. Finally, we assessed the serum aminotransferase levels and the expression of inflammatory/antioxidant molecules in liver tissues in mice. Results revealed that LHE treatment significantly inhibited the production of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Molecular data showed that LHE remarkably increased the activities of the antioxidant pathway and inhibited the phosphorylation of mitogen-activated protein kinase as well as the transcriptional activity of nuclear factor-κB induced by LPS. Furthermore, it prevented acute liver damage caused by LPS/D-GalN-induced hepatitis by inhibiting aminotransferase levels and histopathological changes in mice. Moreover, treatment with LHE significantly inhibited the activation of inflammatory pathways and increased the expression of antioxidant molecules including heme oxygenase-1/Nuclear factor erythroid 2-related factor 2. In conclusion, LHE has potent anti-inflammatory and hepatoprotective effects in LPS-stimulated macrophages and the LPS/D-GalN-induced acute hepatitis mouse model. Thus, it can be a treatment option for inflammation, hepatitis, and liver injury.
Collapse
|
19
|
Forsythia Fruit Prevents Fulminant Hepatitis in Mice and Ameliorates Inflammation in Murine Macrophages. Nutrients 2021; 13:nu13082901. [PMID: 34445058 PMCID: PMC8399229 DOI: 10.3390/nu13082901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Forsythia Fruit (FF), the fruit of Forsythia suspensa, has been used since ancient times as an herbal medication in East Asia to treat inflammation, gonorrhea, and pharyngitis. However, the efficacy of FF against liver damage due to inflammation has not been studied. Here, we explored the protective effects of FF in a mouse hepatitis model induced by lipopolysaccharide (LPS)/D-galactosamine (GalN) treatment. We measured inflammatory cytokine and aminotransferase levels in mouse blood and analyzed the effects of FF on inflammatory gene and protein expression levels in liver tissue. Our results show that FF treatment effectively lowers inflammatory cytokine and serum aminotransferase levels in mice and inhibits the expression of hepatic cytokine mRNA and inflammatory proteins. Furthermore, treatment with FF activated the antioxidant pathway HO-1/Nrf-2 and suppressed severe histological alteration in the livers of LPS/D-GalN-treated mice. Further investigation of the effects of FF on inflammatory reactions in LPS-stimulated macrophages showed that pretreatment with FF inhibits inflammatory mediator secretion and activation of inflammatory mechanisms both in a mouse macrophage RAW 264.7 cells and in primary peritoneal macrophages. These results show that FF has potential worth as a candidate for the treatment of fulminant inflammatory reactions and subsequent liver injury.
Collapse
|
20
|
Hong H, Jin Z, Qian T, Xu X, Zhu X, Fei Q, Yang J, Sui C, Xu M. Falcarindiol Enhances Cisplatin Chemosensitivity of Hepatocellular Carcinoma via Down-Regulating the STAT3-Modulated PTTG1 Pathway. Front Pharmacol 2021; 12:656697. [PMID: 34025420 PMCID: PMC8138572 DOI: 10.3389/fphar.2021.656697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver malignancy globally and the third leading cause of cancer-related death. Chemotherapy is one of the main methods in treating HCC, while recent studies have found that the resistance of HCC to chemotherapeutic drugs reduces the efficacy of the chemotherapy. Falcarindiol (FAD) is a cytotoxic and anti-inflammatory polyacetylenic oxylipin found in food plants of the carrot family (Apiaceae), while its role in HCC remains to be explored. Here, HCC cells (Huh7 and LM3) were treated with FAD at different doses. Cell proliferation was tested by the cell counting kit-8 (CCK-8) method and colony formation assay, while the apoptosis was monitored by flow cytometry. The profiles of apoptosis-related proteins (Bax, bcl2, and Caspase-3), DNA repair proteins (Rad51, BRCA1, and MDC1), and the signal transducer and activator of transcription 3 (STAT3)/Pituitary Tumor Transforming Gene 1 (PTTG1) were verified by western blot (WB) or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The interaction between STAT3 and PTTG1 was verified by immunoprecipitation (IP). In addition, a xenograft tumor model was constructed in mice to explore the anti-tumor effects of FAD in vivo, and immunohistochemistry (IHC) was performed to count the number of Ki67-stained cells. As a result, FAD inhibited HCC cell proliferation and DNA repair, facilitated their apoptosis, and also enhanced cisplatin (DDP) chemosensitivity. The Combination Index (CI) evaluation showed that FAD and DDP had synergistic effects in repressing HCC cell proliferation. Besides, FAD dampened the STAT3/PTTG1 pathway expression. Further studies revealed that inhibiting STAT3 enhanced the inhibitive effect of FAD on HCC cells, whereas overexpressing PTTG1 attenuated the anti-tumor effect of FAD. Overall, our study illustrated that FAD is a potential anticancer drug and strengthens the chemosensitivity of HCC cells to DDP by inhibiting the STAT3/PTTG1 pathway.
