1
|
Yang J, Tan F, Chen Y, Li X, Yuan C. The emerging role of long non-coding RNA SOX2-OT in cancers and non-malignant diseases. J Physiol Biochem 2024:10.1007/s13105-024-01059-2. [PMID: 39702742 DOI: 10.1007/s13105-024-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024]
Abstract
SOX2 overlapping transcript (SOX2-OT) is a long non-coding RNA located at chromosome 3q26.33 in humans. Convincing data confirm that SOX2-OT is evolutionarily conserved and plays a significant role in various malignant and non-malignant diseases. In most cancers, the upregulation of SOX2-OT acts as an oncogenic factor, strongly correlating with tumor risk, adverse clinicopathological features, and poor prognosis. Mechanistically, SOX2-OT is regulated by seven transcription factors and influences cellular behavior by modulating SOX2 expression, competitively binding 20 types of miRNAs, stabilizing protein expression, or promoting protein ubiquitination. It also participates in epigenetic modifications and activates multiple signaling pathways to regulate cancer cell proliferation, apoptosis, migration, invasion, autophagy, immune evasion, and resistance to chemotherapy/targeted therapies. Additionally, SOX2-OT triggers apoptosis, oxidative stress, and inflammatory responses, contributing to neurodevelopmental disorders, cardiovascular diseases, and diabetes-related conditions. Genetic polymorphisms of SOX2-OT have also been linked to breast cancer, gastric cancer, recurrent miscarriage, sepsis, and eating disorders in patients with bipolar disorder. This review provides an overview of recent research progress on SOX2-OT in human diseases, highlights its substantial potential as a prognostic and diagnostic biomarker, and explores its future clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China.
- The Second People's Hospital of Yichang, Hubei, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Hong JH, Jin EH, Sung JK, Chang IA, Kang H, Lee SI. Association of lncRNA SOX2OT rs9839776 polymorphism with gastric cancer risk in Korean: Case-control study. Medicine (Baltimore) 2023; 102:e35103. [PMID: 37904476 PMCID: PMC10615517 DOI: 10.1097/md.0000000000035103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 11/01/2023] Open
Abstract
Aberrant regulation of the long non-coding RNA SRY-box transcription factor 2 overlapping transcript (SOX2OT) has been reported in various diseases including gastric cancer (GC). However, an association between the well-studied rs9839776 single nucleotide polymorphism in SOX2OT and GC susceptibility has not been reported. This study aimed to evaluate the association between the rs9839776 single nucleotide polymorphism in SOX2OT and GC risk. Genotyping of rs9839776 was conducted using TaqMan genotyping assay for 460 patients with GC and 386 controls. We found that the dominant model (CT+TT) and rs9839776 T allele were significantly associated with decreased GC risk (P = .046, adjusted odds ratio [AOR] = 0.72, 95% confidence interval [CI] = 0.52-1.00 and P = .044, AOR = 0.74, 95% CI = 0.56-0.99, respectively). In addition, stratified analysis revealed that the dominant model (CT+TT) and rs9839776 T allele were significantly associated with decreased risk of lymph node metastasis-negative (P = .039, AOR = 0.67, 95% CI = 0.46-0.98 and P = .049, AOR = 0.71, 95% CI = 0.51-1.00, respectively) and tumor stage I (A+B)/II (A+B+C) (P = .028, AOR = 0.66, 95% CI = 0.50-0.96 and P = .041, AOR = 0.71, 95% CI = 0.52-0.99, respectively) GC. Our findings suggest that the rs9839776 T allele may be a protective factor against GC susceptibility. Further research is needed to clarify whether rs9839776 affects SOX2OT expression.
