1
|
Zhang Q, Zhang L, Lin G, Luo F. The protective role of vagus nerve stimulation in ischemia-reperfusion injury. Heliyon 2024; 10:e30952. [PMID: 38770302 PMCID: PMC11103530 DOI: 10.1016/j.heliyon.2024.e30952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
2
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Kubo Y, Ikeya M, Sugiyama S, Takachu R, Tanaka M, Sugiura T, Kobori K, Kobori M. Effects of n-3 polyunsaturated fatty acid supplementation on quadriceps weakness immediately after total knee arthroplasty: a pilot, randomized, open-label clinical trial. J Phys Ther Sci 2023; 35:93-98. [PMID: 36744193 PMCID: PMC9889211 DOI: 10.1589/jpts.35.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/09/2022] [Indexed: 02/04/2023] Open
Abstract
[Purpose] Severe quadriceps weakness immediately after total knee arthroplasty can be problematic. The n-3 long-chain polyunsaturated fatty acids have antioxidant and anti-inflammatory effects against ischemia-reperfusion injury, whereas n-6 long-chain polyunsaturated fatty acids exert pro-inflammatory effects, thereby promoting ischemia-reperfusion injury. [Participants and Methods] We explored the efficacy of preoperative n-3 long-chain polyunsaturated fatty acid supplementation against early quadriceps weakness among 20 patients scheduled for total knee arthroplasty (intervention group, n=10; control group, n=10). The intervention group received 645 mg of eicosapentaenoic acid) and 215 mg of docosahexaenoic acid daily for 30 days preoperatively. Serum eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid levels were measured preoperatively. We compared serum derivatives of reactive oxygen metabolites as oxidative stress biomarkers, knee circumference, thigh volume, knee pain during the quadriceps strength test, and quadriceps strength preoperatively and 4 days postoperatively to quantify the change. [Results] Preoperative n-3 long-chain polyunsaturated fatty acid supplementation significantly increased the (eicosapentaenoic acid+docosahexaenoic acid)/arachidonic acid ratio in the intervention group. A significantly lower increase in quadriceps weakness was exhibited in the intervention group than in the control group. However, changes in oxidative stress, knee/thigh swelling, and knee pain during strength testing did not significantly differ between the two groups. [Conclusion] Preoperative n-3 long-chain polyunsaturated fatty acid supplementation exhibited beneficial effects on quadriceps weakness immediately after total knee arthroplasty.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan,Corresponding author. Yusuke Kubo (E-mail: )
| | - Masae Ikeya
- Department of Health and Nutrition Sciences, Tokoha
University, Japan
| | - Shuhei Sugiyama
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Rie Takachu
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Maki Tanaka
- Rehabilitation Sciences, Seirei Christopher University,
Japan
| | - Takeshi Sugiura
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Kaori Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| | - Makoto Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic:
548-2 Nearaichou, Kita-ku, Hamamatsu-shi, Shizuoka 433-8108, Japan
| |
Collapse
|
4
|
Deng S, Zhang Y, Xin Y, Hu X. Vagus nerve stimulation attenuates acute kidney injury induced by hepatic ischemia/reperfusion injury in rats. Sci Rep 2022; 12:21662. [PMID: 36522408 PMCID: PMC9755310 DOI: 10.1038/s41598-022-26231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury, caused by limited blood supply and subsequent blood supply, is a causative factor resulting in morbidity and mortality during liver transplantation and liver resection. Hepatic I/R injury frequently contributes to remote organ injury, such as kidney, lung, and heart. It has been demonstrated that vagus nerve stimulation (VNS) is effective in remote organ injury after I/R injury. Here, our aim is to investigate the potential action of VNS on hepatic I/R injury-induced acute kidney injury (AKI) and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly assigned into three experimental groups: Sham group (sham operation, n = 6); I/R group (hepatic I/R with sham VNS, n = 6); and VNS group (hepatic I/R with VNS, n = 6). VNS was performed during the entire hepatic I/R process. Our results showed that throughout the hepatic I/R process, VNS significantly regulated the expression levels of various iconic factors and greatly enhanced the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) in the kidneys. These findings suggested that VNS may ameliorate hepatic I/R injury-induced AKI by suppressing inflammation, oxidative stress, and apoptosis probably through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Simin Deng