Collapse
Affiliation(s)
- Han Hong
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhengkang Jin
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Tao Qian
- Department of General Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyong Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiang Zhu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qiang Fei
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiamei Yang
- Department of Special Treatment I and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chengjun Sui
- Department of Special Treatment I and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Minhui Xu
- Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
21
|
Cytotoxicity and anti-inflammatory effect of a novel diminazene aceturate derivative in bovine mammary epithelial cells. Res Vet Sci 2021; 137:102-110. [PMID: 33964615 DOI: 10.1016/j.rvsc.2021.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Diminazene aceturate (DA) has been used in the treatment of infections of trypanosomes in animals. Interestingly, its anti-inflammatory effect has recently gained increased interests. However, DA has been reported to have toxic side effects that limit its application. Therefore, we synthesized and screened a novel low-toxic DA derivative, namely the DA derivative 3 (DAD3). In the present study, anti-inflammatory effect of DAD3 was evaluated bovine mammary epithelial cells (BMECs) in vitro model. The results demonstrated that DAD3 had less cytotoxicity, and had a stronger effect in inhibiting secretion of inflammatory factors in BMECs, compared to DA. Mechanistically, DAD3 was able to inhibit the production of pro-inflammatory factors in part by suppressing the generation of mitochondrial reactive oxygen species (ROS) in BMECs upon LPS stimulation. Molecular analysis further indicated that DAD3 was capable of resolving inflammation in BMECs through a mechanism by preventing nuclear translocation of NF-p65, subsequently inhibiting transcription of inflammatory factors. In this context, DAD3 inhibited the phosphorylation of IκB, ERK, JNK and P-38 proteins of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results suggested the DAD3 was a novel DA derivative with low toxicity and strong anti-inflammatory effects in BMECs exposed to LPS, through a mechanism by blocking the NF-κB and MAPK signaling pathways. This study also provides an evidence that the DAD3 may be a novel anti-inflammatory agents warranted for further investigation in treatment of mastitis in cows.
Collapse
|
22
|
Milk-Derived Extracellular Vesicles Suppress Inflammatory Cytokine Expression and Nuclear Factor-κB Activation in Lipopolysaccharide-Stimulated Macrophages. DAIRY 2021. [DOI: 10.3390/dairy2020015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In milk and milk products, small membrane-enclosed vesicles can be found, commonly termed extracellular vesicles (EVs). Milk-derived EVs have previously been suggested to have immunoregulatory properties, especially important for infants without a fully functioning immune system. In the present study, EV fractions were isolated from human milk, mature and colostrum bovine milk, and two dairy fractions, and successively surveyed for their immunomodulating effects on lipopolysaccharide (LPS)-stimulated macrophages (RAW264.7). RAW264.7 cell material and supernatant were evaluated by monitoring degradation of IκBα in the NF-κB pathway, and IL-6 and IL-1β cytokine production, using Western blotting and enzyme-linked immunosorbent assaying, respectively. The results revealed that preincubation with EVs derived from raw human and bovine milk lowered the LPS-activated response of the NF-κB pathway. Additionally, it was found that preincubation with EVs, from human and bovine milk as well as dairy whey or skim milk-derived fractions, decreased secretion of proinflammatory cytokines from LPS-activated RAW264.7 cells. The findings that milk-derived EVs can change the inflammatory response in macrophages support the notion that milk EVs have an important role in mother-to-infant communication and protection of a newborn.
