1
|
Zhang-Zhou J, Movilla Meno N, Oñate Salafranca C, Gomez-Benito MJ, Guerrero PE, Pardo Jimeno J, García-Aznar JM. CAR-T cells are more affected than T lymphocytes by mechanical constraints: A microfluidic-based approach. Life Sci 2025; 363:123335. [PMID: 39732363 DOI: 10.1016/j.lfs.2024.123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
AIMS CAR-T cell therapy has attracted considerable attention in recent years owing to its well-known efficacy against haematopoietic malignancies. Nevertheless, this immunotherapy fails against solid tumours due to hostile conditions found in the tumour microenvironment. In this context, many relevant biochemical factors have been thoroughly studied, but crucial mechanical cues have been underestimated. MAIN METHODS We developed an innovative approach using microfluidic devices, which recreate the biomechanical aspects of solid tumours. Using these platforms, we quantified immune cell migration (T and CAR-T cells) under different confinement conditions. KEY FINDINGS We found that both CAR-T cell and T cell velocities are affected by the biomechanical and chemical cues studied, which are closely related to those found in solid tumours. Under biochemical stimulus-free conditions, the velocity of T cells is independent of the width of the microchannel, whereas the velocity of CAR-T cells is greatly reduced in the highest confinement channels. When chemoattractants or tumour cells are added, immune cells display increased confined migration velocity. However, in the presence of immunosuppressive chemokines, T cells become slower, whereas CAR-T cells significantly increase their velocity via a chimeric cytokine receptor. SIGNIFICANCE Our approach contributes to a better understanding of immune cell migration and the influence of mechanical constraints, which will allow the testing of new ways to improve CAR-T cell trafficking into solid tumours. Therefore, our study revealed that the migratory behaviour of CAR-T cells differs from that of T cells under confined conditions and that biomechanical cues, such as cell deformability caused by confinement, can influence the correct infiltration of immune cells into solid tumours during the immune response.
Collapse
Affiliation(s)
- Jack Zhang-Zhou
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | - Nieves Movilla Meno
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain.
| | | | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| | - Pedro Enrique Guerrero
- Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| | - Julian Pardo Jimeno
- Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain; CIBER of Infectious diseases, IS Carlos III, Madrid, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| | - Jose Manuel García-Aznar
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain.
| |
Collapse
|
2
|
Bhat AA, Altamimi ASA, Goyal A, Goyal K, Kaur I, Kumar S, Sharma N, Kumar MR, Ali H, Thapa R, Negi P, Singh SK, Gupta G. The role of CD95 in modulating CAR T-cell therapy: Challenges and therapeutic opportunities in oncology. Int Immunopharmacol 2025; 144:113675. [PMID: 39608172 DOI: 10.1016/j.intimp.2024.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
CAR T cell therapy has revolutionized how we deliver cancer treatment, most notably for hematologic cancers, by compelling T cells to recognize and kill tumor cells. Nevertheless, current obstacles to utilizing this therapy in solid tumors and overcoming cancer resistance include radicalization. This review discusses how CD95 modulation can boost CAR T cell efficacy. Traditionally, CD95 was known to execute apoptosis induction, but it plays a dual role in induced cell death or in supporting cancer cell survival. Recent data have demonstrated that cancer cells escape CD95-mediated apoptosis via the downregulation of CD95, caspase 8 mutation, or the expression of the inhibition protein cFLIP. Additionally, the immunosuppressive tumor microenvironment, containing CD95L expressing immune cells, explains CAR T cell therapy resistance. Furthermore, we characterize the therapeutic potential of CD95 targeted approaches, including CD95L inhibition (APG101) and alterations in CAR T cell manufacturing (tyrosine kinase inhibitors to mitigate fratricide). In this review, we highlight the importance of multi-path way strategies combining CD95 modulation with CAR T cell engineering to overcome resistance, specifically to target tumor cells better and sustain CAR T cell persistence to enhance treatment efficacy in solid tumors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173212, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
3
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
4
|
Ercilla-Rodríguez P, Sánchez-Díez M, Alegría-Aravena N, Quiroz-Troncoso J, Gavira-O'Neill CE, González-Martos R, Ramírez-Castillejo C. CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects. Front Immunol 2024; 15:1333150. [PMID: 39091493 PMCID: PMC11291200 DOI: 10.3389/fimmu.2024.1333150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment with strategies like checkpoint blockade antibodies and adoptive T cell transfer. Chimeric antigen receptor T cells (CAR-T) have emerged as a promising approach to combine these strategies and overcome their limitations. This review explores CAR-T cells as a living drug for cancer treatment. CAR-T cells are genetically engineered immune cells designed to target and eliminate tumor cells by recognizing specific antigens. The study involves a comprehensive literature review on CAR-T cell technology, covering structure optimization, generations, manufacturing processes, and gene therapy strategies. It examines CAR-T therapy in haematologic cancers and solid tumors, highlighting challenges and proposing a suicide gene-based mechanism to enhance safety. The results show significant advancements in CAR-T technology, particularly in structure optimization and generation. The manufacturing process has improved for broader clinical application. However, a series of inherent challenges and side effects still need to be addressed. In conclusion, CAR-T cells hold great promise for cancer treatment, but ongoing research is crucial to improve efficacy and safety for oncology patients. The proposed suicide gene-based mechanism offers a potential solution to mitigate side effects including cytokine release syndrome (the most common toxic side effect of CAR-T therapy) and the associated neurotoxicity.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Genes, Transgenic, Suicide
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/genetics
- T-Lymphocytes/immunology
- Animals
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | - Marta Sánchez-Díez
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nicolás Alegría-Aravena
- Grupo de Biología y Producción de Cérvidos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, Albacete, Spain
- Asociación Española Contra el Cáncer (AECC)-Fundación Científica AECC, Albacete, Spain
| | - Josefa Quiroz-Troncoso
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Clara E. Gavira-O'Neill
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| | - Raquel González-Martos
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ramírez-Castillejo
- ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- Laboratorio Cancer Stem Cell, HST group, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Sección de Oncología, Instituto de Investigación Sanitaria San Carlos, Madrid, Spain
| |
Collapse
|
5
|
Sani F, Shojaei S, Tabatabaei SA, Khorraminejad-Shirazi M, Latifi M, Sani M, Azarpira N. CAR-T cell-derived exosomes: a new perspective for cancer therapy. Stem Cell Res Ther 2024; 15:174. [PMID: 38886844 PMCID: PMC11184895 DOI: 10.1186/s13287-024-03783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell adoptive immunotherapy is a promising cancer treatment that uses genetically engineered T cells to attack tumors. However, this therapy can have some adverse effects. CAR-T cell-derived exosomes are a potential alternative to CAR-T cells that may overcome some limitations. Exosomes are small vesicles released by cells and can carry a variety of molecules, including proteins, RNA, and DNA. They play an important role in intercellular communication and can be used to deliver therapeutic agents to cancer cells. The application of CAR-T cell-derived exosomes could make CAR-T cell therapy more clinically controllable and effective. Exosomes are cell-free, which means that they are less likely to cause adverse reactions than CAR-T cells. The combination of CAR-T cells and exosomes may be a more effective way to treat cancer than either therapy alone. Exosomes can deliver therapeutic agents to cancer cells where CAR-T cells cannot reach. The appropriate application of both cellular and exosomal platforms could make CAR-T cell therapy a more practicable treatment for cancer. This combination therapy could offer a safe and effective way to treat a variety of cancers.
Collapse
Affiliation(s)
- Farnaz Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Shojaei
- School of Medicine, Shiraz Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadhossein Khorraminejad-Shirazi
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mona Latifi
- Department of Physiological Science, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Mahsa Sani
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Institute for Stem Cell & Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
6
|
Luo J, Zhang X. Challenges and innovations in CAR-T cell therapy: a comprehensive analysis. Front Oncol 2024; 14:1399544. [PMID: 38919533 PMCID: PMC11196618 DOI: 10.3389/fonc.2024.1399544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.
