1
|
Hou Z, Zhang X, Gao Y, Geng J, Jiang Y, Dai H, Wang C. Serum Osteopontin, KL-6, and Syndecan-4 as Potential Biomarkers in the Diagnosis of Coal Workers' Pneumoconiosis: A Case-Control Study. Pharmgenomics Pers Med 2023; 16:537-549. [PMID: 37284491 PMCID: PMC10241210 DOI: 10.2147/pgpm.s409644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Background Coal worker's pneumoconiosis (CWP) is a chronic occupational disease mainly caused by coal dust inhalation in miners. This study aimed to investigate the clinical value of Osteopontin (OPN), KL-6, Syndecan-4 and Gremlin-1 as serum biomarkers in CWP. Patients and Methods We integrated reported lung tissues transcriptome data in pneumoconiosis patients with silica-exposed alveolar macrophage microarray data to identify four CWP-associated serum biomarkers. The serum concentrations of Osteopontin, Krebs von den Lungen-6 (KL-6), Syndecan-4 and Gremlin-1 were measured in 100 healthy controls (HCs), 100 dust-exposed workers (DEWs) and 200 patients of CWP. Receiver operating characteristic (ROC) curve analysis was used to determine the sensitivity, specificity, cut-off value and area under the curve (AUC) value of biomarkers. Results The pulmonary function parameters decreased sequentially, and the serum OPN, KL-6, Syndecan-4 and Gremlin-1 concentrations were increased sequentially among the HC, DEW and CWP groups. Among all participants, multivariable analysis revealed that these four biomarkers were negatively correlated with the pulmonary function parameters (all p<0.05). Compared with HCs, patients with higher OPN, KL-6, Syndecan-4 and Gremlin-1 had higher risk for CWP. The combination of OPN, KL-6, and Syndecan-4 can improve the diagnostic sensitivity and specificity of CWP patients differentiated from HCs or DEWs. Conclusion OPN, KL-6 and Syndecan-4 are novel biomarkers that can be used for CWP auxiliary diagnosis. The combination of three biomarkers can improve the diagnostic values of CWP.
Collapse
Affiliation(s)
- Zhifei Hou
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinran Zhang
- Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yong Gao
- Department of Pulmonary and Critical Care Medicine, Sinopharm Tongmei General Hospital, Datong, Shanxi Province, People’s Republic of China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yu Jiang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huaping Dai
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Chen Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Zhang J, Yuan C, Li E, Guo Y, Cui J, Liu H, Hao X, Guo L. The significance of serum S100 calcium-binding protein A4 in silicosis. BMC Pulm Med 2022; 22:127. [PMID: 35379204 PMCID: PMC8981710 DOI: 10.1186/s12890-022-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Silicosis is a chronic occupational pulmonary disease characterized by persistent inflammation and irreversible fibrosis. Considerable evidences now indicate that S100 calcium-binding protein A4 (S100A4) has been associated with fibrotic diseases. However, the role of S100A4 in silicosis is still unclear. Methods In this study, serum levels of S100A4, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in patients with silicosis (n = 42) and control group (CG, n = 12) were measured by ELISA. S100A4 expression in lung tissues and primary alveolar macrophages (AMs) of mice with and without silicosis was detected by immunohistochemistry (IHC)/real-time PCR. The correlations between S100A4 and cytokines or lung function were assessed by Spearman's rank correlation analyses. Results Compared with CG, the levels of S100A4 were significantly increased in silicosis patients (70.84 (46.22, 102.46) ng/ml vs (49.84 (42.86, 60.02) ng/ml). The secretions of TGF-β1, CTGF, IL-6 and TNF-α in silicosis group were significantly higher than that in control group (p < 0.05). Serum S100A4 levels were positively correlated with TGF-β1 and IL-6, while were negatively correlated with lung function parameters including percentage of predicted forced vital capacity (FVC%pre), maximum vital capacity (Vcmax), deep inspiratory capacity (IC) and peak expiratory flow at 75% of vital capacity (PEF75). In receiver operating characteristic (ROC) analyses, S100A4 > 61.7 ng/ml had 63.4% sensitivity and 83.3% specificity for silicosis, and the area under the curve (AUC) was 0.707. Furthermore, immunostaining of lung tissues showed the accumulation of S100A4-positive cells in the areas of nodules of silicotic mice. The mRNA expression of S100A4 in the lung tissues and AMs of silicotic mice were significantly higher than controls. Conclusion These data suggested that increased S100A4 might contribute to the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Cuifang Yuan
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Enhong Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yiming Guo
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jie Cui
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiaohui Hao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Lingli Guo
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
3
|
