1
|
Aybar Yalınkılıç N, Çiçek Bayram Ş, Başbağ S. Evaluation of Product Yield and Fatty Acid Composition of Three Flax ( Linum usititassimum L.) Varieties Depending on Different Sowing Dates. Life (Basel) 2025; 15:483. [PMID: 40141827 PMCID: PMC11943566 DOI: 10.3390/life15030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The flax (Linum usititassimum L.) plant can grow in various agroecological environments. However, there are some factors that affect the production and quality of flax. Sowing date is one of the important factors determining crop productivity. In this study, four different sowing dates (20-22 March, 1-3 April, 15-18 April and 30 April, respectively) were applied to determine the appropriate sowing date in terms of yield and oil quality in three flax varieties (Sarı Dane, Kara Kız, Beyaz Gelin). The study results showed that by delaying sowing, the seed filling period of the plant was exposed to high temperatures, and this caused decreases in seed yield. In other words, the most positive results in terms of agronomic characteristics were obtained from the first sowing date. In this respect, the highest oil yield of 760 kg ha-1 and the highest oil content of 34% were obtained from the Sarı Dane variety. Similarly, flaxseed showed high values in terms of alphalinolenic acid (54.25%), palmitic acid (6.36%), stearic acid (7%), oleic acid (22.54%) and linoleic acid (14%) at the first and second planting times, while these rates decreased relatively as the planting time was delayed. According to the results of the two-year study, it was determined that the ecological conditions of the region were suitable for flax cultivation. However, it is clear that delaying the sowing date causes significant decreases in both the agronomic traits of flax and the oil quality for industrial purposes. In this respect, considering the ecology of the region, sowing flax in the last week of March or the first week of April is suitable for optimum yield and oil quality.
Collapse
Affiliation(s)
- Nazlı Aybar Yalınkılıç
- Department of Plant Production and Technologies, Faculty of Applied Sciences, Muş Alparslan University, Mus 49000, Türkiye
| | | | - Sema Başbağ
- Department of Field Crops, Faculty of Agriculture, Dicle University, Diyarbakir 21100, Türkiye;
| |
Collapse
|
2
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
3
|
Zhang Y, Liu X, Zheng Z, Huang H, Wang Y, Wu S, Shu Y, Yang Y, Zhong Y, Liao P, Wang Y, Pan Z. Network pharmacology uncovers that secoisolariciresinol diglucoside ameliorate premature ovarian insufficiency via PI3K/Akt pathway. Sci Rep 2025; 15:1493. [PMID: 39788972 PMCID: PMC11717958 DOI: 10.1038/s41598-024-83484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
As one of the essential lignan derivative found in traditional Chinese medicinal herbs, secoisolariciresinol diglucoside (SDG) was proved to promote women's health through its phytoestrogenic properties. Increasingly studies indicated that this compound could be a potential drug capable of preventing estrogen-related diseases. Here, we aimed to investigate whether SDG can counteract cyclophosphamide (CTX) induced premature ovarian insufficiency (POI) and further explore its specific molecular mechanism. In this study, we first validated the therapeutic effect of SDG on POI in a mouse model. Then, the mechanism by which SDG improves POI is predicted through a combination of network and pharmacology, and its authenticity is further confirmed by experimental verification, molecular docking analysis and molecular dynamics simulation. The results showed that SDG significantly alleviated POI by improving ovarian indices and follicle counts while protecting against CTX-induced ovarian damage by modulating the PI3K/Akt signaling pathway in KGN cells. In addition, molecular docking studies confirmed SDG's high affinity for Akt1 and PI3Kγ, pinpointing the precise interaction sites. These results underscore the protective mechanisms of SDG against ovarian damage, highlighting its therapeutic potential. In summary, our study identified that SDG can ameliorate CTX-induced POI with its mechanism of action intricately linked to the modulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yiqing Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xialu Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Zitong Zheng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Haiqiang Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yurou Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Shuqin Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yuan Shu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yuxin Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yufei Zhong
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Pengfei Liao
- Jiangxi KingMed Clinical Laboratory Co, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yongsong Wang
- Jiangxi KingMed Clinical Laboratory Co, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Zezheng Pan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
4
|