Collapse
Affiliation(s)
- Jang Hee Hong
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Eun-Heui Jin
- Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jae Kyu Sung
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Ae Chang
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyojin Kang
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Azizidoost S, Abouali Gale Dari M, Ghaedrahmati F, Razani Z, Keivan M, Mohammad Jafari R, Najafian M, Farzaneh M. Functional Roles of lncRNAs in Recurrent Pregnancy Loss: A Review Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:218-225. [PMID: 37577902 PMCID: PMC10439990 DOI: 10.22074/ijfs.2022.559132.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 12/26/2022] [Indexed: 08/15/2023]
Abstract
Recurrent pregnancy loss (RPL) or recurrent miscarriage is the failure of pregnancy before 20-24 weeks that influences around 2-5% of couples. Several genetic, immunological, environmental and physical factors may influence RPL. Although various traditional methods have been used to treat post-implantation failures, identifying the mechanisms underlying RPL may improve an effective treatment. Recent evidence suggested that gene expression alterations presented essential roles in the occurrence of RPL. It has been found that long non-coding RNAs (lncRNAs) play functional roles in pregnancy pathologies, such as recurrent miscarriage. lncRNAs can function as dynamic scaffolds, modulate chromatin function, guide and bind to microRNAs (miRNAs) or transcription factors. lncRNAs, by targeting various miRNAs and mRNAs, play essential roles in the progression or suppression of RPL. Therefore, targeting lncRNAs and their downstream targets might be a suitable strategy for diagnosis and treatment of RPL. In this review, we summarized emerging roles of several lncRNAs in stimulation or suppression of RPL.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Razani
- Department of Animal Physiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mona Keivan
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Mohammad Jafari
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Najafian
- Department of Obstetrics and Gynecology, Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Inflammatory-associated apoptotic markers: are they the culprit to rheumatoid arthritis pain? Mol Biol Rep 2022; 49:10077-10090. [PMID: 35699858 DOI: 10.1007/s11033-022-07591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prolonged inflammatory disease resulting from autoimmune reactions that leads to local and systemic bone erosion, joint defects and functional impairment. Although the inflammation is subsided through the prescription of anti-inflammatory therapeutics, the patients persistently complained of sleepless nights due to flare pain. This indicates the possible contribution of other pathways besides inflammation in leading to RA pain. This review aims to uncover the roles and involvement of several inflammatory-associated apoptotic markers in facilitating pain transmission and processing during the pathogenesis of RA. MATERIALS AND METHODS This narrative review focused on the reports from the previous literature based on the search string of "apoptotic marker AND inflammation AND 'chronic pain' OR 'neuropathic pain' and apoptosis AND 'rheumatoid arthritis' OR arthritis from the databases including Science Direct and Scopus, considering the exclusion criteria of the published abstracts, proceedings or articles on other neuropathic pain types such as painful bowel syndrom, insterstitial cystitis, fibrosis and so on. RESULTS Several studies in the literature demonstrate a close association between imbalanced apoptotic regulations and an increased number of synovial fibroblasts and inflammatory cells in RA. Cell death or specific cell survival has been linked with increased central hypersensitivity in various types of chronic and neuropathic pain. CONCLUSION The RA-related flare pain is possibly contributed by the abnormal regulation of apoptosis through several inflammatory-related pathways, and further studies need to modulate these pathways for the putative anti-nociceptive benefits.