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Yifeng Zhang
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Ying Xin
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| | - Xinqun Hu
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
5
|
Deng S, Zhang Y, Xin Y, Hu X. Vagus Nerve Stimulation Attenuates Acute Kidney Injury Induced by Hepatic Ischemia/Reperfusion Injury by Suppressing Inflammation, Oxidative Stress, and Apoptosis in Rats.. [DOI: 10.21203/rs.3.rs-1937916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Hepatic ischemia reperfusion (I/R) injury, caused by limited blood supply and subsequent blood supply, is a causative factor resulting in morbidity and mortality during liver transplantation (LT) and liver resection. Hepatic I/R injury frequently contributes to remote organ injury, such as kidney, lung, and heart. It has been demonstrated that vagus nerve stimulation (VNS) is effective in remote organ injury after ischemia reperfusion injury. Here, our aim is to investigate the potential action of VNS on hepatic I/R injury-induced acute kidney injury (AKI) and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly assigned into three experimental groups: Sham group (sham operation, n=6); I/R group (hepatic I/R with sham VNS, n=6); and VNS group (hepatic I/R with VNS, n=6). VNS was performed during the entire hepatic I/R process. Our results showed that throughout the hepatic I/R process, VNS significantly reduced inflammation, oxidative stress, and apoptosis, and greatly enhanced the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) in the kidneys. These findings suggest that VNS may ameliorate hepatic I/R injury-induced AKI by suppressing inflammation, oxidative stress, and apoptosis probably through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Simin Deng
- Second Xiangya Hospital of Central South University
| | - Yifeng Zhang
- Second Xiangya Hospital of Central South University
| | - Ying Xin
- Second Xiangya Hospital of Central South University
| | - Xinqun Hu
- Second Xiangya Hospital of Central South University
| |
Collapse
|
6
|
Xin Y, Zhang Y, Deng S, Hu X. Vagus Nerve Stimulation Attenuates Acute Skeletal Muscle Injury Induced by Hepatic Ischemia/Reperfusion Injury in Rats. Front Pharmacol 2022; 12:756997. [PMID: 35046803 PMCID: PMC8762262 DOI: 10.3389/fphar.2021.756997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Vagus nerve stimulation (VNS) has a protective effect on distal organ injury after ischemia/reperfusion (I/R) injury. We aimed to investigate the protective efficacy of VNS on hepatic I/R injury-induced acute skeletal muscle injury and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly divided into three groups: sham group (sham operation, n = 6); I/R group (hepatic I/R with sham VNS, n = 6); and VNS group (hepatic I/R with VNS, n = 6). A hepatic I/R injury model was prepared by inducing hepatic ischemia for 1 h (70%) followed by hepatic reperfusion for 6 h. VNS was performed during the entire hepatic I/R process. Tissue and blood samples were collected at the end of the experiment for biochemical assays, molecular biological preparations, and histological examination. Our results showed that throughout the hepatic I/R process, VNS significantly reduced inflammation, oxidative stress, and apoptosis, while significantly increasing the protein levels of silent information regulator 1 (SIRT1) and decreasing the levels of acetylated forkhead box O1 and Ac-p53, in the skeletal muscle. These data suggest that VNS can alleviate hepatic I/R injury-induced acute skeletal muscle injury by suppressing inflammation, oxidative stress, and apoptosis, potentially via the SIRT1 pathway.