Ouyang Q, He W, Guo Y, Li L, Mao Y, Li X, Xiang S, Hu X, He J. Downregulation of hnRNPA1 inhibits hepatocellular carcinoma cell progression by modulating alternative splicing of ZNF207 exon 9. Front Oncol 2025; 14:1517459. [PMID: 39834948 PMCID: PMC11743940 DOI: 10.3389/fonc.2024.1517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most prevalent liver cancer and a leading cause of cancer-related deaths worldwide. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays a critical role in RNA metabolism, including alternative splicing, which is linked to cancer progression. Our study investigated the role of hnRNPA1 in HCC and its potential as a therapeutic target. Methods We analyzed hnRNPA1 expression in HCC tissues compared to non-tumor tissues using RNA-seq and immunohistochemistry. hnRNPA1 was knocked down in Hep G2 cells to assess its impact on cell proliferation, migration, and apoptosis using scratch assays, flow cytometry, qPCR, and Western blot. We also explored the interaction between hnRNPA1 and ZNF207, as well as its splicing effects and downstream signaling pathways by RIP assay, bioinformatics, qPCR and Western blot. Results hnRNPA1 was significantly upregulated in HCC tissues compared to normal tissues, correlating with poor patient survival. hnRNPA1 knockdown reduced Hep G2 cell proliferation and migration while increasing apoptosis. We identified that hnRNPA1 bound to ZNF207 and regulated its exon 9 skipping, influencing ZNF207 splicing and the PI3K/Akt/mTOR pathway, key regulators of cell growth and survival. Conclusion Our findings demonstrate that hnRNPA1 promotes HCC progression by regulating ZNF207 splicing and the PI3K/Akt/mTOR pathway. hnRNPA1-ZNF207 interaction represents a potential therapeutic target for HCC, providing insights into the molecular mechanisms underlying HCC progression.
Collapse
Affiliation(s)
- Qi Ouyang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenhui He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiping Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Intharuksa A, Kuljarusnont S, Sasaki Y, Tungmunnithum D. Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application. Molecules 2024; 29:5760. [PMID: 39683916 DOI: 10.3390/molecules29235760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, natural bioactive ingredients and/or raw materials are of significant interest to scientists around the world. Flavonoids and other polyphenols are a major group of phytochemicals that have been researched and noted as bioactive molecules. They offer several pharmacological and medical benefits. This current review aims to (1) illustrate their benefits for human health, such as antioxidant, anti-aging, anti-cancer, anti-inflammatory, anti-microbial, cardioprotective, neuroprotective, and UV-protective effects, and also (2) to perform a quality evaluation of traditional medicines for future application. Consequently, keywords were searched on Scopus, Google Scholar, and PubMed so as to search for related publications. Then, those publications were carefully checked in order to find current and non-redundant studies that matched the objective of this review. According to this review, researchers worldwide are very interested in discovering the potential of flavonoids and other polyphenols, used in traditional medicines and taken from medicinal plants, in relation to medical and pharmaceutical applications. Many studies focus on the health benefits of flavonoids and other polyphenols have been tested using in silico, in vitro, and in vivo models. However, few studies have been carried out using clinical trials that have trustworthy subject sizes and are in accordance with clinical practice guidelines. Additionally, interesting research directions and perspectives for future studies are highlighted in this work.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yohei Sasaki
- Division of Pharmaceutical Sciences, Graduate School of Medical Plant Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| |
Collapse
|
6
|
Jia M, Ning F, Wen J, Wang X, Chen J, Hu J, Chen X, Liu Z. Secoisolariciresinol diglucoside attenuates neuroinflammation and cognitive impairment in female Alzheimer's disease mice via modulating gut microbiota metabolism and GPER/CREB/BDNF pathway. J Neuroinflammation 2024; 21:201. [PMID: 39135052 PMCID: PMC11320852 DOI: 10.1186/s12974-024-03195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Gender is a significant risk factor for late-onset Alzheimer's disease (AD), often attributed to the decline of estrogen. The plant estrogen secoisolariciresinol diglucoside (SDG) has demonstrated anti-inflammatory and neuroprotective effects. However, the protective effects and mechanisms of SDG in female AD remain unclear. METHODS Ten-month-old female APPswe/PSEN1dE9 (APP/PS1) transgenic mice were treated with SDG to assess its potential ameliorative effects on cognitive impairments in a female AD model through a series of behavioral and biochemical experiments. Serum levels of gut microbial metabolites enterodiol (END) and enterolactone (ENL) were quantified using HPLC-MS. Correlation analysis and broad-spectrum antibiotic cocktail (ABx) treatment were employed to demonstrate the involvement of END and ENL in SDG's cognitive improvement effects in female APP/PS1 mice. Additionally, an acute neuroinflammation model was constructed in three-month-old C57BL/6J mice treated with lipopolysaccharide (LPS) and subjected to i.c.v. injection of G15, an inhibitor of G protein-coupled estrogen receptor (GPER), to investigate the mediating role of the estrogen receptor GPER in the cognitive benefits conferred by SDG. RESULTS SDG administration resulted in significant improvements in spatial, recognition, and working memory in female APP/PS1 mice. Neuroprotective effects were observed, including enhanced expression of CREB/BDNF and PSD-95, reduced β-amyloid (Aβ) deposition, and decreased levels of TNF-α, IL-6, and IL-10. SDG also altered gut microbiota composition, increasing serum levels of END and ENL. Correlation analysis indicated significant associations between END, ENL, cognitive performance, hippocampal Aβ-related protein mRNA expression, and cortical neuroinflammatory cytokine levels. The removal of gut microbiota inhibited END and ENL production and eliminated the neuroprotective effects of SDG. Furthermore, GPER was found to mediate the inhibitory effects of SDG on neuroinflammatory responses. CONCLUSION These findings suggest that SDG promotes the production of gut microbial metabolites END and ENL, which inhibit cerebral β-amyloid deposition, activate GPER to enhance CREB/BDNF signaling pathways, and suppress neuroinflammatory responses. Consequently, SDG exerts neuroprotective effects and ameliorates cognitive impairments associated with AD in female mice.
