1
|
Chen L, Qiu H, Chen Q, Xiang P, Lei J, Zhang J, Lu Y, Wang X, Wu S, Yu C, Ma L. N-acetylneuraminic acid modulates SQSTM1/p62 sialyation-mediated ubiquitination degradation contributing to vascular endothelium dysfunction in experimental atherosclerosis mice. IUBMB Life 2024; 76:161-178. [PMID: 37818680 DOI: 10.1002/iub.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1β. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.
Collapse
Affiliation(s)
- Le Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Qingqiu Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Jin Lei
- Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Jun Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yining Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Xianmin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| |
Collapse
|
2
|
Talaei F, Banga A, Pursell A, Gage A, Pallipamu N, Seri AR, Adhikari R, Kashyap R, Surani S. New-onset atrial fibrillation among COVID-19 patients: A narrative review. World J Crit Care Med 2023; 12:236-247. [PMID: 38188450 PMCID: PMC10768419 DOI: 10.5492/wjccm.v12.i5.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 12/07/2023] Open
Abstract
Over the last three years, research has focused on examining cardiac issues arising from coronavirus disease 2019 (COVID-19) infection, including the emergence of new-onset atrial fibrillation (NOAF). Still, no clinical study was conducted on the persistence of this arrhythmia after COVID-19 recovery. Our objective was to compose a narrative review that investigates COVID-19-associated NOAF, emphasizing the evolving pathophysiological mechanisms akin to those suggested for sustaining AF. Given the distinct strategies involved in the persistence of atrial AF and the crucial burden of persistent AF, we aim to underscore the importance of extended follow-up for COVID-19-associated NOAF. A comprehensive search was conducted for articles published between December 2019 and February 11, 2023, focusing on similarities in the pathophysiology of NOAF after COVID-19 and those persisting AF. Also, the latest data on incidence, morbidity-mortality, and management of NOAF in COVID-19 were investigated. Considerable overlaps between the mechanisms of emerging NOAF after COVID-19 infection and persistent AF were observed, mostly involving reactive oxygen pathways. With potential atrial remodeling associated with NOAF in COVID-19 patients, this group of patients might benefit from long-term follow-up and different management. Future cohort studies could help determine long-term outcomes of NOAF after COVID-19.
Collapse
Affiliation(s)
- Fahimeh Talaei
- Department of Critical Care Medicine, Mayo Clinic, Phoenix, AZ 85054, United States
| | - Akshat Banga
- Department of Internal Medicine, Sawai Man Singh Medical College, Jaipur 302004, India
| | - Amanda Pursell
- Internal Medicine, Tristar Centennial Medical Center, TriStar Division, HCA Healthcare, Nashville, TN 37203, United States
| | - Ann Gage
- Cardiology, TriStar Centennial Medical Center, TriStar Division, HCA Healthcare, Nashville, TN 37203, United States
| | - Namratha Pallipamu
- Department of Medicine, Siddharta Medical College, Vijayawada 520008, Andhra Pradesh, India
| | - Amith Reddy Seri
- Department of Internal Medicine, Mclaren Regional Medical Center, Flint, MI 48532, United States
| | - Ramesh Adhikari
- Department of Internal Medicine, Franciscan Health, Lafayette, IN 46237, United States
| | - Rahul Kashyap
- Department of Anaesthesiology & Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, United States
- Department of Research, WellSpan Health, York, PA 17401, United States
| | - Salim Surani
- Department of Anaesthesiology & Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, United States
- Department of Medicine & Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
3
|