Collapse
Affiliation(s)
- Ying Xin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Simin Deng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqun Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Transcutaneous auricular VNS applied to experimental pain: A paired behavioral and EEG study using thermonociceptive CO2 laser. PLoS One 2021; 16:e0254480. [PMID: 34252124 PMCID: PMC8274876 DOI: 10.1371/journal.pone.0254480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background Transcutaneous auricular Vagal Nerve Stimulation (taVNS) is a non-invasive neurostimulation technique with potential analgesic effects. Several studies based on subjective behavioral responses suggest that taVNS modulates nociception differently with either pro-nociceptive or anti-nociceptive effects. Objective This study aimed to characterize how taVNS alters pain perception, by investigating its effects on event-related potentials (ERPs) elicited by different types of spinothalamic and lemniscal somatosensory stimuli, combined with quantitative sensory testing (detection threshold and intensity ratings). Methods We performed 3 experiments designed to study the time-dependent effects of taVNS and compare with standard cervical VNS (cVNS). In Experiment 1, we assessed the effects of taVNS after 3 hours of stimulation. In Experiment 2, we focused on the immediate effects of the duty cycle (OFF vs. ON phases). Experiments 1 and 2 included 22 and 15 healthy participants respectively. Both experiments consisted of a 2-day cross-over protocol, in which subjects received taVNS and sham stimulation sequentially. In addition, subjects received a set of nociceptive (thermonociceptive CO2 laser, mechanical pinprick) and non-nociceptive (vibrotactile, cool) stimuli, for which we recorded detection thresholds, intensity of perception and ERPs. Finally, in Experiment 3, we tested 13 epileptic patients with an implanted cVNS by comparing OFF vs. ON cycles, using a similar experimental procedure. Results Neither taVNS nor cVNS appeared to modulate the cerebral and behavioral aspects of somatosensory perception. Conclusion The potential effect of taVNS on nociception requires a cautious interpretation, as we found no objective change in behavioral and cerebral responses to spinothalamic and lemniscal somatosensory stimulations.
Collapse
|
8
|
Kubo Y, Ikeya M, Sugiyama S, Takachu R, Tanaka M, Sugiura T, Kobori K, Kobori M. Association between Preoperative Long-Chain Polyunsaturated Fatty Acids and Oxidative Stress Immediately after Total Knee Arthroplasty: A Pilot Study. Nutrients 2021; 13:nu13062093. [PMID: 34205251 PMCID: PMC8235381 DOI: 10.3390/nu13062093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Quadriceps muscle atrophy following total knee arthroplasty (TKA) can be caused by tourniquet-induced ischemia–reperfusion (IR) injury, which is often accompanied by oxidative stress and inflammatory responses. n-3 long-chain polyunsaturated fatty acids (LCPUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exert antioxidant and anti-inflammatory effects against IR injury, whereas n-6 LCPUFAs, particularly arachidonic acid (AA), exhibit pro-inflammatory effects and promote IR injury. This study aimed to examine whether preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio are associated with oxidative stress immediately after TKA. Fourteen eligible patients with knee osteoarthritis scheduled for unilateral TKA participated in this study. The levels of serum EPA, DHA, and AA were measured immediately before surgery. Derivatives of reactive oxygen metabolites (d-ROMs) were used as biomarkers for oxidative stress. The preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio were found to be significantly negatively correlated with the serum d-ROM levels at 96 h after surgery, and the rate of increase in serum d-ROM levels between baseline and 96 h postoperatively. This study suggested the preoperative serum EPA + DHA levels and the (EPA + DHA)/AA ratio can be negatively associated with oxidative stress immediately after TKA.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
- Correspondence:
| | - Masae Ikeya
- Department of Health and Nutrition Sciences, Tokoha University, 1230, Miyakodachou, Kita-ku, Hamamatsu 431-2102, Japan;
| | - Shuhei Sugiyama
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Rie Takachu
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Maki Tanaka
- Rehabilitation Sciences, Seirei Christopher University, 3453 Mikataharachou, Kita-ku, Hamamatsu 433-8558, Japan;
| | - Takeshi Sugiura
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Kaori Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| | - Makoto Kobori
- Department of Rehabilitation, Kobori Orthopedic Clinic, 548-2 Nearaichou, Kita-ku, Hamamatsu 433-8108, Japan; (S.S.); (R.T.); (T.S.); (K.K.); (M.K.)