Collapse
Affiliation(s)
| | - Xianwen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
8
|
Rathod RJ, Sukumaran RK, Kedia N, Kumar J, Nair R, Chandy M, Gandikota L, Radhakrishnan VS. Chimeric Antigen Receptor T-cell based cellular therapies for cancer: An introduction and Indian perspective. Indian J Cancer 2024; 61:204-214. [PMID: 39152647 DOI: 10.4103/ijc.ijc_433_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/19/2021] [Indexed: 08/19/2024]
Abstract
Using one's own immune system for curing cancer has been an active field of research in cancer biology and therapeutics. One such opportunity in cellular immunotherapy is adoptive cell transfers. With the recent approval of CAR-T therapy as a cancer treatment, a whole new paradigm of cancer treatment has opened-up, with a ray of hope for relapsed/refractory cancer patients. Despite promising clinical outcomes, the therapy is in its early phase and remains out of reach for most patients due to its high cost and logistic challenges. In India, these therapies are unavailable and further confounded by the economic challenges and a large population. In this review, we discuss various aspects of T-cell immunotherapies with a special focus on CAR-T in the Indian scenario. We touch upon the basic scientific aspects, mechanism of action, manufacturing, clinical aspects and commercial aspects of the CAR-Tcell therapies and its future worldwide and in India.
Collapse
Affiliation(s)
- Reena J Rathod
- Cell and Gene Therapy Division, Intas Pharmaceuticals, Ahmedabad, Gujarat, India
| | - Reghu K Sukumaran
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Neelam Kedia
- Cell and Gene Therapy Division, Intas Pharmaceuticals, Ahmedabad, Gujarat, India
| | - Jeevan Kumar
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Reena Nair
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | - Mammen Chandy
- Hematology Oncology and HCT, Tata Medical Center, Kolkata, West Bengal, India
| | | | | |
Collapse
|
9
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
10
|
Joy R, Phair K, O'Hara R, Brady D. Recent advances and current challenges in CAR-T cell therapy. Biotechnol Lett 2024; 46:115-126. [PMID: 38150098 DOI: 10.1007/s10529-023-03461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
Rapid advancements in the field of immunotherapy have significantly improved cancer treatments. Specifically, an individualized cell-based modality which involves the removal of some of the patient's own white blood cells, including T cells, has revolutionized research in this field. This study focuses on the recent advances and current challenges of Chimeric Antigen Receptor- T (CAR-T) cell therapy and its regulations in the United States (US) and European Union (EU). Understanding the regulatory regimes of CAR-T cell therapy is critical for researchers and manufacturers as they navigate the hurdles of bringing CAR-T cell therapy to the global market. Benefits of CAR-T cell therapy include high response rates and the potential of long-term remissions in some haematological malignancies. However, the drawbacks are still evident including high costs, adverse reactions, and limited efficacy to solid tumours. CAR-T cell therapy is rapidly advancing, with 1231 clinical trials launched globally according to www.clinicalTrial.gov . The future of CAR-T cell therapy holds enormous promise but improving its safety, effectiveness, and availability are still barriers to its successful implementation.
Collapse
Affiliation(s)
- R Joy
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - K Phair
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - R O'Hara
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - D Brady
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland.
| |
Collapse
|
11
|
Pawlowski KD, Duffy JT, Gottschalk S, Balyasnikova IV. Cytokine Modification of Adoptive Chimeric Antigen Receptor Immunotherapy for Glioblastoma. Cancers (Basel) 2023; 15:5852. [PMID: 38136398 PMCID: PMC10741789 DOI: 10.3390/cancers15245852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chimeric antigen receptor (CAR) cell-based therapies have demonstrated limited success in solid tumors, including glioblastoma (GBM). GBMs exhibit high heterogeneity and create an immunosuppressive tumor microenvironment (TME). In addition, other challenges exist for CAR therapy, including trafficking and infiltration into the tumor site, proliferation, persistence of CARs once in the tumor, and reduced functionality, such as suboptimal cytokine production. Cytokine modification is of interest, as one can enhance therapy efficacy and minimize off-target toxicity by directly combining CAR therapy with cytokines, antibodies, or oncolytic viruses that alter cytokine response pathways. Alternatively, one can genetically modify CAR T-cells or CAR NK-cells to secrete cytokines or express cytokines or cytokine receptors. Finally, CARs can be genetically altered to augment or suppress intracellular cytokine signaling pathways for a more direct approach. Codelivery of cytokines with CARs is the most straightforward method, but it has associated toxicity. Alternatively, combining CAR therapy with antibodies (e.g., anti-IL-6, anti-PD1, and anti-VEGF) or oncolytic viruses has enhanced CAR cell infiltration into GBM tumors and provided proinflammatory signals to the TME. CAR T- or NK-cells secreting cytokines (e.g., IL-12, IL-15, and IL-18) have shown improved efficacy within multiple GBM subtypes. Likewise, expressing cytokine-modulating receptors in CAR cells that promote or inhibit cytokine signaling has enhanced their activity. Finally, gene editing approaches are actively being pursued to directly influence immune signaling pathways in CAR cells. In this review, we summarize these cytokine modification methods and highlight any existing gaps in the hope of catalyzing an improved generation of CAR-based therapies for glioblastoma.
Collapse
Affiliation(s)
- Kristen D. Pawlowski
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Joseph T. Duffy
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA;
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
12
|
Ou L, Su C, Liang L, Duan Q, Li Y, Zang H, He Y, Zeng R, Li Y, Zhou H, Xiao L. Current status and future prospects of chimeric antigen receptor-T cell therapy in lymphoma research: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2267865. [PMID: 37846106 PMCID: PMC10583622 DOI: 10.1080/21645515.2023.2267865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
CAR-T cell therapy, a novel therapeutic approach that has attracted much attention in the field of cancer treatment at present, has become the subject of many studies and has shown great potential in the treatment of hematological malignancies, such as leukemia and lymphoma. This study aims to analyze the characteristics of articles published on CAR-T cell therapy in the lymphoma field and explore the existing hotspots and frontiers. The relevant articles published from 2013 to 2022 were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, Bibliometric online analysis platform, Microsoft Excel, and R software were used for bibliometric analysis and visualization. The number of publications related to the research has been increasing year by year, including 1023 articles and 760 reviews from 62 countries and regions, 2092 institutions, 1040 journals, and 8727 authors. The United States, China, and Germany are the main publishing countries in this research field. The top 10 institutions are all from the United States, the journal with the highest impact factor is BLOOD, the author with the most publications is Frederick L Locke, and the most influential author is Carl H June. The top three keywords are "Lymphoma," "Immunotherapy," and "Therapy." "Maude (2014)" is the most cited and strongest burstiness reference over the past decade. This study provides a comprehensive bibliometric analysis of CAR-T cell therapy in lymphoma, which can help researchers understand the current research hotspots in this field, explore potential research directions, and identify future development trends.
