1
|
Noruzi S, Mohammadi R, Jamialahmadi K. CRISPR/Cas9 system: a novel approach to overcome chemotherapy and radiotherapy resistance in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03480-2. [PMID: 39560750 DOI: 10.1007/s00210-024-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/20/2024]
Abstract
Cancer presents a global health challenge with rising incidence and mortality. Despite treatment advances in cancer therapy, radiotherapy and chemotherapy remained the most common treatments for all types of cancers. However, resistance phenotype in cancer cells leads to unsatisfactory results in the efficiency of therapeutic strategies. Therefore, researchers strive to propose effective solutions to overcome treatment failure, which requires a deep knowledge of treatment-resistant mechanisms. The progression and occurrence of tumors can be attributed to gene mutation. Over the past decade, the emergence of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) genome editing has revolutionized cancer research. This versatile technology enables cancer modeling, manipulation of specific DNA sequences, and genome-wide screening. CRISPR/Cas9 is an effective tool for identifying radio- and chemoresistance genes and offering potential adjunctive treatments to overcome tumor recurrence after chemo- and radiotherapy. This article aims to explain the potential of the CRISPR/Cas9 system in improving the effectiveness of chemo- and radiotherapy and ultimately overcoming treatment failure.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Satish S, Athavale M, Kharkar PS. Targeted therapies for Glioblastoma multiforme (GBM): State-of-the-art and future prospects. Drug Dev Res 2024; 85:e22261. [PMID: 39485272 DOI: 10.1002/ddr.22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid growth and resistance to conventional therapies. The present review explores the latest advancements in targeted therapies for GBM, emphasizing the critical role of the blood-brain barrier (BBB), blood-brain-tumor barrier, tumor microenvironment, and genetic mutations in influencing treatment outcomes. The impact of the key hallmarks of GBM, for example, chemoresistance, hypoxia, and the presence of glioma stem cells on the disease progression and multidrug resistance are discussed in detail. The major focus is on the innovative strategies aimed at overcoming these challenges, such as the use of monoclonal antibodies, small-molecule inhibitors, and novel drug delivery systems designed to enhance drug penetration across the BBB. Additionally, the potential of immunotherapy, specifically immune checkpoint inhibitors and vaccine-based approaches, to improve patient prognosis was explored. Recent clinical trials and preclinical studies are reviewed to provide a comprehensive overview of the current landscape and future prospects in GBM treatment. The integration of advanced computational models and personalized medicine approaches is also considered, aiming to tailor therapies to individual patient profiles for better efficacy. Overall, while significant progress has been made in understanding and targeting the complex biology of GBM, continued research and clinical innovation are imperative to develop more effective and sustainable therapeutic options for patients battling this formidable disease.
Collapse
Affiliation(s)
- Smera Satish
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Maithili Athavale
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
3
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
4
|
Seino R, Hashimoto H, Kuwata H, Poltabtim W, Kheamsiri K, Pradana R, Musikawan S, Abe Y, Taoka M, Kudo R, Kranrod C, Yoshino H, Hosoda M, Matsuya Y. Radiation research trends by young scientists and the future tasks in Northern Japan: report on 'the 10th educational symposium on radiation and health (ESRAH) by young scientists in 2023'. Int J Radiat Biol 2024; 100:1731-1736. [PMID: 39353460 DOI: 10.1080/09553002.2024.2409671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Since 2014, an educational activity on radiation and health in northern Japan has been carried out by young scientists, the so-called 'Educational Symposium on Radiation and Health (ESRAH)'. Close cooperation has been continued in preparing for any possible emergency response to radiation accidents because several facilities, e.g., the Tomari Nuclear Power Plant in Hokkaido and the Low-Level Radioactive Waste Disposal Facility in Aomori prefecture. The ESRAH meeting has provided informational exchange and discussion forum on a broad range of subjects in various. In 2023, the 10th Memorial ESRAH meeting took place to boost scientific understanding and multidisciplinary collaborations for young scientists. Herein, we report on the ESRAH2023 symposium and analyze the research categories of young scientists from the past 10-year presentations. CONCLUSIONS To date, the ESRAH meeting has successfully provided a chance for multi-disciplinary research, which accounted for 27% of the total despite the COVID-19 pandemic. We found that the fraction of multi-disciplinary research in 2023 was the highest during 10-year ESRAH meetings. Meanwhile, amongst the research categories, physics, chemistry, and pharmacological studies were indicated to be less for young scientists. It is desired that further collaboration between physics, chemistry, and pharmacology in addition to the current fields would not only clarify radiation effects on the human body but also promote emergency medical care for radiation exposure in the future.
Collapse
Affiliation(s)
- Ryosuke Seino
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroki Hashimoto
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Haruka Kuwata
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Worawat Poltabtim
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Khemruthai Kheamsiri
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Radhia Pradana
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Saowarak Musikawan
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Yuki Abe
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Manaya Taoka
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Rui Kudo
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Chutima Kranrod
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Masahiro Hosoda
- Department of Radiation Science, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Jiang Z, Yang L, Liu Q, Qiu M, Chen Y, Qu F, Crabbe MJC, Wang H, Andersen ME, Zheng Y, Qu W. Haloacetamides disinfection by-products, a potential risk factor for nonalcoholic fatty liver disease. WATER RESEARCH 2024; 261:122008. [PMID: 38944971 DOI: 10.1016/j.watres.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by abnormal lipid deposition, with oxidative stress being a risk factor in its onset and progression. Haloacetamides (HAcAms), as unregulated disinfection by-products in drinking water, may alter the incidence and severity of NAFLD through the production of oxidative stress. We explored whether HAcAms at 1, 10, and 100-fold concentrations in Shanghai drinking water perturbed lipid metabolism in normal human liver LO-2 cells. CRISPR/Cas9 was used to construct a LO-2 line with stable NRF2 knock-down (NRF2-KD) to investigate the mechanism underlying abnormal lipid accumulation and hepatocyte damage caused by mixed exposure to HAcAms. At 100-fold real-world concentration, HAcAms caused lipid deposition and increased triglyceride accumulation in LO-2 cells, consistent with altered de novo lipogenesis. Differences in responses to HAcAms in normal and NRF2-KD LO-2 cells indicated that HAcAms caused hepatocyte lipid deposition and triglyceride accumulation by activation of the NRF2/PPARγ pathway and aggravated liver cell toxicity by inducing ferroptosis. These results indicate that HAcAms are important risk factors for NAFLD. Further observations and verifications of the effect of HAcAms on NAFLD in the population are warranted in the future.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Lili Yang
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Qinxin Liu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Meiyue Qiu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Yu Chen
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - Fei Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, NC 27713, United States
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Center for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University Shanghai, 200032, China.