Collapse
Affiliation(s)
- Mengzhen Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangjie Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junqing Wen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaorui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiao Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China.
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
7
|
Ma QW, Han RT, Wu ZJ, Zhou JJ, Chen MT, Zhang XZ, Ma WZ, Feng N. Melatonin derivative 6a as a PARP-1 inhibitor for the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1363212. [PMID: 38476326 PMCID: PMC10927953 DOI: 10.3389/fphar.2024.1363212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Both continuous oxidative stress and poly (ADP-ribose) polymerase 1 (PARP-1) activation occur in neurodegenerative diseases such as Parkinson's disease. PARP-1 inhibition can reverse mitochondrial damage and has a neuroprotective effect. In a previous study, we synthesized melatonin derivative 6a (MD6a) and reported that it has excellent antioxidant activity and significantly reduces α-synuclein aggregation in Caenorhabditis elegans; however, the underlying mechanism is largely unknown. In the present study, we revealed that MD6a is a potential PARP-1 inhibitor, leading to mammalian targe of rapamycin/heat shock factor 1 signaling downregulation and reducing heat shock protein 4 and 6 expression, thus helping to maintain protein homeostasis and improve mitochondrial function. Together, these findings suggest that MD6a might be a viable candidate for the prevention and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Qing-Wei Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Rui-Ting Han
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Zi-Jie Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Jun-Jie Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Meng-Ting Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Xiang-Zhi Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Na Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| |
Collapse
|
8
|
Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16. Mar Drugs 2022; 21:md21010001. [PMID: 36662174 PMCID: PMC9866299 DOI: 10.3390/md21010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.
Collapse
|
9
|
Liu Y, Zhou Z, Yin L, Zhu M, Wang F, Zhang L, Wang H, Zhou Z, Zhu H, Huang C, Fan S. Tangeretin promotes lifespan associated with insulin/insulin-like growth factor-1 signaling pathway and heat resistance in Caenorhabditis elegans. Biofactors 2022; 48:442-453. [PMID: 34580918 DOI: 10.1002/biof.1788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022]
Abstract
Tangeretin is a polymethoxylated flavonoid naturally occurred in citrus fruits with many pharmacological activities, such as anti-inflammatory, antiproliferative, and neuroprotective properties. A previous study reported that tangeretin-enriched orange extract could prolong the lifespan in Caenorhabditis elegans. However, the antiaging effect of tangeretin remains uncertain. In this study, we used the model organism C. elegans to conduct a lifespan test, observed the aging-related functional changes of nematodes, the fluorescence changes of stress-related proteins (DAF-16 and HSP-16.2) and its response to stress assay, and monitored the effect of tangeretin on the mRNA expression levels. The results showed that tangeretin supplementation (30 and 100 μM) extended the mean lifespan, slowed aging-related functional declines, and increased the resistance against heat-shock stress. Furthermore, tangeretin upregulated the mRNA expression of daf-16, hsp-16.2, and hsp-16.49, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2, while it had no effect on the lifespan of daf-2, age-1, and daf-16 mutants. The current findings suggest that tangeretin can significantly extend the lifespan and enhance heat stress tolerance in an insulin/insulin-like growth factor signaling dependent manner.