Collapse
|
5
|
Huang N, Gao Y, Zhang M, Guo L, Qin L, Liao S, Wang H. METTL3-Mediated m6A RNA Methylation of ZBTB4 Interferes With Trophoblast Invasion and Maybe Involved in RSA. Front Cell Dev Biol 2022; 10:894810. [PMID: 35774226 PMCID: PMC9237410 DOI: 10.3389/fcell.2022.894810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
N6-methyladenosine (m6A) was the most abundant modification of mRNA and lncRNA in mammalian cells and played an important role in many biological processes. However, whether m6A modification was associated with recurrent spontaneous abortion (RSA) and its roles were still unclear. Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was used to study the global m6A modification pattern in RSAs and controls. RNA sequencing (RNA-Seq) was used to study the level of global mRNA in two groups. Real-time quantitative PCR (RT-qPCR) was used to verify the level of mRNA of METTL3 and ZBTB4. MeRIP–qPCR was conducted to test the level of ZBTB4 m6A modification in two groups. In order to further explore whether ZBTB4 was the substrate of METTL3, the HTR-8/SVneo (HTR-8) cell line was selected for the knockdown and overexpression of METTL3. To study whether METTL3 regulated the ZBTB4 expression by recognizing ZBTB4 mRNA m6A motifs in coding sequences (CDS), dual-luciferase reporter assay was conducted. RNA stability assays using actinomycin D were conducted to study the RNA stability of the HTR-8 cell line with METTL3 overexpression and knockdown. To illustrate the role of METTL3 in the invasion of trophoblast, matrigel invasion assays and transwell migration assays were conducted using the HTR-8 cell line with METTL3 overexpression and knockdown. Results: A total of 65 genes were found with significant differences both in m6A modification and mRNA expression. We found m6A methyltransferase METTL3 was significantly down-regulated in the RSA group. Through gene function analysis, RT-qPCR, MeRIP–qPCR validation experiment, knockdown, and overexpression of METTL3 in the HTR-8 cell line, ZBTB4 was selected as one target of METTL3. Furthermore, we clarified that METTL3 regulated the expression of ZBTB4 by recognizing ZBTB4 mRNA m6A motifs in the CDS using the dual-luciferase reporter assay and METTL3 regulated the invasion of trophoblast by altering the stability and expression of ZBTB4 by RNA stability, matrigel invasion, and transwell migration assays. Conclusion: Our study revealed the mechanism by which METTL3 regulated the stability and expression of ZBTB4 and the trophoblast migration ability of RSA. A new perspective was provided for exploring the mechanism of embryonic development in RSA patients.
Collapse
Affiliation(s)
- Nana Huang
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Yue Gao
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Mengting Zhang
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Liangjie Guo
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Litao Qin
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- *Correspondence: Shixiu Liao, ; Hongdan Wang,
| | - Hongdan Wang
- Henan Provincial People’s Hospital, Medical Genetics Institute of Henan Province, Zhengzhou University People’s Hospital, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
- *Correspondence: Shixiu Liao, ; Hongdan Wang,
| |
Collapse
|
6
|
Molecular epigenetic dynamics in breast carcinogenesis. Arch Pharm Res 2021; 44:741-763. [PMID: 34392501 DOI: 10.1007/s12272-021-01348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has become one of the most common dreadful diseases that target women across the globe. The most obvious reasons we associate with it are either genetic mutations or dysregulation of pathways. However, there is yet another domain that has a significant role in influencing the genetic mutations and pathways. Epigenetic mechanisms influence these pathways either independently or in association with genetic mutations, thereby expediting the process of breast carcinogenesis. Breast cancer is governed by various transduction pathways such as PI3K/AKT/mTOR, NOTCH, β Catenin, NF-kB, Hedgehog, etc. There are many proteins as well that serve to be tumor suppressors but somehow lose their ability to function. This may be because of either genetic mutation or a process that represses their function. Apart from these, there are a lot of individual factors like puberty, breastfeeding, abortion, parity, circadian rhythm, alcohol consumption, pollutants, and obesity that drive these mutations and hence alter the pathways. Epigenetic mechanisms like DNA methylation, histone modifications, and lncRNAs directly or indirectly bring alterations in the proteins that are involved in the pathways. They do this by either promoting the transcription of genes or by repressing it at the ground genetic level that advances breast carcinogenesis. Epigenetics precedes genetic mutation in driving carcinogenesis and so, it needs to be explored further to diversify the possibilities of target specific treatments. In this review, the general role of DNA methylation, histone modification, and lncRNAs in breast cancer and their role in influencing the oncogenic signaling pathways along with the various factors governing them have been discussed for a better understanding of the role of epigenetics in breast carcinogenesis.