| |
Collapse
|
6
|
Hammad M, Salma R, Balosso J, Rezvani M, Haghdoost S. Role of Oxidative Stress Signaling, Nrf2, on Survival and Stemness of Human Adipose-Derived Stem Cells Exposed to X-rays, Protons and Carbon Ions. Antioxidants (Basel) 2024; 13:1035. [PMID: 39334694 PMCID: PMC11429097 DOI: 10.3390/antiox13091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Some cancers have a poor prognosis and often lead to local recurrence because they are resistant to available treatments, e.g., glioblastoma. Attempts have been made to increase the sensitivity of resistant tumors by targeting pathways involved in the resistance and combining it, for example, with radiotherapy (RT). We have previously reported that treating glioblastoma stem cells with an Nrf2 inhibitor increases their radiosensitivity. Unfortunately, the application of drugs can also affect normal cells. In the present study, we aim to investigate the role of the Nrf2 pathway in the survival and differentiation of normal human adipose-derived stem cells (ADSCs) exposed to radiation. We treated ADSCs with an Nrf2 inhibitor and then exposed them to X-rays, protons or carbon ions. All three radiation qualities are used to treat cancer. The survival and differentiation abilities of the surviving ADSCs were studied. We found that the enhancing effect of Nrf2 inhibition on cell survival levels was radiation-quality-dependent (X-rays > proton > carbon ions). Furthermore, our results indicate that Nrf2 inhibition reduces stem cell differentiation by 35% and 28% for adipogenesis and osteogenesis, respectively, using all applied radiation qualities. Interestingly, the results show that the cells that survive proton and carbon ion irradiations have an increased ability, compared with X-rays, to differentiate into osteogenesis and adipogenesis lineages. Therefore, we can conclude that the use of carbon ions or protons can affect the stemness of irradiated ADSCs at lower levels than X-rays and is thus more beneficial for long-time cancer survivors, such as pediatric patients.
Collapse
Affiliation(s)
- Mira Hammad
- Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP) UMR 6252, University of Caen Normandy, Cedex 04, F-14050 Caen, France
| | - Rima Salma
- Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP) UMR 6252, University of Caen Normandy, Cedex 04, F-14050 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, F-14000 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), F-14000 Caen, France
| | - Mohi Rezvani
- Swiss Bioscience GmbH, Wagistrasse 27a, CH-8952 Schlieren, Switzerland
| | - Siamak Haghdoost
- Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP) UMR 6252, University of Caen Normandy, Cedex 04, F-14050 Caen, France
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), F-14000 Caen, France
- Le Laboratoire "Aliments, Bioprocédés, Toxicologie et Environnement (ABTE) UR 4651, ToxEMAC Team, University of Caen Normandy, Cedex 04, F-14050 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
7
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
8
|
Cesca BA, Caverzan MD, Lamberti MJ, Ibarra LE. Enhancing Therapeutic Approaches in Glioblastoma with Pro-Oxidant Treatments and Synergistic Combinations: In Vitro Experience of Doxorubicin and Photodynamic Therapy. Int J Mol Sci 2024; 25:7525. [PMID: 39062770 PMCID: PMC11277534 DOI: 10.3390/ijms25147525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer characterized by significant molecular and cellular heterogeneity, which complicates treatment efforts. Current standard therapies, including surgical resection, radiation, and temozolomide (TMZ) chemotherapy, often fail to achieve long-term remission due to tumor recurrence and resistance. A pro-oxidant environment is involved in glioma progression, with oxidative stress contributing to the genetic instability that leads to gliomagenesis. Evaluating pro-oxidant therapies in brain tumors is crucial due to their potential to selectively target and eradicate cancer cells by exploiting the elevated oxidative stress levels inherent in these malignant cells, thereby offering a novel and effective strategy for overcoming resistance to conventional therapies. This study investigates the therapeutic potential of doxorubicin (DOX) and photodynamic therapy (PDT) with Me-ALA, focusing on their effects on redox homeostasis. Basal ROS levels and antioxidant gene expression (NFE2L2, CAT, GSR) were quantitatively assessed across GBM cell lines, revealing significant variability probably linked to genetic differences. DOX and PDT treatments, both individually and in combination, were analyzed for their efficacy in inducing oxidative stress and cytotoxicity. An in silico analysis further explored the relationship between gene mutations and oxidative stress in GBM patients, providing insights into the molecular mechanisms underlying treatment responses. Our findings suggest that pro-oxidant therapies, such as DOX and PDT in combination, could selectively target GBM cells, highlighting a promising avenue for improving therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Bruno Agustín Cesca
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
| | - Matías Daniel Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina;
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - María Julia Lamberti
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| |
Collapse
|
9
|
Zarei Shandiz S, Erfani B, Hashemy SI. Protective effects of silymarin in glioblastoma cancer cells through redox system regulation. Mol Biol Rep 2024; 51:723. [PMID: 38833199 DOI: 10.1007/s11033-024-09658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 μM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.
