1
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
2
|
Vats A, Ho TC, Puc I, Chang CH, Perng GC, Chen PL. The CD133 and CD34 cell types in human umbilical cord blood have the capacity to produce infectious dengue virus particles. Sci Rep 2023; 13:10513. [PMID: 37386042 PMCID: PMC10310799 DOI: 10.1038/s41598-023-37707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
Although dengue virus (DENV) can establish infections in hematopoietic stem progenitor cells (HSPCs), there is little information on dengue virus persistent infection in CD34+ and CD133+ cell surface glycoproteins of hematopoietic stem cells (HSCs). CD34 and CD133 also function as cell-cell adhesion factors, which are present in umbilical cord blood (UCB). In this study, we sought to establish a persistent infection model of DENV infection in UCB using a prolonged period of infection lasting 30 days. Post-infection, the results exhibited a productive and non-productive phase of DENV production. Using a plaque assay, Western blot, and confocal microscopy, we demonstrated that CD133 and CD34 cells are target cells for DENV infection. Moreover, we showed that DENV particles can be recovered from the non-productive phase of DENV-infected CD34 and CD133 cells after co-incubation with Vero cells. We concluded that CD133 and CD34 retain their capacity to produce the infectious virus due to proliferation and their ability to repopulate, as deduced from a BrdU proliferation assay and flow cytometry analysis using t-distributed stochastic neighbor embedding. In summary, the platform to co-culture infected primitive HSCs from their non-productive phase onto Vero cells will give new insights into understanding the DENV dynamics in cell-to-cell transmission and reactivation of the virus.
Collapse
Affiliation(s)
- Amrita Vats
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Tzu-Chuan Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Irwin Puc
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chiung-Hsin Chang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Guey-Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 70428, Taiwan.
| |
Collapse
|
3
|
Wahiduzzaman M, Liu Y, Huang T, Wei W, Li Y. Cell-cell communication analysis for single-cell RNA sequencing and its applications in carcinogenesis and COVID-19. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Feng Y, Gou QY, Yang WH, Wu WC, Wang J, Holmes EC, Liang G, Shi M. A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evol 2022; 8:veac006. [PMID: 35242359 PMCID: PMC8887699 DOI: 10.1093/ve/veac006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Although metagenomic sequencing has revealed high numbers of viruses in mosquitoes sampled globally, our understanding of how their diversity and abundance varies in time and space as well as by host species and gender remains unclear. To address this, we collected 23,109 mosquitoes over the course of 12 months from a bat-dwelling cave and a nearby village in Yunnan province, China. These samples were organized by mosquito species, mosquito gender, and sampling time for meta-transcriptomic sequencing. A total of 162 eukaryotic virus species were identified, of which 101 were novel, including representatives of seventeen RNA virus multi-family supergroups and four species of DNA virus from the families Parvoviridae, Circoviridae, and Nudiviridae. In addition, two known vector-borne viruses-Japanese encephalitis virus and Banna virus-were found. Analyses of the entire virome revealed strikingly different viral compositions and abundance levels in warmer compared to colder months, a strong host structure at the level of mosquito species, and no substantial differences between those viruses harbored by male and female mosquitoes. At the scale of individual viruses, some were found to be ubiquitous throughout the year and across four mosquito species, while most of the other viruses were season and/or host specific. Collectively, this study reveals the diversity, dynamics, and evolution of the mosquito virome at a single location and sheds new lights on the ecology of these important vector animals.
Collapse
Affiliation(s)
- Yun Feng
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Qin-yu Gou
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| | - Wei-hong Yang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Wei-chen Wu
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| | - Juan Wang
- Department of Viral and Rickettsial Disease Control, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, No. 5 Wenhua Road, Xiaguan, Dali, Yunnan 671000, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, China
| | - Mang Shi
- Shenzhen Campus of Sun-Yat Sen University, Sun-Yat Sen University Shenzhen Campus, Guangming New District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
5
|
Ahmed W, Neelakanta G, Sultana H. Tetraspanins as Potential Therapeutic Candidates for Targeting Flaviviruses. Front Immunol 2021; 12:630571. [PMID: 33968023 PMCID: PMC8097176 DOI: 10.3389/fimmu.2021.630571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Tetraspanin family of proteins participates in numerous fundamental signaling pathways involved in viral transmission, virus-specific immunity, and virus-mediated vesicular trafficking. Studies in the identification of novel therapeutic candidates and strategies to target West Nile virus, dengue and Zika viruses are highly warranted due to the failure in development of vaccines. Recent evidences have shown that the widely distributed tetraspanin proteins may provide a platform for the development of novel therapeutic approaches. In this review, we discuss the diversified and important functions of tetraspanins in exosome/extracellular vesicle biology, virus-host interactions, virus-mediated vesicular trafficking, modulation of immune mechanism(s), and their possible role(s) in host antiviral defense mechanism(s) through interactions with noncoding RNAs. We also highlight the role of tetraspanins in the development of novel therapeutics to target arthropod-borne flaviviral diseases.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
6
|
Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants (Basel) 2021; 10:antiox10030395. [PMID: 33807863 PMCID: PMC8000470 DOI: 10.3390/antiox10030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease of increasing global importance. The disease has caused heavy burdens due to frequent outbreaks in tropical and subtropical areas of the world. The dengue virus (DENV) is generally transmitted between human hosts via the bite of a mosquito vector, primarily Aedes aegypti and Ae. albopictus as a minor species. It is known that the virus needs to alternately infect mosquito and human cells. DENV-induced cell death is relevant to the pathogenesis in humans as infected cells undergo apoptosis. In contrast, mosquito cells mostly survive the infection; this allows infected mosquitoes to remain healthy enough to serve as an efficient vector in nature. Overexpression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutaredoxin (Grx), thioredoxin (Trx), and protein disulfide isomerase (PDI) have been detected in DENV2-infected mosquito cells. Additional antioxidants, including GST, eukaryotic translation initiation factor 5A (eIF5a), and p53 isoform 2 (p53-2), and perhaps some others, are also involved in creating an intracellular environment suitable for cell replication and viral infection. Antiapoptotic effects involving inhibitor of apoptosis (IAP) upregulation and subsequent elevation of caspase-9 and caspase-3 activities also play crucial roles in the ability of mosquito cells to survive DENV infection. This article focused on the effects of intracellular responses in mosquito cells to infection primarily by DENVs. It may provide more information to better understand virus/cell interactions that can possibly elucidate the evolutionary pathway that led to the mosquito becoming a vector.
Collapse
|