Collapse
Affiliation(s)
- Lijia Ou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chang Su
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liang Liang
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qintong Duan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yufeng Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Zang
- Department of Human Anatomy and Histoembryology of School of Basic Medical Sciences, Yiyang Medical College, Yiyang, Hunan, China
| | - Yizi He
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ruolan Zeng
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Yajun Li
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Lymphoma & Hematology, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Kausar MA, Anwar S, El-Horany HES, Khan FH, Tyagi N, Najm MZ, Sadaf, Eisa AA, Dhara C, Gantayat S. Journey of CAR T‑cells: Emphasising the concepts and advancements in breast cancer (Review). Int J Oncol 2023; 63:130. [PMID: 37830150 PMCID: PMC10622179 DOI: 10.3892/ijo.2023.5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer is the primary and one of the most prominent causes of the rising global mortality rate, accounting for nearly 10 million deaths annually. Specific methods have been devised to cure cancerous tumours. Effective therapeutic approaches must be developed, both at the cellular and genetic level. Immunotherapy offers promising results by providing sustained remission to patients with refractory malignancies. Genetically modified T‑lymphocytic cells have emerged as a novel therapeutic approach for the treatment of solid tumours, haematological malignancies, and relapsed/refractory B‑lymphocyte malignancies as a result of recent clinical trial findings; the treatment is referred to as chimeric antigen receptor T‑cell therapy (CAR T‑cell therapy). Leukapheresis is used to remove T‑lymphocytes from the leukocytes, and CARs are created through genetic engineering. Without the aid of a major histocompatibility complex, these genetically modified receptors lyse malignant tissues by interacting directly with the carcinogen. Additionally, the outcomes of preclinical and clinical studies reveal that CAR T‑cell therapy has proven to be a potential therapeutic contender against metastatic breast cancer (BCa), triple‑negative, and HER 2+ve BCa. Nevertheless, unique toxicities, including (cytokine release syndrome, on/off‑target tumour recognition, neurotoxicities, anaphylaxis, antigen escape in BCa, and the immunosuppressive tumour microenvironment in solid tumours, negatively impact the mechanism of action of these receptors. In this review, the potential of CAR T‑cell immunotherapy and its method of destroying tumour cells is explored using data from preclinical and clinical trials, as well as providing an update on the approaches used to reduce toxicities, which may improve or broaden the effectiveness of the therapies used in BCa.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Farida Habib Khan
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Community and Family Medicine, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| |
Collapse
|
14
|
Wu D, Li Y. Application of adoptive cell therapy in hepatocellular carcinoma. Immunology 2023; 170:453-469. [PMID: 37435926 DOI: 10.1111/imm.13677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge. Novel treatment modalities are urgently needed to extend the overall survival of patients. The liver plays an immunomodulatory function due to its unique physiological structural characteristics. Therefore, following surgical resection and radiotherapy, immunotherapy regimens have shown great potential in the treatment of hepatocellular carcinoma. Adoptive cell immunotherapy is rapidly developing in the treatment of hepatocellular carcinoma. In this review, we summarize the latest research on adoptive immunotherapy for hepatocellular carcinoma. The focus is on chimeric antigen receptor (CAR)-T cells and T cell receptor (TCR) engineered T cells. Then tumour-infiltrating lymphocytes (TILs), natural killer (NK) cells, cytokine-induced killer (CIK) cells, and macrophages are briefly discussed. The main overview of the application and challenges of adoptive immunotherapy in hepatocellular carcinoma. It aims to provide the reader with a comprehensive understanding of the current status of HCC adoptive immunotherapy and offers some strategies. We hope to provide new ideas for the clinical treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No. 6 Hospital, Ningbo, China
| | - Yujie Li
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Zhejiang, Ningbo, China
| |
Collapse
|
15
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Rodríguez Gil de Montes AL, Spencer LM. Chimeric Antigen Receptor T Cells: Immunotherapy for the Treatment of Leukemia, Lymphoma, and Myeloma. Mol Cancer Ther 2023; 22:1261-1269. [PMID: 37596239 DOI: 10.1158/1535-7163.mct-23-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In immunotherapy with T cells genetically modified to express chimeric antigen receptors (CAR), autologous lymphocytes are extracted from the patient, genetically modified to obtain CAR-T cells, and reintroduced into the patient to attack cancer cells. The success of this therapy has been achieved in the area of CD19-positive leukemias and lymphomas, being approved for the treatment of non-Hodgkin's lymphomas, acute lymphoblastic leukemia, and multiple myeloma. CARs are proteins that combine antibody specificity with T-cell cytotoxicity. The most common toxicities associated with therapy were not predicted by preclinical testing and include cytokine release syndrome, neurotoxicity, and cytopenias. These toxicities are usually reversible. One of the main challenges facing the field is the high economic cost that therapy entails, so the search for ways to reduce this cost must be a priority. In addition, other challenges to overcome include the situation that not all patients are supplied with the product and the existence of long waiting times for the start of therapy. The aim of this review is to present the development of the structure of CAR-T cells, the therapies approved to date, the toxicity associated with them, and the advantages and limitations that they present as immunotherapy.
Collapse
Affiliation(s)
| | - Lilian Maritza Spencer
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas, Venezuela
| |
Collapse
|
17
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
18
|
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Kitaeva KV, Chulpanova DS, Solovyeva VV, Rizvanov AA. Cell Immunotherapy against Melanoma: Clinical Trials Review. Int J Mol Sci 2023; 24:2413. [PMID: 36768737 PMCID: PMC9916554 DOI: 10.3390/ijms24032413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most aggressive and therapy-resistant types of cancer, the incidence rate of which grows every year. However, conventional methods of chemo- and radiotherapy do not allow for completely removing neoplasm, resulting in local, regional, and distant relapses. In this case, adjuvant therapy can be used to reduce the risk of recurrence. One of the types of maintenance cancer therapy is cell-based immunotherapy, in which immune cells, such as T-cells, NKT-cells, B cells, NK cells, macrophages, and dendritic cells are used to recognize and mobilize the immune system to kill cancer cells. These cells can be isolated from the patient's peripheral blood or biopsy material and genetically modified, cultured ex vivo, following infusion back into the patient for powerful induction of an anti-tumor immune response. In this review, the advantages and problems of the most relevant methods of cell-based therapy and ongoing clinical trials of adjuvant therapy of melanoma are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
19
|
Schaut W, Shrivastav A, Ramakrishnan S, Bowden R. Search, identification, and curation of cell and gene therapy product regulations using augmented intelligent systems. Front Med (Lausanne) 2023; 10:1072767. [PMID: 36950510 PMCID: PMC10025403 DOI: 10.3389/fmed.2023.1072767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Background Manually keeping up-to-date with regulations such as directives, guidance, laws, and ordinances related to cell and gene therapy is a labor-intensive process. We used machine learning (ML) algorithms to create an augmented intelligent system to optimize systematic screening of global regulations to improve efficiency and reduce overall labor and missed regulations. Methods Combining Boolean logic and artificial intelligence (i.e., augmented intelligence) for the search process, ML algorithms were used to identify and suggest relevant cell and gene therapy regulations. Suggested regulations were delivered to a landing page for further subject matter expert (SME) tagging of words/phrases to provide system relevance on functional words. Ongoing learning from the repository regulations continued to increase system reliability and performance. The automated ability to train and retrain the system allows for continued refinement and improvement of system accuracy. Automated daily searches for applicable regulations in global databases provide ongoing opportunities to update the repository. Results Compared to manual searching, which required 3-4 SMEs to review ~115 regulations, the current system performance, with continuous system learning, requires 1 full-time equivalent to process approximately 9,000 regulations/day. Currently, system performance has 86% overall accuracy, a recommend recall of 87%, and a reject recall of 84%. A conservative search strategy is intentionally used to permit SMEs to assess low-recommended regulations in order to prevent missing any applicable regulations. Conclusion Compared to manual searches, our custom automated search system greatly improves the management of cell and gene therapy regulations and is efficient, cost effective, and accurate.
Collapse
Affiliation(s)
- William Schaut
- Cell Collection, CAR-T Advanced Therapeutics Supply Chain, Janssen Pharmaceutical, Inc., Horsham, PA, United States
- *Correspondence: William Schaut,
| | - Akash Shrivastav
- Intelligent Automation and Analytics, Research and Development Business Technology, Janssen Pharmaceutical, Inc., Raritan, NJ, United States
| | - Srikanth Ramakrishnan
- Intelligent Automation and Analytics, Research and Development Business Technology, Janssen Pharmaceutical, Inc., Raritan, NJ, United States
| | - Robert Bowden
- Cell Collection, CAR-T Advanced Therapeutics Supply Chain, Janssen Pharmaceutical, Inc., Horsham, PA, United States
| |
Collapse
|
20
|
Modern Advances in CARs Therapy and Creating a New Approach to Future Treatment. Int J Mol Sci 2022; 23:ijms232315006. [PMID: 36499331 PMCID: PMC9739283 DOI: 10.3390/ijms232315006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Genetically engineered T and NK cells expressing a chimeric antigen receptor (CAR) are promising cytotoxic cells for the treatment of hematological malignancies and solid tumors. Despite the successful therapies using CAR-T cells, they have some disadvantages, such as cytokine release syndrome (CRS), neurotoxicity, or graft-versus-host-disease (GVHD). CAR-NK cells have lack or minimal cytokine release syndrome and neurotoxicity, but also multiple mechanisms of cytotoxic activity. NK cells are suitable for developing an "off the shelf" therapeutic product that causes little or no graft versus host disease (GvHD), but they are more sensitive to apoptosis and have low levels of gene expression compared to CAR-T cells. To avoid these adverse effects, further developments need to be considered to enhance the effectiveness of adoptive cellular immunotherapy. A promising approach to enhance the effectiveness of adoptive cellular immunotherapy is overcoming terminal differentiation or senescence and exhaustion of T cells. In this case, EVs derived from immune cells in combination therapy with drugs may be considered in the treatment of cancer patients, especially effector T and NK cells-derived exosomes with the cytotoxic activity of their original cells.