Collapse
Affiliation(s)
- Sara Zarei Shandiz
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Bahareh Erfani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Begagić E, Bečulić H, Đuzić N, Džidić-Krivić A, Pugonja R, Muharemović A, Jaganjac B, Salković N, Sefo H, Pojskić M. CRISPR/Cas9-Mediated Gene Therapy for Glioblastoma: A Scoping Review. Biomedicines 2024; 12:238. [PMID: 38275409 PMCID: PMC10813360 DOI: 10.3390/biomedicines12010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This scoping review examines the use of CRISPR/Cas9 gene editing in glioblastoma (GBM), a predominant and aggressive brain tumor. Categorizing gene targets into distinct groups, this review explores their roles in cell cycle regulation, microenvironmental dynamics, interphase processes, and therapy resistance reduction. The complexity of CRISPR-Cas9 applications in GBM research is highlighted, providing unique insights into apoptosis, cell proliferation, and immune responses within the tumor microenvironment. The studies challenge conventional perspectives on specific genes, emphasizing the potential therapeutic implications of manipulating key molecular players in cell cycle dynamics. Exploring CRISPR/Cas9 gene therapy in GBMs yields significant insights into the regulation of cellular processes, spanning cell interphase, renewal, and migration. Researchers, by precisely targeting specific genes, uncover the molecular orchestration governing cell proliferation, growth, and differentiation during critical phases of the cell cycle. The findings underscore the potential of CRISPR/Cas9 technology in unraveling the complex dynamics of the GBM microenvironment, offering promising avenues for targeted therapies to curb GBM growth. This review also outlines studies addressing therapy resistance in GBM, employing CRISPR/Cas9 to target genes associated with chemotherapy resistance, showcasing its transformative potential in effective GBM treatments.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Nermin Đuzić
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Ragib Pugonja
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Asja Muharemović
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Naida Salković
- Department of General Medicine, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina;
| | - Haso Sefo
- Clinic of Neurosurgery, University Clinical Center Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany;
| |
Collapse
|
11
|
Shin E, Kim B, Kang H, Lee H, Park J, Kang J, Park E, Jo S, Kim HY, Lee JS, Lee JM, Youn H, Youn B. Mitochondrial glutamate transporter SLC25A22 uni-directionally export glutamate for metabolic rewiring in radioresistant glioblastoma. Int J Biol Macromol 2023; 253:127511. [PMID: 37866557 DOI: 10.1016/j.ijbiomac.2023.127511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma Multiforme (GBM) is a malignant primary brain tumor. Radiotherapy, one of the standard treatments for GBM patients, could induce GBM radioresistance via rewiring cellular metabolism. However, the precise mechanism attributing to GBM radioresistance or targeting strategies to overcome GBM radioresistance are lacking. Here, we demonstrate that SLC25A22, a mitochondrial bi-directional glutamate transporter, is upregulated and showed uni-directionality from mitochondria to cytosol in radioresistant GBM cells, resulting in accumulating cytosolic glutamate. However, mitochondrial glutaminolysis-mediated TCA cycle metabolites and OCR are maintained constantly. The accumulated cytosolic glutamate enhances the glutathione (GSH) production and proline synthesis in radioresistant GBM cells. Increased GSH protects cells against ionizing radiation (IR)-induced reactive oxygen species (ROS) whereas increased proline, a rate-limiting substrate for collagen biosynthesis, induces extracellular matrix (ECM) remodeling, leading to GBM invasive phenotypes. Finally, we discover that genetic inhibition of SLC25A22 using miR-184 mimic decreases GBM radioresistance and aggressiveness both in vitro and in vivo. Collectively, our study suggests that SLC25A22 upregulation confers GBM radioresistance by rewiring glutamate metabolism, and SLC25A22 could be a significant therapeutic target to overcome GBM radioresistance.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Republic of Korea
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Nuclear Science Research Institute, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
12
|
Hammad M, Raftari M, Cesário R, Salma R, Godoy P, Emami SN, Haghdoost S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel) 2023; 12:1371. [PMID: 37507911 PMCID: PMC10376708 DOI: 10.3390/antiox12071371] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The coordinating role of nuclear factor erythroid-2-related factor 2 (Nrf2) in cellular function is undeniable. Evidence indicates that this transcription factor exerts massive regulatory functions in multiple signaling pathways concerning redox homeostasis and xenobiotics, macromolecules, and iron metabolism. Being the master regulator of antioxidant system, Nrf2 controls cellular fate, influencing cell proliferation, differentiation, apoptosis, resistance to therapy, and senescence processes, as well as infection disease success. Because Nrf2 is the key coordinator of cell defence mechanisms, dysregulation of its signaling has been associated with carcinogenic phenomena and infectious and age-related diseases. Deregulation of this cytoprotective system may also interfere with immune response. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during the initial phagocytosis of pathogens, which could lead to the successful establishment of infection and promote susceptibility to infectious diseases. There is still a knowledge gap to fill regarding the molecular mechanisms by which Nrf2 orchestrates such complex networks involving multiple pathways. This review describes the role of Nrf2 in non-pathogenic and pathogenic cells.