Peruzzi CP, Brucker N, Bubols G, Cestonaro L, Moreira R, Domingues D, Arbo M, Olivo Neto P, Knorst MM, Garcia SC. Occupational exposure to crystalline silica and peripheral biomarkers: An update. J Appl Toxicol 2021; 42:87-102. [PMID: 34128557 DOI: 10.1002/jat.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Peripheral biomarkers are important tools for detecting occupational exposures to prevent the onset and/or progression of diseases. Studies that reveal early peripheral biomarkers are highly important to preserve the health of workers and can potentially contribute to diagnosing and/or prognosing occupational pathologies. Exposure to crystalline silica is a problem in several workplaces because it increases the risk of chronic obstructive pulmonary disease (COPD), tuberculosis, cancer, and pulmonary fibrosis, clinically defined as silicosis. Silicosis is diagnosed by chest radiography and/or lung tomography in advanced stages when there is a severe loss of lung function. Peripheral biomarkers can help in diagnosing early changes prior to silicosis and represent a highly important technical-scientific advance that is minimally invasive. This review aimed to investigate the biomarkers studied for evaluating occupational exposure to crystalline silica and to understand the recent advances in this area. Potential oxidative, inflammatory, and immunological biomarkers were reviewed, as well as routine biomarkers such as biochemical parameters. It was found that biomarkers of effect such as serum CC16 and l-selectin levels could represent promising alternatives. Additionally, studies have shown that neopterin levels in urine and serum can be used to monitor worker exposure. However, further studies are needed that include a greater number of participants, different times of exposure to crystalline silica, and a combination of silicosis patients and healthy volunteers. Evaluating the concentration of crystalline silica in occupational environments, its impact on biomarkers of effect, and alterations in lung function could contribute to revealing early health alterations in workers in a more robust manner.
Collapse
Affiliation(s)
- Caroline Portela Peruzzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Larissa Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moreira
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Domingues
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Olivo Neto
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marli Maria Knorst
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Pulmonology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Cui X, Xu R, Zhang H, Peng Z, Feng M, Yu B, Wang Y, Shi T, Zhou Y, Liu Y. Exogenous Clara cell protein 16 attenuates silica particles-induced inflammation in THP-1 macrophages by down-regulating NF-κB and caspase-1 activation. J Toxicol Sci 2020; 45:651-660. [PMID: 33012733 DOI: 10.2131/jts.45.651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inhalation of silica particles leads to pulmonary inflammatory responses. Clara cell protein 16 (CC16) has been reported to played a protective role in inflammatory lung diseases. However, its role on silica particles-induced inflammation has not been fully clarified. In this study, THP-1 macrophages were exposed to 75 μg/cm2 silica particles with or without 2 μg/mL exogenous CC16 (recombinant CC16, rCC16) for 24 hr. The production of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6, in the cell supernatants of different groups was detected through ELISA kits and real-time RT-PCR, respectively. The nuclear translocation of nuclear factor (NF)-κB, protein levels of pro-IL-1β, the nucleotide-binding domain-like receptor protein 3 (NLRP3) and caspase-1 were evaluated via immunofluorescence or western blot. Results showed that, at 75 μg/cm2 silica particle concentration, the treatment of rCC16 significantly decreased IL-1β, TNF-α and IL-6 protein release and mRNA levels in THP-1 macrophages. Compared to those only exposed to silica particles, THP-1 macrophages exposed to both silica particles and rCC16 showed significantly lower nuclear levels and higher cytosol levels of NF-κB p65, as well as lower co-localization coefficients through immunofluorescence. Additionally, the administration of rCC16 significantly attenuated the increase of pro-IL-1β, NLRP3 and caspase-1 levels induced by silica particle exposure. Our results suggested that exogenous CC16 could inhibit silica particles-induced inflammation in THP-1 macrophages, mainly through suppressing NF-κB pathway and caspase-1 activation.
Collapse
Affiliation(s)
- Xiuqing Cui
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Hai Zhang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, China
| | - Zhe Peng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, China
| | - Min Feng
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, China
| | - Bo Yu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, China
| | - Yaqi Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Tingming Shi
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, China
| | - Yun Zhou
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, China.,School of Public Health, Guangzhou Medical University, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, China
| |
Collapse
|