Collapse
|
21
|
Koyande NP, Srivastava R, Padmakumar A, Rengan AK. Advances in Nanotechnology for Cancer Immunoprevention and Immunotherapy: A Review. Vaccines (Basel) 2022; 10:1727. [PMID: 36298592 PMCID: PMC9610880 DOI: 10.3390/vaccines10101727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
One of the most effective cancer therapies, cancer immunotherapy has produced outstanding outcomes in the field of cancer treatment. However, the cost is excessive, which limits its applicability. A smart way to address this issue would be to apply the knowledge gained through immunotherapy to develop strategies for the immunoprevention of cancer. The use of cancer vaccines is one of the most popular methods of immunoprevention. This paper reviews the technologies and processes that support the advantages of cancer immunoprevention over traditional cancer immunotherapies. Nanoparticle drug delivery systems and nanoparticle-based nano-vaccines have been employed in the past for cancer immunotherapy. This paper outlines numerous immunoprevention strategies and how nanotechnology can be applied in immunoprevention. To comprehend the non-clinical and clinical evaluation of these cancer vaccines through clinical studies is essential for acceptance of the vaccines.
Collapse
Affiliation(s)
| | | | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
22
|
Giorgadze T, Fischel H, Tessier A, Norton KA. Investigating Two Modes of Cancer-Associated Antigen Heterogeneity in an Agent-Based Model of Chimeric Antigen Receptor T-Cell Therapy. Cells 2022; 11:cells11193165. [PMID: 36231127 PMCID: PMC9561977 DOI: 10.3390/cells11193165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR) T-cell therapy has shown much promise in liquid tumors but often fails in solid tumors. This work uses a computational model to examine under what conditions this therapy might fail or be successful. The model includes interactions between cancer cells, CAR T-cells (treatment), and vascular cells (that feed and support tumor growth). From our results, we determined specific tumor conditions in which CAR T-cell therapy is predicted to fail and suggest a combination treatment that might improve the efficacy of the treatment. Abstract Chimeric antigen receptor (CAR) T-cell therapy has been successful in treating liquid tumors but has had limited success in solid tumors. This work examines unanswered questions regarding CAR T-cell therapy using computational modeling, such as, what percentage of the tumor must express cancer-associated antigens for treatment to be successful? The model includes cancer cell and vascular and CAR T-cell modules that interact with each other. We compare two different models of antigen expression on tumor cells, binary (in which cancer cells are either susceptible or are immune to CAR T-cell therapy) and gradated (where each cancer cell has a probability of being killed by a CAR T-cell). We vary the antigen expression levels within the tumor and determine how effective each treatment is for the two models. The simulations show that the gradated antigen model eliminates the tumor under more parameter values than the binary model. Under both models, shielding, in which the low/non-antigen-expressing cells protect high antigen-expressing cells, reduced the efficacy of CAR T-cell therapy. One prediction is that a combination of CAR T-cell therapies that targets the general population of cells as well as one that specifically targets cancer stem cells should increase its efficacy.
Collapse
|
23
|
Borówka M, Łącki-Zynzeling S, Nicze M, Kozak S, Chudek J. Adverse Renal Effects of Anticancer Immunotherapy: A Review. Cancers (Basel) 2022; 14:4086. [PMID: 36077623 PMCID: PMC9454552 DOI: 10.3390/cancers14174086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Modern oncological therapy utilizes various types of immunotherapy. Immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cells (CAR-T) therapy, cancer vaccines, tumor-targeting monoclonal antibodies (TT-mAbs), bispecific antibodies and cytokine therapy improve patients' outcomes. However, stimulation of the immune system, beneficial in terms of fighting against cancer, generates the risk of harm to other cells in a patient's body. Kidney damage belongs to the relatively rare adverse events (AEs). Best described, but still, superficially, are renal AEs in patients treated with ICIs. International guidelines issued by the European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) cover the management of immune-related adverse events (irAEs) during ICI therapy. There are fewer data concerning real occurrence and possible presentations of renal adverse drug reactions of other immunotherapeutic methods. This implies the need for the collection of safety data during ongoing clinical trials and in the real-life world to characterize the hazard related to the use of new immunotherapies and management of irAEs.
Collapse
Affiliation(s)
| | - Stanisław Łącki-Zynzeling
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Reymonta 8, 40-027 Katowice, Poland
| | | | | | | |
Collapse
|
24
|
Fanciulli G, Modica R, La Salvia A, Campolo F, Florio T, Mikovic N, Plebani A, Di Vito V, Colao A, Faggiano A. Immunotherapy of Neuroendocrine Neoplasms: Any Role for the Chimeric Antigen Receptor T Cells? Cancers (Basel) 2022; 14:cancers14163991. [PMID: 36010987 PMCID: PMC9406675 DOI: 10.3390/cancers14163991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of tumors arising in different organs whose clinical course is variable according to histological differentiation and metastatic spread. Therapeutic options have recently expanded, but there is a need for new effective therapies, especially in less differentiated forms. Chimeric antigen receptor T cells (CAR-T) have shown efficacy in several cancers, mainly hematological, but data on NENs are scattered. We aimed to analyze the available preclinical and clinical data about CAR-T in NENs, to highlight their potential role in clinical practice. A significant therapeutic effect of CAR-T cells in NENs emerges from preclinical studies. Results from clinical trials are expected in order to define their effective role in these cancers. Abstract Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors with variable clinical presentation and prognosis. Surgery, when feasible, is the most effective and often curative treatment. However, NENs are frequently locally advanced or already metastatic at diagnosis. Consequently, additional local or systemic therapeutic approaches are required. Immunotherapy, based on chimeric antigen receptor T cells (CAR-T), is showing impressive results in several cancer treatments. The aim of this narrative review is to analyze the available data about the use of CAR-T in NENs, including studies in both preclinical and clinical settings. We performed an extensive search for relevant data sources, comprising full-published articles, abstracts from international meetings, and worldwide registered clinical trials. Preclinical studies performed on both cell lines and animal models indicate a significant therapeutic effect of CAR-T cells in NENs. Ongoing and future clinical trials will clarify the possible role of these drugs in patients with highly aggressive NENs.
Collapse
Affiliation(s)
- Giuseppe Fanciulli
- Neuroendocrine Tumour Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari—Endocrine Unit, AOU Sassari, 07100 Sassari, Italy
- Correspondence:
| | - Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy
| | - Anna La Salvia
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Tullio Florio
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Scientific Institute for Research, Hospitalisation and Healthcare Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Nevena Mikovic
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| | - Alice Plebani
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy
| | - Valentina Di Vito
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
25
|
Hussain A. Therapeutic applications of engineered chimeric antigen receptors-T cell for cancer therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Findings of new targeted treatments with adequate safety evaluations are essential for better cancer cures and mortality rates. Immunotherapy holds promise for patients with relapsed disease, with the ability to elicit long-term remissions. Emerging promising clinical results in B-cell malignancy using gene-altered T-lymphocytes uttering chimeric antigen receptors have sparked a lot of interest. This treatment could open the path for a major difference in the way we treat tumors that are resistant or recurring.
Main body
Genetically altered T cells used to produce tumor-specific chimeric antigen receptors are resurrected fields of adoptive cell therapy by demonstrating remarkable success in the treatment of malignant tumors. Because of the molecular complexity of chimeric antigen receptors-T cells, a variety of engineering approaches to improve safety and effectiveness are necessary to realize larger therapeutic uses. In this study, we investigate new strategies for enhancing chimeric antigen receptors-T cell therapy by altering chimeric antigen receptors proteins, T lymphocytes, and their relations with another solid tumor microenvironment (TME) aspects. Furthermore, examine the potential region of chimeric antigen receptors-T cells therapy to become a most effective treatment modality, taking into account the basic and clinical and practical aspect.
Short conclusions
Chimeric antigen receptors-T cells have shown promise in the therapy of hematological cancers. Recent advancements in protein and cell editing, as well as genome-editing technologies, have paved the way for multilayered T cell therapy techniques that can address numerous important demands. At around the same time, there is crosstalk between various intended aspects within the chimeric antigen receptors-T cell diverse biological complexity and possibilities. These breakthroughs substantially improve the ability to comprehend these complex interactions in future solid tumor chimeric antigen receptor-T cell treatment and open up new treatment options for patients that are currently incurable.