Ping Z, Zhang XL, Wang ZW, Cao XB. The effect of long-term moderate exercise on myocardial metabolome in rats. CHINESE J PHYSIOL 2023; 66:558-566. [PMID: 38149568 DOI: 10.4103/cjop.cjop-d-23-00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Regular moderate physical exercise is beneficial for the cardiovascular system. Our prior study has demonstrated a long-term moderate exercise (4-week of 60-min 74.0% V̇O2max treadmill running) is optimal in protecting from exhaustive exercise-induced cardiac ischemic injury. This study is aimed to investigate the effect of long-term moderate exercise on myocardial metabolome in rats. Thirteen male Sprague-Dawley rats were randomly assigned into the control group (C) and the long-term moderate exercise group (E). The targeted metabolomics of the myocardium was analyzed by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system. Results showed that the metabolites categories of bile acids (BAs), fatty acids (FAs), and phenylpropanoic acids were significantly decreased. The biosynthesis of unsaturated FAs pathway was significantly downregulated. The altered metabolites in the E Group included decreased FAs (pentadecanoic acid, 10Z-heptadecenoic acid, dihomo-gamma-linolenic acid, docosahexaenoic acid, docosapentaenoic acid, and 10Z-nonadecenoic acid), decreased BAs (chenodeoxycholic acid and beta-muricholic acid), decreased organic acids (glycolic acid and 2-hydroxyglutaric acid), decreased carbohydrate (N-acetylneuraminic acid, Neu5Ac), decreased amino acids (α-aminobutyric acid and norvaline), decreased phenylpropanoic acids (hydroxyphenyllactic acid), and benzoic acids (4-hydroxybenzoic acid and phthalic acid). The results indicated that long-term moderate exercise has promoted lipids utilization in myocardium while exerted little influence on carbohydrate metabolism and diminished many detrimental metabolites. Notably, decrease of myocardial carbohydrate Neu5Ac after long-term moderate exercise might predict a prospective metabolomics biomarker for cardioprotection. This research has displayed the effect of long-term moderate exercise on myocardial metabolomic profiling in rats and indicated some promising metabolites which can be applied for exercise benefits in future.
Collapse
Affiliation(s)
- Zheng Ping
- Department of Cardiology and Nephrology, 82nd Group Army Hospital of PLA, Baoding, Hebei, China
| | - Xiao Li Zhang
- Department of Cardiology and Nephrology, 82nd Group Army Hospital of PLA, Baoding, Hebei, China
| | - Zi Wen Wang
- Department of Cardiology and Nephrology, 82nd Group Army Hospital of PLA, Baoding, Hebei, China
| | - Xue Bin Cao
- Department of Cardiology and Nephrology, 82nd Group Army Hospital of PLA, Baoding, Hebei, China
| |
Collapse
|
4
|
Hashimoto H, Hiyoshi Y, Kabuki T, Sasaki H, Toda M. Prognostic value of ECG monitor findings in COVID-19. Open Heart 2023; 10:e002404. [PMID: 37963684 PMCID: PMC10649884 DOI: 10.1136/openhrt-2023-002404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
AIMS COVID-19 can cause severe illness and multiorgan dysfunction. Acute myocardial damage has been detected in a significant portion of patients with COVID-19; therefore, several studies have reported that electrocardiographic findings could be used to evaluate the severalty of COVID-19. However, performing standard ECG for each patient hospitalised with COVID-19 can increase the level of exposure to COVID-19 among medical staff. Therefore, this study aimed to investigate the prognostic value of continuous electrocardiographic monitor findings in patients with COVID-19. METHODS Among 1612 consecutive patients with COVID-19 who were admitted to our hospital between August 2021 and May 2022, we identified 96 (76±4 years) patients who underwent electrocardiographic monitor during hospitalisation. All electrocardiographic monitors were analysed by two independent cardiologists blinded to the clinical data of the patients. The endpoint was defined as the occurrence of all-cause mortality related to COVID-19. The event data were retrospectively gathered from the patients' medical records. A multivariate Cox model was used to assess whether these electrocardiographic monitor findings and clinical data were associated with in-hospital mortality. RESULTS During a mean hospitalisation period of 22.8±3.2 days, in-hospital mortality occurred in 17 (18%) patients. Atrial fibrillation (HR: 3.95, 95% CI: 1.39 to 11.21) and lung disease complications (HR: 2.91, 95% CI: 1.06 to 7.98) were significant prognostic factors for death in multivariate analysis. Compared with the non-complicated lung disease and non-atrial fibrillation group, the risk of mortality was significantly higher in the lung disease complication and atrial fibrillation group in the multivariate Cox proportional model (HR: 8.37, 95% CI: 1.69 to 41.30, p=0.009). CONCLUSIONS The simple method of ECG monitor could adequately detect atrial fibrillation. This study demonstrated that atrial fibrillation complicated with lung disease, could have potential prognostic value among patients with COVID-19.