| |
Collapse
|
9
|
Zheng L, Tang R, Shi L, Zhong M, Zhou Z. Vagus nerve stimulation ameliorates L-NAME-induced preeclampsia-like symptoms in rats through inhibition of the inflammatory response. BMC Pregnancy Childbirth 2021; 21:177. [PMID: 33663436 PMCID: PMC7934243 DOI: 10.1186/s12884-021-03650-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Preeclampsia is characterized by an excessive inflammatory response. Recent studies have shown that vagus nerve stimulation (VNS) has anti-inflammatory properties in vivo. This study aims to investigate whether VNS is safe for use during pregnancy and to explore the therapeutic potential and underlying mechanisms of VNS in PE. Methods Pregnant Sprague-Dawley rats were randomly chosen to receive N-nitro-L-arginine methyl ester (L-NAME)-containing water (preeclampsia-like mouse model) or saline (normal pregnancy control) daily at gestational days 14.5–20.5. VNS and the α7nAChR antagonist methyllycaconitine citrate (MLA, 1 mg/kg/d) were given daily at the same time. Results VNS decreased the high systolic blood pressure and urinary protein observed in the PE rats. In addition, VNS mitigated abnormal pregnancy outcomes. Moreover, VNS alleviated the inflammatory response by decreasing the levels of inflammatory cytokines. VNS significantly increased the expression of α7nAChR and attenuated the activation of NF-κB p65 in the placenta. Discussion Our findings indicate that maternal VNS treatment is safe during pregnancy and has a protective effect in a pregnant rat model of preeclampsia induced by L-NAME.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Tang
- Department of department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Shi
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongyi Zhou
- Department of ICU, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
10
|
Sicherer ST, Venkatarama RS, Grasman JM. Recent Trends in Injury Models to Study Skeletal Muscle Regeneration and Repair. Bioengineering (Basel) 2020; 7:bioengineering7030076. [PMID: 32698352 PMCID: PMC7552705 DOI: 10.3390/bioengineering7030076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injuries that occur from traumatic incidents, such as those caused by car accidents or surgical resections, or from injuries sustained on the battlefield, result in the loss of functionality of the injured muscle. To understand skeletal muscle regeneration and to better treat these large scale injuries, termed volumetric muscle loss (VML), in vivo injury models exploring the innate mechanisms of muscle injury and repair are essential for the creation of clinically applicable treatments. While the end result of a muscle injury is often the destruction of muscle tissue, the manner in which these injuries are induced as well as the response from the innate repair mechanisms found in muscle in each animal models can vary. This targeted review describes injury models that assess both skeletal muscle regeneration (i.e., the response of muscle to myotoxin or ischemic injury) and skeletal muscle repair (i.e., VML injury). We aimed to summarize the injury models used in the field of skeletal muscle tissue engineering, paying particular attention to strategies to induce muscle damage and how to standardize injury conditions for future experiments.
Collapse
|
11
|
Wang M, Deng J, Lai H, Lai Y, Meng G, Wang Z, Zhou Z, Chen H, Yu Z, Li S, Jiang H. Vagus Nerve Stimulation Ameliorates Renal Ischemia-Reperfusion Injury through Inhibiting NF- κB Activation and iNOS Protein Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7106525. [PMID: 32148655 PMCID: PMC7053466 DOI: 10.1155/2020/7106525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In renal ischemia/reperfusion injury (RIRI), nuclear factor κB (NF-κB (NF-κB (NF. METHODS Eighteen male Sprague-Dawley rats were randomly allocated into the sham group, the I/R group, and the VNS+I/R group, 6 rats per group. An RIRI model was induced by a right nephrectomy and blockade of the left renal pedicle vessels for 45 min. After 6 h of reperfusion, the blood samples and renal samples were collected. The VNS treatment was performed throughout the I/R process in the VNS+I/R group using specific parameters (20 Hz, 0.1 ms in duration, square waves) known to produce a small but reliable bradycardia. Blood was used for evaluation of renal function and inflammatory state. Renal injury was evaluated via TUNEL staining. Renal samples were harvested to evaluate renal oxidative stress, NF-κB (NF. RESULTS The VNS treatment reduces serum creatinine (Cr) and blood urea nitrogen (BUN) levels. Simultaneously, the levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1-beta (IL-1β) were significantly increased in the I/R group, but VNS treatment markedly ameliorated this inflammatory response. Furthermore, the VNS ameliorated oxidant stress and renal injury, indicated by a decrease in 3-nitrotyrosine (3-NT) formation and MDA and MPO levels and an increase in the SOD level compared to that in the I/R group. Finally, the VNS also significantly decreases NF-κB (NF. CONCLUSION Our findings indicate that NF-κB activation increased iNOS expression and promoted RIRI and that VNS treatment attenuated RIRI by inhibiting iNOS expression, oxidative stress, and inflammation via NF-κB inactivation.κB (NF-κB (NF.
Collapse
Affiliation(s)
- Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Huanzhu Lai
- Department of Cardiology, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Yanqiu Lai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Zhenya Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Hu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Zhiyao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| | - Shuyan Li
- Department of Cardiology, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 Hubei, China
| |
Collapse
|