Collapse
Affiliation(s)
- Yalei Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liufang Yin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongqing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Orientin Prolongs the Longevity of Caenorhabditis elegans and Postpones the Development of Neurodegenerative Diseases via Nutrition Sensing and Cellular Protective Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8878923. [PMID: 35237385 PMCID: PMC8885179 DOI: 10.1155/2022/8878923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
Abstract
Age is the major risk factor for most of the deadliest diseases. Developing small molecule drugs with antiaging effects could improve the health of aged people and retard the onset and progress of aging-associated disorders. Bioactive secondary metabolites from medicinal plants are the main source for development of medication. Orientin is a water-soluble flavonoid monomer compound widely found in many medicinal plants. Orientin inhibits fat production, antioxidation, and anti-inflammatory activities. In this study, we explored whether orientin could affect the aging of C. elegans. We found that orientin improved heat, oxidative, and pathogenic stress resistances through activating stress responses, including HSF-1-mediated heat shock response, SKN-1-mediated xenobiotic and oxidation response, mitochondria unfolded responses, endoplasmic unfolded protein response, and increased autophagy activity. Orientin also could activate key regulators of the nutrient sensing pathway, including AMPK and insulin downstream transcription factor FOXO/DAF-16 to further improve the cellular health status. The above effects of orientin reduced the accumulation of toxic proteins (α-synuclein, β-amyloid, and poly-Q) and delayed the onset of neurodegenerative disorders in AD, PD, and HD models of C. elegans and finally increased the longevity and health span of C. elegans. Our results suggest that orientin has promising antiaging effects and could be a potential natural source for developing novel therapeutic drugs for aging and its related diseases.
Collapse
|
11
|
Okoro NO, Odiba AS, Osadebe PO, Omeje EO, Liao G, Fang W, Jin C, Wang B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules 2021; 26:molecules26237323. [PMID: 34885907 PMCID: PMC8658929 DOI: 10.3390/molecules26237323] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In the forms of either herbs or functional foods, plants and their products have attracted medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemicals. Human beings and other animals have employed those bioactive phytochemicals to improve health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half, efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are highly conserved. In this review, we summarized the aging and longevity pathways that are common to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a perfect system for discovering bioactive compounds but is also a research shortcut for elucidating the amelioration mechanisms of aging risk factors and associated diseases.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Arome Solomon Odiba
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
| | - Patience Ogoamaka Osadebe
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Edwin Ogechukwu Omeje
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Correspondence: ; Tel.: +86-771-2503-601
| |
Collapse
|
12
|
Trigonelline Extends the Lifespan of C. Elegans and Delays the Progression of Age-Related Diseases by Activating AMPK, DAF-16, and HSF-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7656834. [PMID: 34616504 PMCID: PMC8487828 DOI: 10.1155/2021/7656834] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Trigonelline is the main alkaloid with bioactivity presented in fenugreek, which was used in traditional medicine in Asian countries for centuries. It is reported that trigonelline has anti-inflammatory, anti-oxidant, and anti-pathogenic effects. We are wondering whether trigonelline have anti-aging effect. We found that 50 μM of trigonelline had the best anti-aging activity and could prolong the lifespan of Caenorhabditis elegans (C. elegans) by about 17.9%. Trigonelline can enhance the oxidative, heat, and pathogenic stress resistance of C. elegans. Trigonelline could also delay the development of neurodegenerative diseases, such as AD, PD, and HD, in models of C. elegans. Trigonelline could not prolong the lifespan of long-lived worms with loss-of-function mutations in genes regulating energy and nutrition, such as clk-1, isp-1, eat-2, and rsks-1. Trigonelline requires daf-16, hsf-1, and aak-2 to extend the lifespan of C. elegans. Trigonelline can also up-regulate the expression of daf-16 and hsf-1 targeted downstream genes, such as sod-3, gst-4, hsp-16.1, and hsp-12.6. Our results can be the basis for developing trigonelline-rich products with health benefits, as well as for further research on the pharmacological usage of trigonelline.