Collapse
|
26
|
Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-Vivo Induced CAR-T Cell for the Potential Breakthrough to Overcome the Barriers of Current CAR-T Cell Therapy. Front Oncol 2022; 12:809754. [PMID: 35223491 PMCID: PMC8866962 DOI: 10.3389/fonc.2022.809754] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy has shown impressive success in the treatment of hematological malignancies, but the systemic toxicity and complex manufacturing process of current autologous CAR-T cell therapy hinder its broader applications. Universal CAR-T cells have been developed to simplify the production process through isolation and editing of allogeneic T cells from healthy persons, but the allogeneic CAR-T cells have recently encountered safety concerns, and clinical trials have been halted by the FDA. Thus, there is an urgent need to seek new ways to overcome the barriers of current CAR-T cell therapy. In-vivo CAR-T cells induced by nanocarriers loaded with CAR-genes and gene-editing tools have shown efficiency for regressing leukemia and reducing systemic toxicity in a mouse model. The in-situ programming of autologous T-cells avoids the safety concerns of allogeneic T cells, and the manufacture of nanocarriers can be easily standardized. Therefore, the in-vivo induced CAR-T cells can potentially overcome the abovementioned limitations of current CAR-T cell therapy. Here, we provide a review on CAR structures, gene-editing tools, and gene delivery techniques applied in immunotherapy to help design and develop new in-vivo induced CAR-T cells.
Collapse
Affiliation(s)
- Tianqing Xin
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cheng
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchao Zhou
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Zhao
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhua Hu
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Zhang J, Zhu J, Zheng G, Wang Q, Li X, Feng Y, Shang F, He S, Jiang Q, Shi B, Wang D, Cao Z, Wang J. Co-Expression of miR155 or LSD1 shRNA Increases the Anti-Tumor Functions of CD19 CAR-T Cells. Front Immunol 2022; 12:811364. [PMID: 35046962 PMCID: PMC8761951 DOI: 10.3389/fimmu.2021.811364] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 antigen have produced remarkable clinical outcomes for cancer patients. However, identifying measures to enhance effector function remains one of the most challenging issues in CD19-targeted immunotherapy. Here, we report a novel approach in which a microRNA (miRNA) or short-hairpin RNA (shRNA) cassette was integrated into CAR-expressing retroviral vectors. Using this system, we generated anti-CD19 CAR-T cells co-expressing miR155 or LSD1 shRNA and found that anti-CD19 CAR-T cells with miR155 upregulation or LSD1 downregulation exhibited increased anti-tumor functions in vitro and in vivo. Transcriptional profiling analysis by RNA sequencing revealed the targets of miR155 and LSD1 in anti-CD19 CAR-T cells. Our experiments indicated that introduction of miRNA or shRNA expression into anti-CD19 CAR T-cells might be an effective strategy to improve the anti-tumor effects of CAR-T cell therapy.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Genhui Zheng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyu Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaorui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yaru Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fengqin Shang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siqi He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
28
|
Saleh OM, Albakri KA, Alabdallat YJ, Dajani MH, El Gazzar WB. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers 2021; 27:22-34. [PMID: 34882051 DOI: 10.1080/1354750x.2021.2016973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE A new breakthrough development in cancer treatment is chimeric antigen receptor (CAR)-T cell therapy. In this review, we focussed on its efficacy & safety in prostate cancer, obstacles impeding its clinical use, and some strategies trying to overcome them. METHODS Searching for relevant articles was done using the PubMed and Cochrane Library databases. Studies had to be published in full-text in English in order to be considered. RESULTS Many factors can limit optimal CAR-T cell outcomes, including the hostile Prostate microenvironment, age, comorbidities, and tumour grade. The adverse effects of the therapy, particularly the cytokine release syndrome, are a major source of worry after treatment administration. Attempts to alter gamma/delta T-cells and NK cells with CAR, on the other hand, have demonstrated higher effectiveness and safety than conventional CAR-T cells. CONCLUSION To improve the use of immunotherapies, a greater understanding of the prostate cancer microenvironment is required. Concerning toxicity, more research is needed to find the most specific and highly expressed prostate antigens. Furthermore, discovering predictive biomarkers for toxicities, as well as choosing the correct patient for therapy, might decrease immune-related side effects and achieve a greater response.
Collapse
Affiliation(s)
| | | | | | - Majd Hamdi Dajani
- Medical Student, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Basic medical sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan.,Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Benha University, Benha city, Egypt
| |
Collapse
|
29
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
30
|
Patel P. Cancer Treatment Related Pain. Cancer Treat Res 2021; 182:27-37. [PMID: 34542874 DOI: 10.1007/978-3-030-81526-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
When discussing cancer treatment, it is important to be aware of the potential toxicities and side effects associated with these treatments.
Collapse
Affiliation(s)
- Purvi Patel
- Kaiser Permanente, 11284 Slover Ave, Suite 106, Fontana, CA, 92337, USA.
| |
Collapse
|
31
|
Ernst M, Oeser A, Besiroglu B, Caro-Valenzuela J, Abd El Aziz M, Monsef I, Borchmann P, Estcourt LJ, Skoetz N, Goldkuhle M. Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma. Cochrane Database Syst Rev 2021; 9:CD013365. [PMID: 34515338 PMCID: PMC8436585 DOI: 10.1002/14651858.cd013365.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer of the lymphatic system. About 30% to 40% of people with DLBCL experience relapse and 10% are refractory to first-line treatment usually consisting of R-CHOP chemotherapy. Of those eligible for second-line treatment, commonly consisting of salvage chemotherapy followed by autologous stem-cell transplantation (ASCT), around 50% experience relapse. With a median overall survival of less than six to 12 months, the prognosis of individuals who relapse or are refractory (r/r) to advanced lines of treatment or of those who are ineligible for ASCT, is very poor. With the introduction of chimeric antigen receptor (CAR) T-cell therapy, a novel treatment option for these people is available. OBJECTIVES To assess the benefits and harms of chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory (r/r) DLBCL. SEARCH METHODS An experienced information specialist performed a systematic database search for relevant articles on CENTRAL, MEDLINE and Embase until September 11th, 2020. We also searched trial registries and reference lists of identified studies up to this date. All search results were screened by two authors independently and a third author was involved in case of discrepancies. SELECTION CRITERIA We included prospectively planned trials evaluating CAR T-cell therapy for people with r/r DLBCL. We had planned to include randomised controlled trials (RCTs) and we flexibly adapted eligibility criteria to the most reliable study designs available. We excluded studies involving fewer than 10 participants with r/r DLBCL and studies with a proportion of participants with r/r DLBCL below 70%, unless data were reported separately for this subgroup. DATA COLLECTION AND ANALYSIS Two review authors extracted data and performed risk of bias ratings independently. A third author was involved in case of disagreements. As our search did not yield any completed RCTs, prospective controlled non-randomised studies of interventions (NRSIs) or prospective observational studies with a control group, we did not meta-analyse data and reported all results narratively. We adopted the GRADE approach to assess the certainty of the evidence for prioritised outcomes. MAIN RESULTS We identified 13 eligible uncontrolled studies evaluating a single or multiple arms of CAR T-cell therapies. We also identified 38 ongoing studies, including three RCTs. Ten studies are awaiting classification due to completion with no retrievable results data or insufficient data to justify inclusion. The mean number of participants enrolled, treated with CAR T-cell therapy and evaluated in the included studies were 79 (range 12 to 344; data unavailable for two studies), 61 (range 12 to 294; data unavailable for one study) and 52 (range 11 to 256), respectively. Most studies included people with r/r DLBCL among people with other haematological B-cell malignancies. Participants had received at least a median of three prior treatment lines (data unavailable for four studies), 5% to 50% had undergone ASCT (data unavailable for five studies) and, except for two studies, 3% to 18% had undergone allogenic stem-cell transplantation (data unavailable for eight studies). The overall risk of bias was high for all studies, in particular, due to incomplete follow-up and the absence of blinding. None of the included studies had a control group so that no adequate comparative effect measures could be calculated. The duration of follow-up varied substantially between studies, in particular, for harms. Our certainty in the evidence is very low for all outcomes. Overall survival was reported by eight studies (567 participants). Four studies reported survival rates at 12 months which ranged between 48% and 59%, and one study reported an overall survival rate of 50.5% at 24 months. The evidence is very uncertain about the effect of CAR T-cell therapy on overall survival. Two studies including 294 participants at baseline and 59 participants at the longest follow-up (12 months or 18 months) described improvements of quality of life measured with the EuroQol 5-Dimension 5-Level visual analogue scale (EQ-5D-5L VAS) or Function Assessment of Cancer Therapy-Lymphoma (FACT-Lym). The evidence is very uncertain about the effect of CAR T-cell therapy on quality of life. None of the studies reported treatment-related mortality. Five studies (550 participants) reported the occurrence of adverse events among participants, ranging between 99% and 100% for any grade adverse events and 68% to 98% for adverse events grade ≥ 3. In three studies (253 participants), 56% to 68% of participants experienced serious adverse events, while in one study (28 participants), no serious adverse events occurred. CAR T-cell therapy may increase the risk of adverse events and serious adverse events but the evidence is very uncertain about the exact risk. The occurrence of cytokine release syndrome (CRS) was reported in 11 studies (675 participants) under use of various grading criteria. Five studies reported between 42% and 100% of participants experiencing CRS according to criteria described in Lee 2014. CAR T-cell therapy may increase the risk of CRS but the evidence is very uncertain about the exact risk. Nine studies (575 participants) reported results on progression-free survival, disease-free survival or relapse-free survival. Twelve-month progression-free survival rates were reported by four studies and ranged between 44% and 75%. In one study, relapse-free survival remained at a rate of 64% at both 12 and 18 months. The evidence is very uncertain about the effect of CAR T-cell therapy on progression-free survival. Thirteen studies (620 participants) provided data on complete response rates. At six months, three studies reported complete response rates between 40% and 45%. The evidence is very uncertain about the effect of CAR T-cell therapy on complete response rates. AUTHORS' CONCLUSIONS The available evidence on the benefits and harms of CAR T-cell therapy for people with r/r DLBCL is limited, mainly because of the absence of comparative clinical trials. The results we present should be regarded in light of this limitation and conclusions should be drawn very carefully. Due to the uncertainty in the current evidence, a large number of ongoing investigations and a risk of substantial and potentially life-threatening complications requiring supplementary treatment, it is critical to continue evaluating the evidence on this new therapy.