Collapse
Affiliation(s)
- Hidenobu Hashimoto
- Department of Cardiovascular Medicine, Tokyo Metropolitan Ebara Hospital, Tokyo, Japan
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yasunaga Hiyoshi
- Department of Cardiovascular Medicine, Tokyo Metropolitan Ebara Hospital, Tokyo, Japan
| | - Takayuki Kabuki
- Department of Cardiovascular Medicine, Tokyo Metropolitan Ebara Hospital, Tokyo, Japan
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Hideto Sasaki
- Department of Cardiovascular Medicine, Tokyo Metropolitan Ebara Hospital, Tokyo, Japan
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Mikihito Toda
- Department of Cardiovascular Medicine, Tokyo Metropolitan Ebara Hospital, Tokyo, Japan
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Liu C, Ge P, Zeng C, Yu X, Zhai Y, Liu W, He Q, Li J, Liu X, Wang J, Ye X, Zhang Q, Wang R, Zhang Y, Zhao J, Zhang D. Correlation of Serum N-Acetylneuraminic Acid with the Risk of Moyamoya Disease. Brain Sci 2023; 13:913. [PMID: 37371391 PMCID: PMC10296217 DOI: 10.3390/brainsci13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) is a functional metabolite and has been demonstrated to be a risk factor for cardiovascular diseases. It is not clear whether Neu5Ac is associated with a higher risk of cerebrovascular disorders, especially moyamoya disease (MMD). We sought to elucidate the association between serum Neu5Ac levels and MMD in a case-control study and to create a clinical risk model. In our study, we included 360 MMD patients and 89 matched healthy controls (HCs). We collected the participants' clinical characteristics, laboratory results, and serum Neu5Ac levels. Increased level of serum Neu5Ac was observed in the MMD patients (p = 0.001). After adjusting for traditional confounders, the risk of MMD (odds ratio [OR]: 1.395; 95% confidence interval [CI]: 1.141-1.706) increased with each increment in Neu5Ac level (per μmol/L). The area under the curve (AUC) values of the receiver operating characteristic (ROC) curves of the basic model plus Neu5Ac binary outcomes, Neu5Ac quartiles, and continuous Neu5Ac are 0.869, 0.863, and 0.873, respectively. Furthermore, including Neu5Ac in the model offers a substantial improvement in the risk reclassification and discrimination of MMD and its subtypes. A higher level of Neu5Ac was found to be associated with an increased risk of MMD and its clinical subtypes.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Xiaofan Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, China; (C.L.); (P.G.); (C.Z.); (X.Y.); (Y.Z.); (W.L.); (Q.H.); (J.L.); (X.L.); (J.W.); (X.Y.); (Q.Z.); (R.W.); (Y.Z.)
