1
|
Ballonová L, Souček P, Slanina P, Réblová K, Zapletal O, Vlková M, Hakl R, Bíly V, Grombiříková H, Svobodová E, Kulíšková P, Štíchová J, Sobotková M, Zachová R, Hanzlíková J, Vachová M, Králíčková P, Krčmová I, Jeseňák M, Freiberger T. Myeloid lineage cells evince distinct steady-state level of certain gene groups in dependence on hereditary angioedema severity. Front Genet 2023; 14:1123914. [PMID: 37470035 PMCID: PMC10352584 DOI: 10.3389/fgene.2023.1123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Peter Slanina
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ondřej Zapletal
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Roman Hakl
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Allergology and Clinical Immunology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Viktor Bíly
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Hana Grombiříková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Eliška Svobodová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kulíšková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Julie Štíchová
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Allergology and Clinical Immunology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Marta Sobotková
- Department of Immunology, Second Medical School Charles University and University Hospital Motol, Brno, Czechia
| | - Radana Zachová
- Department of Immunology, Second Medical School Charles University and University Hospital Motol, Brno, Czechia
| | - Jana Hanzlíková
- Department of Immunology and Allergology, University Hospital Pilsen, Pilsen, Czechia
| | - Martina Vachová
- Department of Immunology and Allergology, University Hospital Pilsen, Pilsen, Czechia
- Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavlína Králíčková
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Irena Krčmová
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Miloš Jeseňák
- National Centre for Hereditary Angioedema, Department of Pediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Depatment of Clinical Immunology and Allergology, Comenius University in Bratislava, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Ballonová L, Kulíšková P, Slanina P, Štíchová J, Vlková M, Hakl R, Litzman J, Souček P, Freiberger T. PLAUR splicing pattern in hereditary angioedema patients' monocytes and macrophages. Mol Biol Rep 2023; 50:4975-4982. [PMID: 37086298 DOI: 10.1007/s11033-023-08391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kulíšková
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julie Štíchová
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Hakl
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Přemysl Souček
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic.
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Tomáš Freiberger
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Drouet C, López-Lera A, Ghannam A, López-Trascasa M, Cichon S, Ponard D, Parsopoulou F, Grombirikova H, Freiberger T, Rijavec M, Veronez CL, Pesquero JB, Germenis AE. SERPING1 Variants and C1-INH Biological Function: A Close Relationship With C1-INH-HAE. FRONTIERS IN ALLERGY 2022; 3:835503. [PMID: 35958943 PMCID: PMC9361472 DOI: 10.3389/falgy.2022.835503] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary angioedema with C1 Inhibitor deficiency (C1-INH-HAE) is caused by a constellation of variants of the SERPING1 gene (n = 809; 1,494 pedigrees), accounting for 86.8% of HAE families, showing a pronounced mutagenic liability of SERPING1 and pertaining to 5.6% de novo variants. C1-INH is the major control serpin of the kallikrein–kinin system (KKS). In addition, C1-INH controls complement C1 and plasminogen activation, both systems contributing to inflammation. Recognizing the failed control of C1s protease or KKS provides the diagnosis of C1-INH-HAE. SERPING1 variants usually behave in an autosomal-dominant character with an incomplete penetrance and a low prevalence. A great majority of variants (809/893; 90.5%) that were introduced into online database have been considered as pathogenic/likely pathogenic. Haploinsufficiency is a common feature in C1-INH-HAE where a dominant-negative variant product impacts the wild-type allele and renders it inactive. Small (36.2%) and large (8.3%) deletions/duplications are common, with exon 4 as the most affected one. Point substitutions with missense variants (32.2%) are of interest for the serpin structure–function relationship. Canonical splice sites can be affected by variants within introns and exons also (14.3%). For noncanonical sequences, exon skipping has been confirmed by splicing analyses of patients' blood-derived RNAs (n = 25). Exonic variants (n = 6) can affect exon splicing. Rare deep-intron variants (n = 6), putatively acting as pseudo-exon activating mutations, have been characterized as pathogenic. Some variants have been characterized as benign/likely benign/of uncertain significance (n = 74). This category includes some homozygous (n = 10) or compound heterozygous variants (n = 11). They are presenting with minor allele frequency (MAF) below 0.00002 (i.e., lower than C1-INH-HAE frequency), and may be quantitatively unable to cause haploinsufficiency. Rare benign variants could contribute as disease modifiers. Gonadal mosaicism in C1-INH-HAE is rare and must be distinguished from a de novo variant. Situations with paternal or maternal disomy have been recorded (n = 3). Genotypes must be interpreted with biological investigation fitting with C1-INH expression and typing. Any SERPING1 variant reminiscent of the dysfunctional phenotype of serpin with multimerization or latency should be identified as serpinopathy.