Collapse
Affiliation(s)
- Moritz Ernst
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annika Oeser
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Burcu Besiroglu
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marius Goldkuhle
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Tawfik EA, Aldrak NA, Albrahim SH, Alzahrani DA, Alfassam HA, Alkoblan SM, Almalik AM, Chen KS, Abou-Khalil R, Shah K, Zaidan NM. Immunotherapy in hematological malignancies: recent advances and open questions. Immunotherapy 2021; 13:1215-1229. [PMID: 34498496 DOI: 10.2217/imt-2021-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over recent years, tremendous advances in immunotherapy approaches have been observed, generating significant clinical progress. Cancer immunotherapy has been shown, in different types of blood cancers, to improve the overall survival of patients. Immunotherapy treatment of hematopoietic malignancies is a newly growing field that has been accelerating over the past years. Several US FDA approved drugs and cell-based therapies are being exploited in the late stage of clinical trials. This review attempt to highlight and discuss the numerous innovative immunotherapy approaches of hematopoietic malignancy ranging from nonmyeloablative transplantation, T-cell immunotherapy, natural killer cells and immune agonist to monoclonal antibodies and vaccination. In addition, a brief discussion on the future advances and accomplishments required to counterpart the current immunotherapeutic approaches for hematopoietic malignancies were also highlighted.
Collapse
Affiliation(s)
- Essam A Tawfik
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia.,National Center for Pharmaceutical Technology, Life Science & Environment Research Institute, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Norah A Aldrak
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Shahad H Albrahim
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Dunia A Alzahrani
- National Center for Pharmaceutical Technology, Life Science & Environment Research Institute, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Haya A Alfassam
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Samar M Alkoblan
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Abdulaziz M Almalik
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia.,National Center for Pharmaceutical Technology, Life Science & Environment Research Institute, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Kok-Siong Chen
- BWH Center of Excellence for Biomedicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Center for Stem Cell Therapeutics & Imaging, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Rana Abou-Khalil
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Center for Stem Cell Therapeutics & Imaging, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nada M Zaidan
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science & Technology (KACST), PO Box 6086, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
33
|
Zhao Y, Bilal M, Qindeel M, Khan MI, Dhama K, Iqbal HMN. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep 2021; 48:6563-6580. [PMID: 34424444 DOI: 10.1007/s11033-021-06660-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Emerging concepts in nanotechnology have gained particular attention for their clinical translation of immunotherapies of cancer, autoimmune and infectious diseases. Several nanoconstructs have been engineered with unique structural, physicochemical, and functional features as robust alternatives for conventional chemotherapies. Traditional cancer therapies like chemotherapy, radiotherapy, and ultimately surgery are the most widely practiced in biomedical settings. Biomaterials and nanotechnology have introduced vehicles for drug delivery and have revolutionized the concept of the modern immunotherapeutic paradigm. Various types of nanomaterials, such as nanoparticles and, more specifically, drug-loaded nanoparticles are becoming famous for drug delivery applications because of safety, patient compliance, and smart action. Such therapeutic modalities have acknowledged regulatory endorsement and are being used in twenty-first-century clinical settings. Considering the emerging concepts and landscaping potentialities, herein, we spotlight and discuss nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach to combat cancer metastasis. The introductory part of this manuscript discusses a broad overview of cancer immunotherapy to understand better the tumor microenvironment and nanotechnology-oriented immunomodulatory strategies to cope with advanced-stage cancers. Following that, most addressable problems allied with conventional immunotherapies are given in comparison to nanoparticle-based immunotherapies. The later half of this work comprehensively highlights the requisite delivery of various bioactive entities with particular cases and examples. Finally, this review also encompasses a comprehensive concluding overview and future standpoints to strengthen a successful clinical translation of nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
34
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
35
|
Chen X, Qin L, Hu W, Adah D. The mechanisms of action of Plasmodium infection against cancer. Cell Commun Signal 2021; 19:74. [PMID: 34243757 PMCID: PMC8268363 DOI: 10.1186/s12964-021-00748-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 01/12/2023] Open
Abstract
Our murine cancer model studies have demonstrated that Plasmodium infection activates the immune system that has been inhibited by cancer cells, counteracts tumor immunosuppressive microenvironment, inhibits tumor angiogenesis, inhibits tumor growth and metastasis, and prolongs the survival time of tumor-bearing mice. Based on these studies, three clinical trials of Plasmodium immunotherapy for advanced cancers have been approved and are ongoing in China. After comparing the mechanisms of action of Plasmodium immunotherapy with those of immune checkpoint blockade therapy, we propose the notion that cancer is an ecological disease and that Plasmodium immunotherapy is a systemic ecological counterattack therapy for this ecological disease, with limited side effects and without danger to public health based on the use of artesunate and other measures. Recent reports of tolerance to treatment and limitations in majority of patients associated with the use of checkpoint blockers further support this notion. We advocate further studies on the mechanisms of action of Plasmodium infection against cancer and investigations on Plasmodium-based combination therapy in the coming future. Video Abstract
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,CAS-Lamvac Biotech Co., Ltd, Guangzhou, 510530, China.
| | - Li Qin
- CAS-Lamvac Biotech Co., Ltd, Guangzhou, 510530, China
| | - Wen Hu
- CAS-Lamvac Biotech Co., Ltd, Guangzhou, 510530, China
| | - Dickson Adah
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| |
Collapse
|
36
|
Bhattacharya P, Patel TN. A study of deregulated MMR pathways and anticancer potential of curcuma derivatives using computational approach. Sci Rep 2021; 11:10110. [PMID: 33980898 PMCID: PMC8115291 DOI: 10.1038/s41598-021-89282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Plant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.