Collapse
|
23
|
In-vitro and in-vivo monitoring of gold(III) ions from intermediate metabolite of sodium aurothiomalate through water-soluble ruthenium (II) complex-based luminescent probe. Bioorg Chem 2021; 110:104749. [PMID: 33652341 DOI: 10.1016/j.bioorg.2021.104749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/04/2023]
Abstract
Real-time monitoring of drug metabolism in vivo is of great significance to drug development and toxicology research. The purpose of this study is to establish a rapid and visual in vivo detection method for the detection of an intermediate metabolite of the gold (I) drug. Gold (I) drugs such as sodium aurothiomalate (AuTM) have anti-inflammatory effects in the treatment of rheumatoid arthritis. Gold(III) ions (Au3+) are the intermediate metabolite of gold medicine, and they are also the leading factor of side effects in the treatment of patients. However, the rapid reduction of Au3+ to Au+ by thiol proteins in organisms limits the in-depth study of metabolism of gold drugs in vivo. Here we describe a luminescence Au3+ probe (RA) based on ruthenium (II) complex for detecting Au3+ in vitro and in vivo. RA with large Stokes shift, good water solubility and biocompatibility was successfully applied to detect Au3+ in living cells and vivo by luminescence imaging, and to trap the fluctuation of Au3+ level produced by gold (I) medicine. More importantly, the luminescent probe was used to the detection of the intermediate metabolites of gold (I) drugs for the first time. Overall, this work offers a new detection tool/method for a deeper study of gold (I) drugs metabolite.
Collapse
|
24
|
Hovenia dulcis Thumberg: Phytochemistry, Pharmacology, Toxicology and Regulatory Framework for Its Use in the European Union. Molecules 2021; 26:molecules26040903. [PMID: 33572099 PMCID: PMC7914479 DOI: 10.3390/molecules26040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hovenia dulcis Thunberg is an herbal plant, belonging to the Rhamnaceae family, widespread in west Asia, USA, Australia and New Zealand, but still almost unknown in Western countries. H. dulcis has been described to possess several pharmacological properties, such as antidiabetic, anticancer, antioxidant, anti-inflammatory and hepatoprotective, especially in the hangover treatment, validating its use as an herbal remedy in the Chinese Traditional Medicine. These biological properties are related to a variety of secondary metabolites synthesized by the different plant parts. Root, bark and leaves are rich of dammarane-type triterpene saponins; dihydrokaempferol, quercetin, 3,3′,5′,5,7-pentahydroflavone and dihydromyricetin are flavonoids isolated from the seeds; fruits contain mainly dihydroflavonols, such as dihydromyricetin (or ampelopsin) and hovenodulinol, and flavonols such as myricetin and gallocatechin; alkaloids were found in root, barks (frangulanin) and seeds (perlolyrin), and organic acids (vanillic and ferulic) in hot water extract from seeds. Finally, peduncles have plenty of polysaccharides which justify the use as a food supplement. The aim of this work is to review the whole scientific production, with special focus on the last decade, in order to update phytochemistry, biological activities, nutritional properties, toxicological aspect and regulatory classification of H. dulcis extracts for its use in the European Union.
Collapse
|
25
|
Venigalla M, Roberts TL, Raju R, Mrad M, Bodkin F, Kopp K, Doyle K, Münch G. Identification of tetragocarbone C and sideroxylin as the most potent anti-inflammatory components of Syncarpia glomulifera. Fitoterapia 2021; 150:104843. [PMID: 33539940 DOI: 10.1016/j.fitote.2021.104843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
Abstract
In contrast to ancient Western and Asian cultures, medicinal plants of the Aboriginal and Torres Strait Islanders in Australia have not been as intensively studied for their molecular composition and molecular bioactivity. Syncarpia glomulifera subsp. glomulifera is a species in the plant family Myrtaceae. The resin of the plant has been traditionally used by the D'harawal people of Western Sydney to heal inflamed sores and ulcers. Hence, the anti-inflammatory activity of its leaf extract was investigated in RAW 264.7 macrophage and N11 microglia cell lines to isolate and identify the most active compounds. One new compound, tetragocarbone C, and three known compounds, tetragocarbone B, sideroxylin, and lumaflavanone A showed potent anti-inflammatory activity by downregulating nitric oxide and TNF-α production in LPS and IFN-γ stimulated cells. Except for the less potent tetragocarbone B, all compounds had an IC50 value (for nitric oxide downregulation) of <10 μg/mL and moderate cytotoxicity in both cell lines. The molecular targets along pro-inflammatory signaling pathways were further investigated in RAW 264.7 cells. All four compounds suppressed phosphorylation of ERK, c-Jun, and limited the phosphorylation of STAT-1 and STAT-3 in response to LPS and IFN-γ activation. The four compounds also suppressed NF-κB activation by preventing the translocation of the p65 subunit into the nucleus. Collectively, these findings suggest that the compounds isolated from Syncarpia glomulifera, especially tetragocarbone C and sideroxylin are promising anti-inflammatory agents, and could be further investigated for the treatment of diseases characterized by chronic inflammation.