Collapse
Affiliation(s)
- Mira Hammad
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Mohammad Raftari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rute Cesário
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Rima Salma
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
| | - Paulo Godoy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Natural Resources Institute, University of Greenwich, London ME4 4TB, UK
| | - Siamak Haghdoost
- University of Caen Normandy, UMR6252 CIMAP/ARIA, GANIL, 14000 Caen, France
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
- Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| |
Collapse
|
13
|
Kuduvalli SS, Daisy PS, Vaithy A, Purushothaman M, Ramachandran Muralidharan A, Agiesh KB, Mezger M, Antony JS, Subramani M, Dubashi B, Biswas I, Guruprasad KP, Anitha TS. A combination of metformin and epigallocatechin gallate potentiates glioma chemotherapy in vivo. Front Pharmacol 2023; 14:1096614. [PMID: 37025487 PMCID: PMC10070706 DOI: 10.3389/fphar.2023.1096614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Glioma is the most devastating high-grade tumor of the central nervous system, with dismal prognosis. Existing treatment modality does not provide substantial benefit to patients and demands novel strategies. One of the first-line treatments for glioma, temozolomide, provides marginal benefit to glioma patients. Repurposing of existing non-cancer drugs to treat oncology patients is gaining momentum in recent years. In this study, we investigated the therapeutic benefits of combining three repurposed drugs, namely, metformin (anti-diabetic) and epigallocatechin gallate (green tea-derived antioxidant) together with temozolomide in a glioma-induced xenograft rat model. Our triple-drug combination therapy significantly inhibited tumor growth in vivo and increased the survival rate (50%) of rats when compared with individual or dual treatments. Molecular and cellular analyses revealed that our triple-drug cocktail treatment inhibited glioma tumor growth in rat model through ROS-mediated inactivation of PI3K/AKT/mTOR pathway, arrest of the cell cycle at G1 phase and induction of molecular mechanisms of caspases-dependent apoptosis.In addition, the docking analysis and quantum mechanics studies performed here hypothesize that the effect of triple-drug combination could have been attributed by their difference in molecular interactions, that maybe due to varying electrostatic potential. Thus, repurposing metformin and epigallocatechin gallate and concurrent administration with temozolomide would serve as a prospective therapy in glioma patients.
Collapse
Affiliation(s)
- Shreyas S. Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Precilla S. Daisy
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Anandraj Vaithy
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Arumugam Ramachandran Muralidharan
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
- Eye-APC, Duke-NUS Medical School, Singapore, Singapore
| | - Kumar B. Agiesh
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Markus Mezger
- University Children’s Hospital Tübingen, Department of General Paediatrics, Haematology /Oncology, Tübingen, Germany
| | - Justin S. Antony
- University Children’s Hospital Tübingen, Department of General Paediatrics, Haematology /Oncology, Tübingen, Germany
| | | | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - K. P. Guruprasad
- Department of Ageing Research, Manipal School of Life Sciences, MAHE, Manipal, Karnataka, India
| | - T. S. Anitha
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| |
Collapse
|
14
|
Marabitti V, Giansanti M, De Mitri F, Gatto F, Mastronuzzi A, Nazio F. Pathological implications of metabolic reprogramming and its therapeutic potential in medulloblastoma. Front Cell Dev Biol 2022; 10:1007641. [PMID: 36340043 PMCID: PMC9627342 DOI: 10.3389/fcell.2022.1007641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-specific alterations in metabolism have been recognized to sustain the production of ATP and macromolecules needed for cell growth, division and survival in many cancer types. However, metabolic heterogeneity poses a challenge for the establishment of effective anticancer therapies that exploit metabolic vulnerabilities. Medulloblastoma (MB) is one of the most heterogeneous malignant pediatric brain tumors, divided into four molecular subgroups (Wingless, Sonic Hedgehog, Group 3 and Group 4). Recent progresses in genomics, single-cell sequencing, and novel tumor models have updated the classification and stratification of MB, highlighting the complex intratumoral cellular diversity of this cancer. In this review, we emphasize the mechanisms through which MB cells rewire their metabolism and energy production networks to support and empower rapid growth, survival under stressful conditions, invasion, metastasis, and resistance to therapy. Additionally, we discuss the potential clinical benefits of currently available drugs that could target energy metabolism to suppress MB progression and increase the efficacy of the current MB therapies.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Manuela Giansanti
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca De Mitri
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Gatto
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angela Mastronuzzi
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Nazio
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
15
|