Collapse
Affiliation(s)
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
37
|
Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers (Basel) 2021; 13:cancers13092225. [PMID: 34066414 PMCID: PMC8124952 DOI: 10.3390/cancers13092225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary CAR-T cell therapy is a new approach to cancer treatment that is based on manipulating a patient’s own T cells such that they become able to seek and destroy cancer cells in a highly specific manner. This approach is showing remarkable efficacy in treating some types of blood cancers but so far has been much less effective against solid cancers. Here, we review the diverse effects of chemotherapy agents on circulating leukocyte populations and find that, despite some negative effects over the short term, chemotherapy can favourably modulate the immune systems of cancer patients over the longer term. Since blood is the starting material for CAR-T cell production, we propose that these effects could significantly influence the success of manufacturing, and anti-cancer activity, of CAR-T cells. Thus, if timed correctly, chemotherapy-induced changes to circulating immune cells could allow CAR-T cells to unleash more effective anti-tumour responses. Abstract Adoptive T-cell therapy using autologous T cells genetically modified to express cancer-specific chimeric antigen receptors (CAR) has emerged as a novel approach for cancer treatment. CAR-T cell therapy has been approved in several major jurisdictions for treating refractory or relapsed cases of B-cell precursor acute lymphoblastic leukaemia and diffuse large B-cell lymphoma. However, in solid cancer patients, several clinical studies of CAR-T cell therapy have demonstrated minimal therapeutic effects, thus encouraging interest in better integrating CAR-T cells with other treatments such as conventional cytotoxic chemotherapy. Increasing evidence shows that not only do chemotherapy drugs have tumoricidal effects, but also significantly modulate the immune system. Here, we discuss immunomodulatory effects of chemotherapy drugs on circulating leukocyte populations, including their ability to enhance cytotoxic effects and preserve the frequency of CD8+ T cells and to deplete immunosuppressive populations including regulatory T cells and myeloid-derived suppressor cells. By modulating the abundance and phenotype of leukocytes in the blood (the ‘raw material’ for CAR-T cell manufacturing), we propose that prior chemotherapy could facilitate production of the most effective CAR-T cell products. Further research is required to directly test this concept and identify strategies for the optimal integration of CAR-T cell therapies with cytotoxic chemotherapy for solid cancers.
Collapse
|
38
|
Advani D, Sharma S, Kumari S, Ambasta RK, Kumar P. Precision Oncology, Signaling and Anticancer Agents in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:433-468. [PMID: 33687887 DOI: 10.2174/1871520621666210308101029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global alliance for genomics and healthcare facilities provides innovational solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention and treatment based on patients' genetic profile. Advancements in "omics" techniques, next-generation sequencing, artificial intelligence and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures. METHOD Data were collected from Pubmed and Google scholar using keywords: "Precision medicine", "precision medicine and cancer", "anticancer agents in precision medicine" and reviewed comprehensively. RESULTS Personalized therapeutics including immunotherapy, cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described along with various hurdles identified in the successful establishment of precision therapeutics. CONCLUSION This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival and in improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| |
Collapse
|
39
|
Rohit Reddy S, Llukmani A, Hashim A, Haddad DR, Patel DS, Ahmad F, Abu Sneineh M, Gordon DK. The Role of Chimeric Antigen Receptor-T Cell Therapy in the Treatment of Hematological Malignancies: Advantages, Trials, and Tribulations, and the Road Ahead. Cureus 2021; 13:e13552. [PMID: 33815972 PMCID: PMC8007123 DOI: 10.7759/cureus.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/25/2021] [Indexed: 12/04/2022] Open
Abstract
Immunotherapy is the upcoming trend in cancer treatment. Traditional cancer treatment methods include surgical resection, radiotherapy, chemotherapy, small molecule targeted drugs, monoclonal antibodies, and hematopoietic stem cell transplantation (HSCT). Surgical resection is useful for early-stage patients but not for metastatic cancer cells; radiotherapy and chemotherapy are more common but produce substantial damage to normal tissues and have poor selectivity. Targeted drugs, including monoclonal antibodies, have better comprehensive efficacy but can also encourage gene mutation of tumor cells and drug tolerance. HSCT is effective, but choosing a donor is often difficult, and the graft is also prone to rejection. Thus, chimeric antigen receptor (CAR)-T cell therapy, a form of cellular/adoptive immunotherapy, is at the forefront of cancer therapy treatments due to its sustained remission, fewer side effects, and a better quality of life. CAR-T cell therapy involves genetically modifying the T cells and multiplying their numbers to kill cancer cells. This review article gives an insight into how the CAR-T cells have evolved from simple T cells with modest immune function to genetically engineered robust counterparts that brought great hope in the treatment of hematological malignancies. Much research has been undertaken during the past decade to design and deliver CAR-T cells. This has led to successful outcomes in leukemias, lymphomas, and multiple myeloma, paving the way for expanding CAR therapy. Despite tremendous progress, CAR-T cell therapies are faced with many challenges. Areas for improvement include limited T cell persistence, tumor escape, immunosuppressive components in the tumor microenvironment, cancer relapse rate, manufacturing time, and production cost. In this manuscript, we summarize the innovations in the design and delivery of CAR technologies, their applications in hematological malignancies, limitations to its widespread application, latest developments, and the future scope of research to counter the challenges and improve its effectiveness and persistence.
Collapse
Affiliation(s)
- Sai Rohit Reddy
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adiona Llukmani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayat Hashim
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dana R Haddad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Dutt S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farrukh Ahmad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Majdi Abu Sneineh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Scarborough General Hospital, Scarborough, TTO
| |
Collapse
|
40
|
Piña-Sánchez P, Chávez-González A, Ruiz-Tachiquín M, Vadillo E, Monroy-García A, Montesinos JJ, Grajales R, Gutiérrez de la Barrera M, Mayani H. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective. Cancer Control 2021; 28:10732748211038735. [PMID: 34565215 PMCID: PMC8481752 DOI: 10.1177/10732748211038735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the second half of the 20th century, our knowledge about the biology of cancer has made extraordinary progress. Today, we understand cancer at the genomic and epigenomic levels, and we have identified the cell that starts neoplastic transformation and characterized the mechanisms for the invasion of other tissues. This knowledge has allowed novel drugs to be designed that act on specific molecular targets, the immune system to be trained and manipulated to increase its efficiency, and ever more effective therapeutic strategies to be developed. Nevertheless, we are still far from winning the war against cancer, and thus biomedical research in oncology must continue to be a global priority. Likewise, there is a need to reduce unequal access to medical services and improve prevention programs, especially in countries with a low human development index.
Collapse
Affiliation(s)
- Patricia Piña-Sánchez
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | | | - Martha Ruiz-Tachiquín
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Alberto Monroy-García
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Juan José Montesinos
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Rocío Grajales
- Department of Medical Oncology, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Marcos Gutiérrez de la Barrera
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
- Clinical Research Division, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Hector Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| |
Collapse
|
41
|
Skorka K, Ostapinska K, Malesa A, Giannopoulos K. The Application of CAR-T Cells in Haematological Malignancies. Arch Immunol Ther Exp (Warsz) 2020; 68:34. [PMID: 33156409 PMCID: PMC7647970 DOI: 10.1007/s00005-020-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells (CART) remain one of the most advanced and promising forms of adoptive T-cell immunotherapy. CART represent autologous, genetically engineered T lymphocytes expressing CAR, i.e. fusion proteins that combine components and features of T cells as well as antibodies providing their more effective and direct anti-tumour effect. The technology of CART construction is highly advanced in vitro and every element of their structure influence their mechanism of action in vivo. Patients with haematological malignancies are faced with the possibility of disease relapse after the implementation of conventional chemo-immunotherapy. Since the most preferable result of therapy is a partial or complete remission, cancer treatment regimens are constantly being improved and customized to individual patients. This individualization could be ensured by CART therapy. This paper characterized CART strategy in details in terms of their structure, generations, mechanism of action and published the results of clinical trials in haematological malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, chronic lymphocytic leukaemia and multiple myeloma.
Collapse
Affiliation(s)
- Katarzyna Skorka
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Katarzyna Ostapinska
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aneta Malesa
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
42
|
El-Khazragy N, Ghozy S, Emad P, Mourad M, Razza D, Farouk YK, Mohamed NA, Ahmed MK, Youssef T, Bahnasawy YM, Elmasery S. Chimeric antigen receptor T cells immunotherapy: challenges and opportunities in hematological malignancies. Immunotherapy 2020; 12:1341-1357. [PMID: 33148070 DOI: 10.2217/imt-2020-0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Taking advantage of the cellular immune system is the mainstay of the adoptive cell therapy, to induce recognition and destruction of cancer cells. The impressive demonstration of this principle is chimeric antigen receptor-modified T (CAR-T)-cell therapy, which had a major impact on treating relapsed and refractory hematological malignancies. Despite the great results of the CAR-T-cell therapy, many tumors are still able to avoid immune detection and further elimination, as well as the possible associated adverse events. Herein, we highlighted the recent advances in CAR-T-cell therapy, discussing their applications beneficial functions and side effects in hematological malignancies, illustrating the underlying challenges and opportunities. Furthermore, we provide an overview to overcome different obstacles using potential manufacture and treatment strategies.