Collapse
Affiliation(s)
- Christian Drouet
- Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM UMR1016, Université de Paris, Paris, France
- Univ. Grenoble-Alpes & Centre Hospitalier Universitaire de Grenoble, Grenoble, France
- *Correspondence: Christian Drouet
| | - Alberto López-Lera
- Hospital La Paz Institute for Health Research (IdiPAZ), CIBERER U-754, Madrid, Spain
| | | | - Margarita López-Trascasa
- Hospital La Paz Institute for Health Research (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Denise Ponard
- Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | | | - Hana Grombirikova
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation Brno and Medical Faculty, Masaryk University, Brno, Czechia
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation Brno and Medical Faculty, Masaryk University, Brno, Czechia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Camila L. Veronez
- Department of Biophysics, Centre for Research and Genetic Diagnosis of Genetic Diseases, Federal University of São Paolo, São Paolo, Brazil
| | - João Bosco Pesquero
- Department of Biophysics, Centre for Research and Genetic Diagnosis of Genetic Diseases, Federal University of São Paolo, São Paolo, Brazil
| | - Anastasios E. Germenis
- CeMIA SA, Larissa, Greece
- Department of Immunology & Histocompatibility, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
4
|
Ferrara AL, Cristinziano L, Petraroli A, Bova M, Gigliotti MC, Marcella S, Modestino L, Varricchi G, Braile M, Galdiero MR, Spadaro G, Loffredo S. Roles of Immune Cells in Hereditary Angioedema. Clin Rev Allergy Immunol 2021; 60:369-382. [PMID: 34050913 PMCID: PMC8272703 DOI: 10.1007/s12016-021-08842-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
Hereditary angioedema (HAE) is a rare genetic disease, characterized by recurrent and unexpected potentially life-threatening mucosal swelling. HAE may be further classified into HAE with C1‐inhibitor deficiency (C1‐INH‐HAE) and HAE with normal C1‐INH activity (nlC1‐INH‐HAE), mostly due to mutations leading to increased vascular permeability. Recent evidence implicates also the innate and adaptive immune responses in several aspects of angioedema pathophysiology. Monocytes/macrophages, granulocytes, lymphocytes, and mast cells contribute directly or indirectly to the pathophysiology of angioedema. Immune cells are a source of vasoactive mediators, including bradykinin, histamine, complement components, or vasoactive mediators, whose concentrations or activities are altered in both attacks and remissions of HAE. In turn, through the expression of various receptors, these cells are also activated by a plethora of molecules. Thereby, activated immune cells are the source of molecules in the context of HAE, and on the other hand, increased levels of certain mediators can, in turn, activate immune cells through the engagement of specific surface receptors and contribute to vascular endothelial processes that lead to hyperpemeability and tissue edema. In this review, we summarize recent developments in the putative involvement of the innate and adaptive immune system of angioedema.
Collapse
Affiliation(s)
- Anne Lise Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Angelica Petraroli
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Maria Bova
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Maria Celeste Gigliotti
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Simone Marcella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Mariantonia Braile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.
- WAO Center of Excellence, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
5
|
Kajdácsi E, Veszeli N, Mező B, Jandrasics Z, Kőhalmi KV, Ferrara AL, Cervenak L, Varga L, Farkas H. Pathways of Neutrophil Granulocyte Activation in Hereditary Angioedema with C1 Inhibitor Deficiency. Clin Rev Allergy Immunol 2021; 60:383-395. [PMID: 33606193 PMCID: PMC8272702 DOI: 10.1007/s12016-021-08847-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/04/2022]
Abstract
Hereditary angioedema (HAE) with C1-inhibitor deficiency belongs to bradykinin-mediated angioedemas. It is characterized by recurrent subcutaneous and/or submucosal swelling episodes (HAE attacks) and erythema marginatum skin rash as a pre-attack (prodromal) phase. HAE attacks were shown to be accompanied by peripheral blood neutrophilia. We aimed to find molecular mechanisms that may explain the distinct role of neutrophil granulocytes in HAE. Plasma levels of blood cells and factors related to neutrophil activation (cytokines, chemokines, chemotactic factors, enzymes, and neutrophil extracellular trap) were measured in plasma samples obtained from patients during symptom-free periods (n = 77), during prodromal phase (n = 8) and attacks (n = 14), during a spontaneously resolved attack (n = 1), and in healthy controls (n = 79). Higher counts of white blood cells, lymphocytes, and neutrophil granulocytes were found in symptom-free patients compared with controls; these cell counts were elevated further during HAE attacks. The level of chemokine (C–C motif) ligand 5, monocyte chemoattractant protein-1, and myeloperoxidase were also higher in the symptom-free patients than in the controls. Levels of monocyte chemoattractant protein-1, leukotriene B4, neutrophil elastase, and myeloperoxidase were elevated during attacks. During erythema marginatum, white blood cells and monocyte count and levels of interleukin 8 were elevated compared with symptom-free period. Similar changes were detected during the attack follow-up. We conclude that the activation of NGs in symptom-free periods and a further increase observed during attacks suggests that NGs may be involved in the pathomechanism of HAE with C1-INH deficiency.
Collapse
Affiliation(s)
- Erika Kajdácsi
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
| | - Nóra Veszeli
- MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Blanka Mező
- MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zsófia Jandrasics
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
| | - Kinga Viktória Kőhalmi
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Department of Rheumatology, Hospital of Hospitaller Brothers of St. John of God, Budapest, Hungary
| | - Anne Lise Ferrara
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Science, University of Naples "Federico II", Napoli, Italy
| | - László Cervenak
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
| | - Lilian Varga
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary.
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|