Collapse
|
13
|
Yu X, Li H, Lin D, Guo W, Xu Z, Wang L, Guan S. Ginsenoside Prolongs the Lifespan of C. elegans via Lipid Metabolism and Activating the Stress Response Signaling Pathway. Int J Mol Sci 2021; 22:9668. [PMID: 34575832 PMCID: PMC8465798 DOI: 10.3390/ijms22189668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Panax ginseng is a valuable traditional Chinese medicine in Northeast China. Ginsenoside, the active component of ginseng, has not been investigated much for its effects on aging and its underlying mechanism(s) of action. Here, we investigated the effects of total ginsenoside (TG), a mixture of the primary active ginsenosides from Panax ginseng, on the lifespan of Caenorhabditis elegans (C. elegans). We found that TG extended the lifespan of C. elegans and reduced lipofuscin accumulation. Moreover, TG increased the survival of C. elegans in response to heat and oxidative stress via the reduction of ROS. Next, we used RNA-seq to fully define the antiaging mechanism(s) of TG. The KEGG pathway analysis showed that TG can prolong the lifespan and is involved in the longevity regulating pathway. qPCR showed that TG upregulated the expression of nrh-80, daf-12, daf-16, hsf-1 and their downstream genes. TG also reduced the fat accumulation and promoted lipid metabolism. Moreover, TG failed to extend the lifespan of daf-16 and hsf-1 mutants, highlighting their role in the antiaging effects of TG in C. elegans. The four main constitution of TG were then confirmed by HPLC and included ginsenoside Re, Rg1, Rg2 and Rd. Of the ginsenosides, only ginsenoside Rd prolonged the lifespan of C. elegans to levels comparable to TG. These findings provided mechanistic insight into the antiaging effects of ginsenoside in C. elegans.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (X.Y.); (L.W.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Hui Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Dongfa Lin
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Weizhuo Guo
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Zhihao Xu
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (X.Y.); (L.W.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Shuwen Guan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (X.Y.); (L.W.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (H.L.); (D.L.); (W.G.); (Z.X.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021; 10:foods10040839. [PMID: 33921351 PMCID: PMC8068854 DOI: 10.3390/foods10040839] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Plant foods are consumed worldwide due to their immense energy density and nutritive value. Their consumption has been following an increasing trend due to several metabolic disorders linked to non-vegetarian diets. In addition to their nutritive value, plant foods contain several bioactive constituents that have been shown to possess health-promoting properties. Plant-derived bioactive compounds, such as biologically active proteins, polyphenols, phytosterols, biogenic amines, carotenoids, etc., have been reported to be beneficial for human health, for instance in cases of cancer, cardiovascular diseases, and diabetes, as well as for people with gut, immune function, and neurodegenerative disorders. Previous studies have reported that bioactive components possess antioxidative, anti-inflammatory, and immunomodulatory properties, in addition to improving intestinal barrier functioning etc., which contribute to their ability to mitigate the pathological impact of various human diseases. This review describes the bioactive components derived from fruit, vegetables, cereals, and other plant sources with health promoting attributes, and the mechanisms responsible for the bioactive properties of some of these plant components. This review mainly compiles the potential of food derived bioactive compounds, providing information for researchers that may be valuable for devising future strategies such as choosing promising bioactive ingredients to make functional foods for various non-communicable disorders.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana 123031, India;
- Correspondence: (T.D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez Pidal, SN, 14004 Córdoba, Spain
- Correspondence: (T.D.); (J.M.M.-R.)
| |
Collapse
|
15
|
Qin X, Zhang X, Li P, Wang M, Yan L, Pan P, Zhang H, Hong X, Liu M, Bao Z. MicroRNA-185 activates PI3K/AKT signalling pathway to alleviate dopaminergic neuron damage via targeting IGF1 in Parkinson's disease. J Drug Target 2021; 29:875-883. [PMID: 33560148 DOI: 10.1080/1061186x.2021.1886300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Studies have extensively explored the role of microRNAs (miRs) in Parkinson's disease (PD) and miR-185 is related to autophagy and apoptosis of dopaminergic neurons in PD. However, the role of miR-185 mediating insulin-like growth factor 1 (IGF1)/phosphatidylinositol-3-kinase/protein kinase B signalling pathway (PI3K/AKT) in PD still needs in-depth exploration. METHODS Rat PD models were established by injection of 6-hydroxydopamine. PD rats were injected with miR-185 or insulin-like growth factor 1 (IGF1)-related sequences. Behaviour tests were performed, oxidative stress-related factors, tyrosine hydroxylase (TH)-, glial fibrillary acidic protein (GFAP)-, ionised calcium-binding adaptor molecule-1 (Iba-1)- and TUNEL-positive cells in the substantia nigra were determined. Levels of miR-185, IGF1 and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signalling pathway-related factors were also detected. RESULTS miR-185 level was reduced in rats with PD. Restoring miR-185 promoted behaviour functions, ameliorated pathological damages and oxidative stress, increased TH-positive dopaminergic neurons, decreased GFAP- and Iba-1-positive cells and restrained neuronal apoptosis in the substantia nigra in PD rats. miR-185 targeted IGF1 to activate PI3K/AKT signalling pathway. Up-regulation of IGF1 mitigated restored miR-185-mediated effects on PD rats. CONCLUSION This study illustrates that miR-185 ameliorates dopaminergic neuron damage via targeting IGF1 and activating PI3K/AKT signalling pathway in PD, which renews the therapy for PD.