Collapse
Affiliation(s)
- Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology and AinShams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Biomedical Research, Global Research Labs, Cairo, Egypt
| | - Sherief Ghozy
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Passant Emad
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Mariam Mourad
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Diaaeldeen Razza
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Yasmeen K Farouk
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Nermeen A Mohamed
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Mohamed K Ahmed
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Tarek Youssef
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Youssef M Bahnasawy
- Department of Molecular Biology, Faculty of Biotechnology, Modern Sciences & Arts University (MSA), Giza, Egypt
| | - Shereen Elmasery
- Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Yu F, Wang X, Shi H, Jiang M, Xu J, Sun M, Xu Q, Addai FP, Shi H, Gu J, Zhou Y, Liu L. Development of chimeric antigen receptor-modified T cells for the treatment of esophageal cancer. TUMORI JOURNAL 2020; 107:341-352. [PMID: 32988314 DOI: 10.1177/0300891620960223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) is an overexpressed antigen in esophageal squamous cell carcinomas (ESCCs) but with limited expression levels in normal esophageal tissues. Therefore, employing the adoptive transfer of T cells genetically modified to express chimeric antigen receptor (CAR) targeting HER2 could be a promising therapeutic strategy against ESCC. METHODS Two different second-generation CAR-T cells expressing antibodies for HER2 and CD19 antigens were developed using retroviral vector transduction. The expression of HER2 antigen in ESCC tissue and cell lines was examined by immunohistochemistry and flow cytometry, respectively. The tumor killing efficacy of the CAR-T cells in mice model and ESCC cell lines and its potential for the treatment of ESCC was evaluated by determining tumor size in mice xenograft, and by crystal violet staining, MTS assay, and cytokine release. RESULTS In vitro, HER2.CAR-T cells efficiently recognized and killed HER2-positive tumor cells as evidenced by the secretion of proinflammatory cytokines, interferon-γ, and interleukin 2 and by cytotoxicity assays. In vivo, intratumor injection of HER2.CAR-T cells resulted in a significant suppression of established ESCCs in a subcutaneous xenograft BALB/c nude mouse model. In contrast, the injection of CD19.CAR-T cells did not affect the tumor growth pattern. CONCLUSIONS An effective HER2 CAR targeting ESCC was developed successfully. The HER2.CAR-T cell showed promising immunotherapeutic potential for the treatment of HER2-positive esophageal cancer.
Collapse
Affiliation(s)
- Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Wang
- Department of Gastroenterology, the First People's Hospital of Suqian, Suqian, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Maorong Jiang
- Medical College, Laboratory Animals Center, Nantong University, Nantong, China
| | - Jun Xu
- Department of Cognitive Neurology, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tian Tan Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Min Sun
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qinggang Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liqiong Liu
- Department of Hematology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
44
|
Schmidts A, Marsh LC, Srivastava AA, Bouffard AA, Boroughs AC, Scarfò I, Larson RC, Bedoya F, Choi BD, Frigault MJ, Bailey SR, Leick MB, Vatsa S, Kann MC, Prew MS, Kleinstiver BP, Joung JK, Maus MV. Cell-based artificial APC resistant to lentiviral transduction for efficient generation of CAR-T cells from various cell sources. J Immunother Cancer 2020; 8:jitc-2020-000990. [PMID: 32900862 PMCID: PMC7477986 DOI: 10.1136/jitc-2020-000990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 01/14/2023] Open
Abstract
Background Adoptive cell therapy with chimeric antigen receptor T cells (CAR-T) has become a standard treatment for patients with certain aggressive B cell malignancies and holds promise to improve the care of patients suffering from numerous other cancers in the future. However, the high manufacturing cost of CAR-T cell therapies poses a major barrier to their broader clinical application. Among the key cost drivers of CAR-T production are single-use reagents for T cell activation and clinical-grade viral vector. The presence of variable amounts of contaminating monocytes in the starting material poses an additional challenge to CAR-T manufacturing, since they can impede T cell stimulation and transduction, resulting in manufacturing failure. Methods We created K562-based artificial antigen-presenting cells (aAPC) with genetically encoded T cell stimulation and costimulation that represent an inexhaustible source for T cell activation. We additionally disrupted endogenous expression of the low-density lipoprotein receptor (LDLR) on these aAPC (aAPC-ΔLDLR) using CRISPR-Cas9 gene editing nucleases to prevent inadvertent lentiviral transduction and avoid the sink effect on viral vector during transduction. Using various T cell sources, we produced CD19-directed CAR-T cells via aAPC-ΔLDLR-based activation and tested their in vitro and in vivo antitumor potency against B cell malignancies. Results We found that lack of LDLR expression on our aAPC-ΔLDLR conferred resistance to lentiviral transduction during CAR-T production. Using aAPC-ΔLDLR, we achieved efficient expansion of CAR-T cells even from unpurified starting material like peripheral blood mononuclear cells or unmanipulated leukapheresis product, containing substantial proportions of monocytes. CD19-directed CAR-T cells that we produced via aAPC-ΔLDLR-based expansion demonstrated potent antitumor responses in preclinical models of acute lymphoblastic leukemia and B-cell lymphoma. Conclusions Our aAPC-ΔLDLR represent an attractive approach for manufacturing of lentivirally transduced T cells that may be simpler and more cost efficient than currently available methods.
Collapse
Affiliation(s)
- Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Leah C Marsh
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ambike A Srivastava
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Angela C Boroughs
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Felipe Bedoya
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program and Department of Neurosurgery, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sonika Vatsa
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michelle S Prew
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA .,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
45
|
In Vitro-Transcribed mRNA Chimeric Antigen Receptor T Cell (IVT mRNA CAR T) Therapy in Hematologic and Solid Tumor Management: A Preclinical Update. Int J Mol Sci 2020; 21:ijms21186514. [PMID: 32899932 PMCID: PMC7556036 DOI: 10.3390/ijms21186514] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell immunotherapy has received considerable interest in the treatment of cancer. In recent years, chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising therapy in cancer treatment. In CAR T therapy, T cells from the patients are collected, reprogrammed genetically against tumor antigens, and reintroduced into the patients to trigger an immense immune response against cancer cells. CAR T therapy is successful in hematologic malignancies; however, in solid tumors, CAR T therapy faces multiple challenges, including the on-target off-tumor phenomenon, as most of the tumor-associated antigens are expressed in normal cells as well. Consequently, a transient in vitro-transcribed anti-mRNA-based CAR T cell (IVT mRNA CAR T) approach has been investigated to produce controlled cytotoxicity for a limited duration to avoid any undesirable effects in patients. In vitro and in vivo studies demonstrated the therapeutic ability of mRNA-engineered T cells in solid tumors, including melanoma, neuroblastoma and ovarian cancer; however, very few clinical trials are registered. In the present review, we discuss the effect of IVT mRNA CAR T therapy in preclinical studies related to hematologic malignancies and solid tumor management. In addition, we discuss the clinical trial studies based on IVT mRNA CAR T therapy in cancer.
Collapse
|
46
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
47
|
Gavriilaki E, Sakellari I, Gavriilaki M, Anagnostopoulos A. A New Era in Endothelial Injury Syndromes: Toxicity of CAR-T Cells and the Role of Immunity. Int J Mol Sci 2020; 21:E3886. [PMID: 32485958 PMCID: PMC7312228 DOI: 10.3390/ijms21113886] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T cells) has been recently approved for patients with relapsed/refractory B-lymphoproliferative neoplasms. Along with great efficacy in patients with poor prognosis, CAR-T cells have been also linked with novel toxicities in a significant portion of patients. Cytokine release syndrome (CRS) and neurotoxicity present with unique clinical phenotypes that have not been previously observed. Nevertheless, they share similar characteristics with endothelial injury syndromes developing post hematopoietic cell transplantation (HCT). Evolution in complement therapeutics has attracted renewed interest in these life-threatening syndromes, primarily concerning transplant-associated thrombotic microangiopathy (TA-TMA). The immune system emerges as a key player not only mediating cytokine responses but potentially contributing to endothelial injury in CAR-T cell toxicity. The interplay between complement, endothelial dysfunction, hypercoagulability, and inflammation seems to be a common denominator in these syndromes. As the indications for CAR-T cells and patient populations expand, there in an unmet clinical need of better understanding of the pathophysiology of CAR-T cell toxicity. Therefore, this review aims to provide state-of-the-art knowledge on cellular therapies in clinical practice (indications and toxicities), endothelial injury syndromes and immunity, as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| | - Ioanna Sakellari
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| | - Maria Gavriilaki
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Achilles Anagnostopoulos
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| |
Collapse
|