Mao H, Zhang Y, Ji W, Yun Y, Wei X, Cui Y, Wang C. Leucine protects bovine intestinal epithelial cells from hydrogen peroxide-induced apoptosis by alleviating oxidative damage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5903-5912. [PMID: 35437753 DOI: 10.1002/jsfa.11941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The present study aimed to investigate whether leucine (Leu) alleviates oxidative injury in bovine intestinal epithelial cells (BIECs) induced by hydrogen peroxide (H2 O2 ), as well as the underlying molecular mechanisms. RESULTS BIECs were treated with H2 O2 (1 mmol L-1 ) and/or Leu (0, 0.9, 1.8 or 3.6 mmol L-1 ) for 2 h. Leu increased cell viability (P < 0.05) and decreased the release of lactate dehydrogenase (P < 0.05) in BIECs challenged by H2 O2 . Then, the cells were treated with H2 O2 (1 mmol L-1 ) and/or Leu (1.8 mmol L-1 ) for 2 h. Compared with the H2 O2 group, cells treated with Leu and Leu + H2 O2 exhibited increased (P < 0.05) mRNA and protein expression of superoxide dismutase 2 (SOD2), catalase (CAT), glutathione peroxidase 1 (GPx1), heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2). BIECs treatment with Leu significantly reduced (P < 0.05) apoptosis induced by H2 O2 . BIECs were transfected with Nrf2 small interfering RNA (siRNA) for 48 h and/or treated with H2 O2 (1 mmol L-1 ) and/or Leu (1.8 mmol L-1 ) for another 2 h. Transfection with Nrf2 siRNA abrogated the protective effect of Leu against H2 O2 -induced apoptosis and the mRNA and protein expression of SOD2 (P < 0.05). CONCLUSION These results indicate that Leu promotes the relative expression of antioxidant enzymes (SOD2, CAT and GPx1) and phase II detoxification enzymes (HO-1) by upregulating nuclear Nrf2 and activating the Nrf2 signaling pathway, thus enhancing the antioxidant capacity of cells. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huiling Mao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| | - Yanfang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| | - Wenwen Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| | - Yan Yun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| | - Xiaoshi Wei
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| | - Yanjun Cui
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
| |
Collapse
|
16
|
Sangsuwan T, Mannervik M, Haghdoost S. Transgenerational effects of gamma radiation dose and dose rate on Drosophila flies irradiated at an early embryonal stage. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503523. [PMID: 36031335 DOI: 10.1016/j.mrgentox.2022.503523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported. A few studies also showed indications of transgenerational effects of radiation in humans, particularly in nuclear power workers. In the present project, short- and long-term effects of low-dose-rate (LDR; 50 and 97 mGy/h) and high-dose-rate (HDR; 23.4, 47.1 and 495 Gy/h) IR in Drosophila embryos were investigated. The embryos were irradiated at different doses and dose rates and radiosensitivity at different developmental stages was investigated. Also, the survival of larvae, pupae and adults developed from embryos irradiated at an early stage (30 min after egg laying) were studied. The larval crawling and pupation height assays were applied to investigate radiation effects on larval locomotion and pupation behavior, respectively. In parallel, the offspring from 3 Gy irradiated early-stage embryos were followed up to 12 generations and abnormal phenotypes were studied. Acute exposure of embryos at different stages of development showed that the early stage embryo is the most sensitive. The effects on larval locomotion showed no significant differences between the dose rates but a significant decrease of locomotion activity above 7 Gy was observed. The results indicate that embryos exposed to the low dose rates have shorter eclosion times. At the same cumulative dose (1 up to 7 Gy), HDR is more embryotoxic than LDR. We also found a radiation-induced depigmentation on males (A5 segment of the dorsal abdomen, A5pig-) that can be transmitted up to 12 generations. The phenomenon does not follow the classical Mendelian laws of segregation.
Collapse
Affiliation(s)
- Traimate Sangsuwan
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mattias Mannervik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Cimap-Aria, Ganil, and Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France.
| |
Collapse
|
17
|
Refining the Role of Pyruvate Dehydrogenase Kinases in Glioblastoma Development. Cancers (Basel) 2022; 14:cancers14153769. [PMID: 35954433 PMCID: PMC9367285 DOI: 10.3390/cancers14153769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/07/2022] Open
Abstract
Glioblastoma (GB) are the most frequent brain cancers. Aggressive growth and limited treatment options induce a median survival of 12–15 months. In addition to highly proliferative and invasive properties, GB cells show cancer-associated metabolic characteristics such as increased aerobic glycolysis. Pyruvate dehydrogenase (PDH) is a key enzyme complex at the crossroads between lactic fermentation and oxidative pathways, finely regulated by PDH kinases (PDHKs). PDHKs are often overexpressed in cancer cells to facilitate high glycolytic flux. We hypothesized that targeting PDHKs, by disturbing cancer metabolic homeostasis, would alter GB progression and render cells vulnerable to additional cancer treatment. Using patient databases, distinct expression patterns of PDHK1 and PDHK2 in GB tissues were obvious. To disturb protumoral glycolysis, we modulated PDH activity through the genetic or pharmacological inhibition of PDHK in patient-derived stem-like spheroids. Striking effects of PDHKs inhibition using dichloroacetate were observed in vitro on cell morphology and metabolism, resulting in increased intracellular ROS levels and decreased proliferation and invasion. In vivo findings confirmed a reduction in tumor size and better survival of mice implanted with PDHK1 and PDHK2 knockout cells. Adding a radiotherapeutic protocol further resulted in a reduction in tumor size and improved mouse survival in our model.