Collapse
|
7
|
Salimi S, Sargazi S, Heidari Nia M, Mirani Sargazi F, Ghasemi M. Genetic variants of HOTAIR are associated with susceptibility to recurrent spontaneous abortion: A preliminary case-control study. J Obstet Gynaecol Res 2021; 47:3767-3778. [PMID: 34396639 DOI: 10.1111/jog.14977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
AIM To investigate the association between Hox transcript antisenses RNA (HOTAIR) polymorphisms, rs12826786 C/T, rs920778 T/C, rs4759314 A/G, and rs1899663 G/T, with recurrent spontaneous abortion (RSA) susceptibility in the Iranian women. METHODS We enrolled 161 patients diagnosed with RSA and 177 healthy women with at least one live birth without a history of abortion. Genotyping of HOTAIR polymorphisms was carried out using both restriction fragment length polymorphism-polymerase chain reaction and amplification refractory mutation system-polymerase chain reaction methods. Odds ratios (ORs) with 95% confidence intervals (CIs) were assessed to estimate the strength of association. RESULTS Different inheritance models of rs12826786 C/T, rs920778 T/C, and rs1899663 G/T polymorphisms significantly enhanced the risk of RSA (p < 0.05), whereas the rs4759314 A/G polymorphism was correlated with diminished risk of developing RSA under recessive AA versus GA + GG (OR 0.42 [95% CI = 0.19-0.91]), log-additive GG versus GA vs. GG (OR 0.67 [95% CI = 0.48-0.93]), and allelic A versus G (OR 0.65 [95% CI = 0.47-0.92]) models. Moreover, the TGTC, TTCT, TTTC, CGTC, CGTT, CTCC, CTCT, CTTC, and CTTT haplotypes of rs920778/rs1899663/rs12826786/ significantly increased the risk of RSA. The studied variants were not in strong linkage disequilibrium. CONCLUSIONS Our results indicated that variations in the HOTAIR gene might serve as beneficial biomarkers for determining susceptibility to RSA. To confirm these findings, replication studies with a larger population and different races are needed.
Collapse
Affiliation(s)
- Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariba Mirani Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Moloud Infertility Center, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Che D, Fang Z, Mai H, Xu Y, Fu L, Zhou H, Zhang L, Pi L, Gu X. The lncRNA ANRIL Gene rs2151280 GG Genotype is Associated with Increased Susceptibility to Recurrent Miscarriage in a Southern Chinese Population. J Inflamm Res 2021; 14:2865-2872. [PMID: 34234511 PMCID: PMC8256094 DOI: 10.2147/jir.s304801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Genetic factors may play an important role in susceptibility to recurrent miscarriage. Some cardiovascular disease-related candidate genes have been shown to be associated with recurrent miscarriage. Long noncoding RNA ANRIL has been confirmed to be associated with susceptibility to various diseases, such as cardiovascular disease. However, it remains unclear whether the ANRIL gene polymorphism is related to recurrent miscarriage susceptibility. Methods Three ANRIL gene polymorphisms (rs2151280, rs1063192 and rs564398) were genotyped in 819 controls and 610 recurrent miscarriage patients through TaqMan real-time polymerase chain reaction. The odds ratios and 95% confidence intervals (CIs) were used to assess the strength of each association. Results Our results showed that the ANRIL rs2151280 GG genotype was associated with increased susceptibility to recurrent miscarriage (GG vs AA: adjusted OR=1.527, 95% CI=1.051–2.218, p=0.0262; GG vs AG/AA adjusted OR=1.460, 95% CI=1.021–2.089, p=0.0381). By combining the analysis of the risk genotypes in the three SNPs, we found that individuals with 2–3 risk genotypes had a significantly increased risk of recurrent miscarriage compared with those with a 0–1 risk genotype (adjusted OR=1.728, 95% CI=1.112–2.683, p=0.0149). This risk was more significant in subgroups of women less than 35–40 years of age and women with 2–3 miscarriages. Conclusion These results suggested that a specific SNP in the ANRIL gene may be associated with increased susceptibility to recurrent miscarriage in a southern Chinese population.