Collapse
Affiliation(s)
| | - Xia Zhang
- Zhaoqing Medical College, Zhaoqing, China
| | - Pinyu Li
- Zhaoqing Medical College, Zhaoqing, China
| | - Min Wang
- Zhaoqing Medical College, Zhaoqing, China
| | - Li Yan
- Zhaoqing Medical College, Zhaoqing, China
| | | | | | | | - Muxi Liu
- Zhaoqing Medical College, Zhaoqing, China
| | - Zeqing Bao
- Zhaoqing Medical College, Zhaoqing, China
| |
Collapse
|
16
|
Li P, Wang Z, Lam SM, Shui G. Rebaudioside A Enhances Resistance to Oxidative Stress and Extends Lifespan and Healthspan in Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:262. [PMID: 33567712 PMCID: PMC7915623 DOI: 10.3390/antiox10020262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Non-nutritive sweeteners are widely used in food and medicines to reduce energy content without compromising flavor. Herein, we report that Rebaudioside A (Reb A), a natural, non-nutritive sweetener, can extend both the lifespan and healthspan of C. elegans. The beneficial effects of Reb A were principally mediated via reducing the level of cellular reactive oxygen species (ROS) in response to oxidative stress and attenuating neutral lipid accumulation with aging. Transcriptomics analysis presented maximum differential expression of genes along the target of rapamycin (TOR) signaling pathway, which was further confirmed by quantitative real-time PCR (qPCR); while lipidomics uncovered concomitant reductions in the levels of phosphatidic acids (PAs), phosphatidylinositols (PIs) and lysophosphatidylcholines (LPCs) in worms treated with Reb A. Our results suggest that Reb A attenuates aging by acting as effective cellular antioxidants and also in lowering the ectopic accumulation of neutral lipids.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (P.L.); (Z.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Pantic I, Cumic J, Skodric SR, Dugalic S, Brodski C. Oxidopamine and oxidative stress: Recent advances in experimental physiology and pharmacology. Chem Biol Interact 2021; 336:109380. [PMID: 33450287 DOI: 10.1016/j.cbi.2021.109380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 12/20/2022]
Abstract
Oxidopamine (6-hydroxydopamine, 6-OHDA) is a toxin commonly used for the creation of experimental animal models of Parkinson's disease, attention-deficit hyperactivity disorder, and Lesch-Nyhan syndrome. Its exact mechanism of action is not completely understood, although there are many indications that it is related to the generation of reactive oxygen species (ROS), primarily in dopaminergic neurons. In certain experimental conditions, oxidopamine may also cause programmed cell death via various signaling pathways. Oxidopamine may also have a significant impact on chromatin structure and nuclear structural organization in some cells. Today, many researchers use oxidopamine-associated oxidative damage to evaluate different antioxidant-based pharmacologically active compounds as drug candidates for various neurological and non-neurological diseases. Additional research is needed to clarify the exact biochemical pathways associated with oxidopamine toxicity, related ROS generation and apoptosis. In this short review, we focus on the recent research in experimental physiology and pharmacology, related to the cellular and animal experimental models of oxidopamine - mediated toxicity.
Collapse
Affiliation(s)
- Igor Pantic
- University of Belgrade, Faculty of Medicine, Dr Subotica 8, RS-11129, Belgrade, Serbia; University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, IL-3498838, Israel; Institute of medical physiology, Visegradska 26/II, RS-11129, Belgrade, Serbia.
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, Dr Subotica 8, RS-11129, Belgrade, Serbia; Clinical Center of Serbia, Dr. KosteTodorovića 8, RS-11129, Belgrade, Serbia
| | | | - Stefan Dugalic
- Clinical Center of Serbia, Dr. KosteTodorovića 8, RS-11129, Belgrade, Serbia
| | - Claude Brodski
- Ben-Gurion University of the Negev, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Department of Physiology and Cell Biology, P.O.B. 653, Beersheba, Israel
| |
Collapse
|