Collapse
|
18
|
Shahcheraghi SH, Salemi F, Alam W, Ashworth H, Saso L, Khan H, Lotfi M. The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications. Med Oncol 2022; 39:91. [PMID: 35568790 DOI: 10.1007/s12032-022-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) grade IV glioma is the most frequent and deadly intracranial cancer. This tumor is determined by unrestrained progression, uncontroled angiogenesis, high infiltration and weak response to treatment, which is chiefly because of abnormal signaling pathways in the tumor. A member related to the Cap 'n' collar family of keypart-leucine zipper transcription agents-the transcription factor NF-E2-related factor 2 (Nrf2)-regulates adaptive protection answers by organized upregulation of many genes that produce the cytoprotective factors. In reply to cellular pressures types such as stresses, Nrf2 escapes Kelch-like ECH-related protein 1 (Keap1)-facilitated suppression, moves from the cytoplasm towards the nucleus and performs upregulation of gene expression of antioxidant responsive element (ARE). Nrf2 function is related tocontrolling many types of diseases in the human specially GBM tumor.Thus, we will review the epigeneticalregulatory actions on the Nrf2/Keap1 signaling pathway and potential therapeutic options in GBM by aiming the stimulation of Nrf2.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
19
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Tanja Matijević Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| |
Collapse
|
20
|
Li N, Zhan X. Machine Learning Identifies Pan-Cancer Landscape of Nrf2 Oxidative Stress Response Pathway-Related Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8450087. [PMID: 35242279 PMCID: PMC8886747 DOI: 10.1155/2022/8450087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxidative stress produced a large amount of reactive oxygen species (ROS), which played a pivotal role in balanced ability and determining cell fate. The activated Nrf2 signaling pathway that responds to the excessive ROS regulated the expressions of antiapoptotic proteins, antioxidative enzymes, drug transporters, and detoxifying factors. METHODS The Nrf2 signaling pathway-related genes that had a direct relationship with Nrf2, including ATF4, BACH1, CREBBP, CUL3, EIF2AK3, EP300, FOS, FOSL1, GSK3B, JUN, KEAP1, MAF, MAFF, MAFG, MAFK, MAPK1, MAPK3, MAPK7, MAPK8, MAPK9, PIK3CA, PRRT2, and RIT1, were selected to do a systematic pan-cancer analysis. The relationship of Nrf2 signaling pathway-related gene expressions with tumor mutation burden, microsatellite status, clinical characteristics, immune system, cancer stemness index, and drug sensitivity was calculated by the Spearson correlation analysis across 11,057 subjects representing 33 cancer types. The prognosis models in lung squamous carcinoma, breast cancer, and stomach cancer were constructed with the Cox multivariate regression analysis and least absolute shrinkage and selection operator (Lasso) regression. RESULTS Many Nrf2 signaling pathway-related genes were differently expressed between tumor and normal tissues. PIK3CA showed high mutation rate in pan-cancer. The expressions of Nrf2 signaling pathway-related genes were significantly related to tumor mutation burden, copy number variant, microsatellite instability score, survival rate, pathological stage, immune phenotype, immune score, immune cell, cancer stemness index, and drug sensitivity. The prognosis models were significantly associated with survival rate in lung squamous carcinoma, breast cancer, and stomach cancer; and the prognosis model-based riskscore was significantly associated with clinicopathological characteristics of each cancer. CONCLUSIONS The study provided a comprehensive pan-cancer landscape of Nrf2 pathway-related genes. Based on the same Nrf2 pathway-related genes, the different prognosis models were constructed for different types of cancers.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117, China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031, China
| |
Collapse
|
21
|
Seydi E, Sadeghi H, Ramezani M, Mehrpouya L, Pourahmad J. Selective Toxicity Effect of Fatty Acids Omega-3, 6 and 9 Combination on Glioblastoma Neurons through their Mitochondria. Drug Res (Stuttg) 2021; 72:94-99. [PMID: 34666393 DOI: 10.1055/a-1640-8561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioblastoma (GBM) is one of the most common malignant tumors of the central nervous system that occurs in the brain and is a deadly disease. Despite the different approaches to the treatment of this malignancy, the discovery of new compounds with anti-cancer effects seems necessary. In this study, the selective toxicity effects of omega 3, 6 and 9 combinations on mitochondria isolated from U87MG human glioma cells and also human embryonic kidney 293 cells (HEK293) as normal control were investigated. The results indicated that the omega 3, 6 and 9 combinations significantly reduced succinate dehydrogenase (SDH) activity only in mitochondria isolated from U87MG human glioma cells. Additionally, exposure of mitochondria isolated from U87MG human glioma cells to this combination was associated with a selective increase in the level of reactive oxygen species (ROS), the collapse of the mitochondrial membrane potential (MMP), mitochondrial swelling and cytochrome c release. However, these effects were not observed in mitochondria isolated from HEK293 cells (as a normal group). According to results, it is proposed that the combination of omega 3, 6 and 9 could induce toxicity in U87MG human glioma cells through their mitochondria. This combination can be helpful as a complementary therapy in patients with GBM.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Hadiseh Sadeghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Ramezani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mehrpouya
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme. Cells 2021; 10:cells10092342. [PMID: 34571991 PMCID: PMC8468137 DOI: 10.3390/cells10092342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
Collapse
|
23
|
Godoy PRDV, Donaires FS, Montaldi APL, Sakamoto-Hojo ET. Anti-Proliferative Effects of E2F1 Suppression in Glioblastoma Cells. Cytogenet Genome Res 2021; 161:372-381. [PMID: 34482308 DOI: 10.1159/000516997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor; surgery, radiation, and temozolomide still remain the main treatments. There is evidence that E2F1 is overexpressed in various types of cancer, including GBM. E2F1 is a transcription factor that controls the cell cycle progression and regulates DNA damage responses and the proliferation of pluripotent and neural stem cells. To test the potentiality of E2F1 as molecular target for GBM treatment, we suppressed the E2F1 gene (siRNA) in the U87MG cell line, aiming to inhibit cellular proliferation and modulate the radioresistance of these cells. Following E2F1 suppression, associated or not with gamma-irradiation, several assays (cell proliferation, cell cycle analysis, neurosphere counting, and protein expression) were performed in U87MG cells grown as monolayer or neurospheres. We found that siE2F1-suppressed cells showed reduced cell proliferation and increased cell death (sub-G1 fraction) in monolayer cultures, and also a significant reduction in the number of neurospheres. In addition, in irradiated cells, E2F1 suppression caused similar effects, with reduction of the number of neurospheres and neurosphere cell numbers relative to controls; these results suggest that E2F1 plays a role in the maintenance of GBM stem cells, and our results obtained in neurospheres are relevant within the context of radiation resistance. Furthermore, E2F1 suppression inhibited or delayed GBM cell differentiation by maintaining a reasonable proportion of CD133+ cells when grown at differentiation condition. Therefore, E2F1 proved to be an interesting molecular target for therapeutic intervention in U87MG cells.