Collapse
Affiliation(s)
- Madhuri Venigalla
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Tara Laurine Roberts
- School of Medicine, Ingham Institute for Applied Medical Research, Western Sydney University, Liverpool, NSW, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Melissa Mrad
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Frances Bodkin
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Katja Kopp
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Building 30, Campbelltown, NSW, Australia; NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int J Mol Sci 2020; 21:ijms21249605. [PMID: 33339446 PMCID: PMC7766727 DOI: 10.3390/ijms21249605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a source of important therapeutic agents. Therefore, in this review, we focus on natural compounds that exhibit efficient anti-inflammatory activity via modulation signaling transduction pathways in macrophage cells. Both extracts and pure chemicals from different species and parts of plants such as leaves, roots, flowers, barks, rhizomes, and seeds rich in secondary metabolites from various groups such as terpenes or polyphenols were included. Selected extracts and phytochemicals control macrophages biology via modulation signaling molecules including NF-κB, MAPKs, AP-1, STAT1, STAT6, IRF-4, IRF-5, PPARγ, KLF4 and especially PI3K/AKT. Macrophages are important immune effector cells that take part in antigen presentation, phagocytosis, and immunomodulation. The M1 and M2 phenotypes are related to the production of pro- and anti-inflammatory agents, respectively. The successful resolution of inflammation mediated by M2, or failed resolution mediated by M1, may lead to tissue repair or chronic inflammation. Chronic inflammation is strictly related to several disorders. Thus, compounds of plant origin targeting inflammatory response may constitute promising therapeutic strategies.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: (A.M.-S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| |
Collapse
|
27
|
Liu Y, Wu X, Wang Y, Jin W, Guo Y. The immunoenhancement effects of starfish Asterias rollestoni polysaccharides in macrophages and cyclophosphamide-induced immunosuppression mouse models. Food Funct 2020; 11:10700-10708. [PMID: 33220676 DOI: 10.1039/d0fo01488e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The water-soluble polysaccharide, SF-2, obtained from starfish (Asterias rollestoni), belongs to the group of polysaccharides known as mannoglucan sulfate. It is composed of mannose as well as glucose and contains 13.85% SO42-. We aimed to detect the immunoenhancement effects of SF-2 in macrophages and cyclophosphamide (CYP)-induced immunosuppression mouse models. RAW 264.7 macrophage cells were treated with SF-2 for different periods of time (0 h, 0.5 h, 1 h, 3 h, 6 h, and 9 h) and the results showed that SF-2 promoted the production of nitric oxide and up-regulated the levels of pro-inflammatory cytokines and related proteins, such as TNF-α, IL-1β, IL-6, COX-2, MMP-9, and iNOS in a time-dependent manner. In addition, SF-2 activated NLRP3 inflammasome and the MAPK/NF-κB signaling pathway, thus promoting its immunoenhancement effects. Moreover, we co-cultured the primary peritoneal macrophages with SF-2 for 6 h and found that SF-2 enhanced the expression of NLRP3 inflammasome and the release of cytokines. Furthermore, SF-2 significantly increased the body weight, spleen index, thymus index, and inflammatory cell counts in CYP-induced immunosuppression mouse models. These results indicate that SF-2 is a potential immunoenhancement mediator that acts by activating the NLRP3 inflammasome and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Yingjuan Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | | | | | | | | |
Collapse
|
28
|
Anti-Inflammatory Activity and ROS Regulation Effect of Sinapaldehyde in LPS-Stimulated RAW 264.7 Macrophages. Molecules 2020; 25:molecules25184089. [PMID: 32906766 PMCID: PMC7570554 DOI: 10.3390/molecules25184089] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 μM SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-α, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3–100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of −6.4 kcal/mol (IC50 = 47.8 μM) with SNAH compared to −11.1 kcal/mol (IC50 = 0.45 μM) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.
Collapse
|
29
|
Activation of NLRP3 inflammasome in RAW 264.7 cells by polysaccharides extracted from Grateloupia livida (Harv.) Yamada. Int Immunopharmacol 2020; 85:106630. [DOI: 10.1016/j.intimp.2020.106630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
|