Collapse
Affiliation(s)
- Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenzhen Fang
- Program of Molecular Medicine, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linyuan Zhang
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Wu Z, Yu Y, Fu L, Mai H, Huang L, Che D, Tao J, Gu X. LncRNA SOX2OT rs9839776 Polymorphism Reduces Sepsis Susceptibility in Southern Chinese Children. J Inflamm Res 2020; 13:1095-1101. [PMID: 33328755 PMCID: PMC7735778 DOI: 10.2147/jir.s281760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023] Open
Abstract
Background Sepsis in children is one of the main causes of death in pediatric intensive care units (PICUs); however, the pathogenesis of sepsis is not fully clear. Previous studies revealed that many genetic variations were related to sepsis susceptibility. A long non-coding RNA SOX2 overlapping transcript (SOX2OT) may play a role in mitochondrial homeostasis and antioxidative activity, but the relationship between the lncRNA SOX2OT polymorphism and sepsis susceptibility has not been reported. Methods In this study, 474 pediatric sepsis patients and 678 healthy controls were recruited from southern China. After genotyping, the strength of the associations was evaluated through odds ratios (ORs) and 95% confidence intervals (CIs). Results The SOX2OT rs9839776 T allele was associated with decreased susceptibility to sepsis in southern Chinese children (TT/CT vs CC adjusted OR = 0.778, 95% CI = 0.610–0.992; P = 0.0431). Moreover, the difference in susceptibility was greater in children of age >60 months (adjusted OR = 0.458, 95% CI = 0.234–0.896; P = 0.0225), survivors (adjusted OR = 0.758, 95% CI = 0.585–0.972; P = 0.0358), males (adjusted OR = 0.655, 95% CI = 0.479–0.894; P = 0.0077) and the sepsis subgroup (adjusted OR = 0.548, 95% CI = 0.343–0.876; P = 0.0120). Conclusion The rs9839776 T allele may contribute to decreased sepsis risk in Chinese children. Future studies with a larger sample size are needed to verify these results.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Yongqin Yu
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Li Huang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Jianping Tao
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China.,Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China.,Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| |
Collapse
|
10
|
Long Noncoding RNA SOX2-OT: Regulations, Functions, and Roles on Mental Illnesses, Cancers, and Diabetic Complications. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2901589. [PMID: 33294436 PMCID: PMC7718063 DOI: 10.1155/2020/2901589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
SRY-box transcription factor 2 (SOX2) overlapping transcript (SOX2-OT) is an evolutionarily conserved long noncoding RNA. Its intronic region contains the SOX2 gene, the major regulator of the pluripotency of embryonic stem cells. The human SOX2-OT gene comprises multiple exons and has multiple transcription start sites and generates hundreds of transcripts. Transcription factors (IRF4, AR, and SOX3), transcriptional inhibitors (NSPc1, MTA3, and YY1), and miRNAs (miR-211 and miR-375) have been demonstrated to control certain SOX2-OT transcript level at the transcriptional or posttranscriptional levels. Accumulated evidence indicates its crucial roles in the regulation of the SOX2 gene, miRNAs, and transcriptional process. Restricted expression of SOX2-OT transcripts in the brain results in the association between SOX2-OT single nucleotide polymorphisms and mental illnesses such as schizophrenia and anorexia nervosa. SOX2-OT is notably elevated in tumor tissues, and a high level of SOX2-OT is well correlated with poor clinical outcomes in cancer patients, leading to the establishment of its role as an oncogene and a prognostic or diagnostic biomarker for cancers. The emerging evidence supports that SOX2-OT mediates diabetic complications. In summary, SOX2-OT has diversified functions and could be a therapeutic target for various diseases.
Collapse
|