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100070, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing 100070, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing 100070, China
- Department of Neurosurgery, Beijing Hospital, Beijing 100730, China
| |
Collapse
|
6
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
7
|
Li MN, Bao BW, Si-Yu D, Chun-Fei J, Xiao-Jun S, Da-Sheng G, Qin G, Hong-Ju W. Correlation between plasma glutathione peroxidase 4 and N-acetylneuraminic acid levels with clinical risk stratification and prognosis of patients with acute coronary syndrome. Saudi Med J 2022; 43:1103-1110. [PMID: 36261209 PMCID: PMC9994492 DOI: 10.15537/smj.2022.43.10.20220444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVES To investigate the correlation between plasma glutathione peroxidase 4 (GPX4) and N-acetyl-neuraminic acid (Neu5Ac) with clinical risk stratification and outcomes of acute coronary syndrome (ACS) patients. METHODS Between October 2018 and July 2019, 413 patients that were scheduled for coronary angiography were enrolled in this prospective study at the First Affiliated Hospital of Bengbu Medical College, Bengbu, China. Patients were divided into control and ACS groups. Patients with ACS were divided into 3 risk levels based on their thrombolysis in myocardial infarction risk score. After discharge, ACS patients were followed for the incidence of major adverse cardiac events (MACEs). For the analysis of cumulative endpoint event occurrences, the Kaplan-Meier method was applied. RESULTS The ACS group had lower plasma GPX4 but higher Neu5Ac levels than the control group. There was a greater increase in plasma Neu5Ac in the high-risk group when compared with the medium-risk and low-risk groups, while GPX4 levels were higher in the low-risk group. The MACEs group had higher plasma Neu5Ac but lower GPX4 levels than the non-MACEs group. The plasma Neu5Ac was an independent risk factor but GPX4 was a protective factor for MACEs. CONCLUSION Glutathione peroxidase 4 and Neu5Ac levels in plasma can be used to diagnose, stratify risks, and predict long-term outcomes in patients with ACS.
Collapse
Affiliation(s)
- Miao-Nan Li
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Bing-Wei Bao
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Ding Si-Yu
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Ji Chun-Fei
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Shi Xiao-Jun
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Gao Da-Sheng
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Gao Qin
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| | - Wang Hong-Ju
- From the Department of Cardiovascular Disease (Li, Bao, Ding, Ji, Shi, D-S. Gao, Q. Gao, Wang), The First Affiliated Hospital of Bengbu Medical College, and from the Department of Physiology (Q. Gao), Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
8
|
Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA. Identifying functional metabolic shifts in heart failure with the integration of omics data and a heart-specific, genome-scale model. Cell Rep 2021; 34:108836. [PMID: 33691118 DOI: 10.1016/j.celrep.2021.108836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022] Open
Abstract
In diseased states, the heart can shift to use different carbon substrates, measured through changes in uptake of metabolites by imaging methods or blood metabolomics. However, it is not known whether these measured changes are a result of transcriptional changes or external factors. Here, we explore transcriptional changes in late-stage heart failure using publicly available data integrated with a model of heart metabolism. First, we present a heart-specific genome-scale metabolic network reconstruction (GENRE), iCardio. Next, we demonstrate the utility of iCardio in interpreting heart failure gene expression data by identifying tasks inferred from differential expression (TIDEs), which represent metabolic functions associated with changes in gene expression. We identify decreased gene expression for nitric oxide (NO) and N-acetylneuraminic acid (Neu5Ac) synthesis as common metabolic markers of heart failure. The methods presented here for constructing a tissue-specific model and identifying TIDEs can be extended to multiple tissues and diseases of interest.
Collapse
Affiliation(s)
- Bonnie V Dougherty
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Gawałko M, Kapłon-Cieślicka A, Hohl M, Dobrev D, Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. IJC HEART & VASCULATURE 2020; 30:100631. [PMID: 32904969 PMCID: PMC7462635 DOI: 10.1016/j.ijcha.2020.100631] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, highly transmittable and severe strain disease, which has rapidly spread worldwide. Despite epidemiological evidence linking COVID-19 with cardiovascular diseases, little is known about whether and how COVID-19 influences atrial fibrillation (AF), the most prevalent arrhythmia in clinical practice. Here, we review the available evidence for prevalence and incidence of AF in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss disease management approaches and potential treatment options for COVID-19 infected AF patients.
Collapse
Affiliation(s)
- Monika Gawałko
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | - Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|