Collapse
Affiliation(s)
- Paulo R D V Godoy
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil,
| | - Flavia S Donaires
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula L Montaldi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Ju H, Chen S, Xue Y, Zhang X, Wang Y. The role of Nrf2 pathway in alleviating fluorine-induced apoptosis by different selenium sources in the chicken duodenum and jejunum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112708. [PMID: 34461318 DOI: 10.1016/j.ecoenv.2021.112708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In order to evaluate the alleviative effects and molecular mechanisms of sodium selenite (SS) and selenomethionine (SM) on excessive apoptosis induced by high fluorine (HF) in the duodenum and jejunum of broilers, 720 1 day old Lingnan Yellow broilers were randomly divided into 4 groups (each group assigned 180 chickens with 6 replicates) and offered either a control diet or test diets (800 mg/kg F, HF group; 800 mg/kg F + 0.15 mg selenium (Se)/kg as SS (SS group) or SM (SM group)) for 50 days. High F intake significantly increased (P < 0.05) apoptosis rates of duodenum and jejunum by inducing oxidative stress and leading to mitochondrial damage. Selenomethionine supplementation effectively alleviated mitochondrial damage and severe apoptosis of duodenum and jejunum caused by HF through decreasing oxidative stress parameters. Selenomethionine added group significantly increased (P < 0.05) nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and nuclear Nrf2 protein levels as well as Nrf2 downstream antioxidant enzymes expressions in the duodenum and jejunum when compared with the HF group. Selenomethionine was superior to SS in activating the Nrf2 pathway and reducing the apoptosis rate of duodenum. It was concluded that dietary SM supplementation could ameliorate F-induced excessive apoptosis by inducing the Nrf2 pathway. Our findings will bring a promising tactics for the utilization of SM as an efficient antioxidant additive for reducing the intestinal damage caused by fluorosis in poultry.
Collapse
Affiliation(s)
- Hao Ju
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Siyuan Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Yajie Xue
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Xiaodong Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Yongxia Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China.
| |
Collapse
|
25
|
D'Auria Vieira de Godoy PR, Nakamura A, Khavari AP, Sangsuwan T, Haghdoost S. Effect of dose and dose rate of gamma irradiation on the formation of micronuclei in bone marrow cells isolated from whole-body-irradiated mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:422-427. [PMID: 34296472 DOI: 10.1002/em.22453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
It is well-known that the cytotoxicity and mutagenic effects of high dose rate (HDR) ionizing radiation (IR) are increased by increasing the dose but less is known about the effects of chronic low dose rate (LDR). In vitro, we have shown that in addition to the immediate interaction of IR with DNA (the direct and indirect effects), low doses and chronic LDR exposure induce endogenous oxidative stress. During elevated oxidative stress, reactive oxygen species (ROS) react with DNA modifying its structure. Here, BL6 mice were exposed to IR at LDR and HDR and were then sacrificed 3 hours and 3 weeks after exposure to examine early and late effects of IR. The levels of micronuclei, MN, were determined in bone marrow cells. Our data indicate that the effects of 200 mGy on MN-induction are transient, but 500 and 1000 mGy (both HDR and LDR) lead to increased levels of MN up to 3 weeks after the exposure.
Collapse
Affiliation(s)
| | - Ayumi Nakamura
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ali Pour Khavari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Traimate Sangsuwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- University of Caen Normandy, ARIA-CIMAP Laboratory, Campus Jules Horowitz, Caen, France
| |
Collapse
|
26
|
Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants (Basel) 2021; 10:antiox10060950. [PMID: 34204594 PMCID: PMC8231124 DOI: 10.3390/antiox10060950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative-7-deazaKR-with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity.
Collapse
|
27
|
Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13112765. [PMID: 34199460 PMCID: PMC8199612 DOI: 10.3390/cancers13112765] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is one of the belligerent neoplasia that metastasize to other brain regions and invade nearby healthy tissues. However, the treatments available are associated with some limitations, such as high variations in solid tumors and deregulation of multiple cellular pathways. The heterogeneity of the GBM tumor and its aggressive infiltration into the nearby tissues makes it difficult to treat. Hence, the development of multimodality therapy that can be more effective, novel, with fewer side effects, improving the prognosis for GBM is highly desired. This review evaluated the use of natural phytoconstituents as an alternative for the development of a new therapeutic strategy. The key aspects of GBM and the potential of drug delivery techniques were also assessed, for tumor site delivery with limited side-effects. These efforts will help to provide better therapeutic options to combat GBM in future. Abstract Glioblastoma multiforme (GBM) is one of the debilitating brain tumors, being associated with extremely poor prognosis and short median patient survival. GBM is associated with complex pathogenesis with alterations in various cellular signaling events, that participate in cell proliferation and survival. The impairment in cellular redox pathways leads to tumorigenesis. The current standard pharmacological regimen available for glioblastomas, such as radiotherapy and surgical resection following treatment with chemotherapeutic drug temozolomide, remains fatal, due to drug resistance, metastasis and tumor recurrence. Thus, the demand for an effective therapeutic strategy for GBM remains elusive. Hopefully, novel products from natural compounds are suggested as possible solutions. They protect glial cells by reducing oxidative stress and neuroinflammation, inhibiting proliferation, inducing apoptosis, inhibiting pro-oncogene events and intensifying the potent anti-tumor therapies. Targeting aberrant cellular pathways in the amelioration of GBM could promote the development of new therapeutic options that improve patient quality of life and extend survival. Consequently, our review emphasizes several natural compounds in GBM treatment. We also assessed the potential of drug delivery techniques such as nanoparticles, Gliadel wafers and drug delivery using cellular carriers which could lead to a novel path for the obliteration of GBM.
Collapse
|
28
|
Ulker OC, Panieri E, Suzen S, Jaganjac M, Zarkovic N, Saso L. Short overview on the relevance of microRNA-reactive oxygen species (ROS) interactions and lipid peroxidation for modulation of oxidative stress-mediated signalling pathways in cancer treatment. J Pharm Pharmacol 2021; 74:503-515. [PMID: 33769543 DOI: 10.1093/jpp/rgab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. KEY FINDINGS In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. CONCLUSIONS Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Collapse
Affiliation(s)
- Ozge Cemiloglu Ulker
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
1-O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates the Development of Preeclampsia through Suppression of Oxidative Stress and Endothelial Cell Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8839394. [PMID: 33542786 PMCID: PMC7840260 DOI: 10.1155/2021/8839394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ), a potent nuclear factor-E2-related factor 2 (Nrf2) activator, has potent antioxidant activity by scavenging reactive oxygen species (ROS). However, the role of HTHQ on the development of preeclampsia (PE) and the underlying mechanisms have barely been explored. In the present study, PE model was induced by adenovirus-mediated overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1) in pregnant mice. The results showed that HTHQ treatment significantly relieved the high systolic blood pressure (SBP) and proteinuria and increased the fetal weight and fetal weight/placenta weight in preeclamptic mice. Furthermore, we found that HTHQ treatment significantly decreased soluble endoglin (sEng), endothelin-1 (ET-1), and activin A and restored vascular endothelial growth factor (VEGF) in preeclamptic mice. In addition, HTHQ treatment inhibited oxidative stress and endothelial cell apoptosis by increasing the levels of Nrf2 and its downstream haemoxygenase-1 (HO-1) protein. In line with the data in vivo, we discovered that HTHQ treatment attenuated oxidative stress and cell apoptosis in human umbilical vein endothelial cells (HUVECs) following hypoxia and reperfusion (H/R), and the HTHQ-mediated protection was lost after transfected with siNrf2. In conclusion, these results suggested that HTHQ ameliorates the development of preeclampsia through suppression of oxidative stress and endothelial cell apoptosis.
Collapse
|
30
|
Antitumor Activity of Curcumin in Glioblastoma. Int J Mol Sci 2020; 21:ijms21249435. [PMID: 33322413 PMCID: PMC7763573 DOI: 10.3390/ijms21249435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Current standard-of-care treatment for glioblastoma, the most common malignant primary central nervous system (CNS) tumor, consists of surgical resection followed by adjuvant chemotherapy and radiation (Stupp protocol), providing an overall median survival of 15 months. With additional treatment using tumor-treating fields (Optune® therapy, Novocure Ltd., Haifa, Israel), survival can be extended up to 20 months. In spite of significant progress in our understanding of the molecular pathogenesis, the prognosis for patients with malignant gliomas remains poor and additional treatment modalities are critically needed. Curcumin is a bright yellow pigment found in the rhizome of the widely utilized spice, turmeric (Curcuma longa). It has long been used in South Asian traditional medicines and has been demonstrated to have in vitro antioxidant, anti-inflammatory, and antiproliferative effects. Curcumin has been demonstrated to induce multiple cytotoxic effects in tumor cells including cell cycle arrest, apoptosis, autophagy, changes in gene expression, and disruption of molecular signaling. Additionally, curcumin has been shown to potentiate the effect of radiation on cancer cells, while exhibiting a protective effect on normal tissue. Curcumin’s positive safety profile and widespread availability make it a promising compound for future clinical trials for high-grade gliomas.
Collapse
|
31
|
Wang P, Li X, Xie Y. B4GalT1 Regulates Apoptosis and Autophagy of Glioblastoma In Vitro and In Vivo. Technol Cancer Res Treat 2020; 19:1533033820980104. [PMID: 33287670 PMCID: PMC7727053 DOI: 10.1177/1533033820980104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our study was designed to investigate the role of B4GalT1 in glioblastoma, in vitro and in vivo, to detect whether B4GalT1 knockdown could regulate the development of glioblastoma, and further observe the relationship between B4GalT1 knockdown and the apoptosis and autophagy of glioblastoma. To begin, we looked at TCGA and GEPIA systems to predict the potential function of B4GalT1. Western blot and RT-PCR were used to analyze the expression, or mRNA level, of B4GalT1 at different tissue or cell lines. Next, the occurrence and development of glioblastoma, in vitro and in vivo, was observed by using B4GalT1 knocked down by lentivirus. Finally, the apoptosis and autophagy of glioblastoma was observed in vitro and in vivo. Results show that B4GalT1 was a highly variable gene, and GEPIA and TCGA systems show B4GalT1 expression in GBM tumor tissue was higher than in normal tissue. Pair-wise gene correlation analysis revealed a probable relationship between B4GalT1 and autophagy related proteins. The B4GalT1 expression and mRNA level were increased in tumor cells, or U87 cells. B4GalT1 knocked down by lentivirus could inhibit glioblastoma development, in vitro and in vivo, by reducing tumor weight and volume, increasing survival, and weakening tumor cells proliferation, migration, invasion. B4GalT1 knockdown could increase apoptosis and autophagy of glioblastoma in vitro and in vivo. Our study demonstrates that B4GalT1 may be able to regulate apoptosis and autophagy of glioblastoma. Bax, Bcl-2, cleaved caspase-3, Beclin-1, and LC3 s may be the downstream target factors of B4GalT1 in apoptosis and autophagy, which may provide a new strategy to reduce glioblastoma development by regulating apoptosis and autophagy.
Collapse
Affiliation(s)
- Pu Wang
- Department of Neurology, Xiangyang First People's Hospital of Hubei University, Xiangyang, Hubei, China
| | - Xiaolong Li
- Department of Neurology, Xiangyang First People's Hospital of Hubei University, Xiangyang, Hubei, China
| | - Yuan Xie
- Department of Neurology, Xiangyang First People's Hospital of Hubei University, Xiangyang, Hubei, China
| |
Collapse
|