1
|
Polis B, Cuda CM, Putterman C. Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development. Autoimmunity 2024; 57:2330387. [PMID: 38555866 DOI: 10.1080/08916934.2024.2330387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.
Collapse
Affiliation(s)
- Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Nikolopoulos D, Nakos-Bimpos M, Manolakou T, Polissidis A, Boumpas DT. Impaired serotonin synthesis in hippocampus of murine lupus represents an early neuropsychiatric event. Lupus 2024; 33:166-171. [PMID: 38073556 DOI: 10.1177/09612033231221651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND Despite significant progress in understanding the mechanisms underlying hippocampal involvement in neuropsychiatric systemic lupus erythematosus (NPSLE), our understanding of how neuroinflammation affects the brain neurotransmitter systems is limited. To date, few studies have investigated the role of neurotransmitters in pathogenesis of NPSLE with contradictory results. METHODS Hippocampal tissue from NZB/W-F1 lupus-prone mice and age-matched control strains were dissected in both pre-nephritic (3-month-old) and nephritic (6-month-old) stages. High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin (5-HT), dopamine (DA), and their metabolites 5-HIAA and DOPAC, respectively, in mouse hippocampi. RESULTS Lupus mice exhibit decreased levels of serotonin at the early stages of the disease, along with intact levels of its metabolite 5-HIAA. The 5-HT turnover ratio (5-HIAA/5-HT ratio) was increased in the hippocampus of lupus mice at pre-nephritic stage suggesting that low hippocampal serotonin levels in lupus are attributed to decreased serotonin synthesis. Both DA and DOPAC levels remained unaffected in lupus hippocampus at both early and late stages. CONCLUSION Impaired hippocampal serotonin synthesis in the hippocampus of lupus-prone mice represents an early neuropsychiatric event. These findings may have important implications for the use of symptomatic therapy in diffuse NPSLE.
Collapse
Affiliation(s)
- Dionysis Nikolopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Modestos Nakos-Bimpos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Graïc JM, Finos L, Vadori V, Cozzi B, Luisetto R, Gerussi T, M G, Doria A, Grisan E, Corain L, Peruffo A. Cytoarchitectureal changes in hippocampal subregions of the NZB/W F1 mouse model of lupus. Brain Behav Immun Health 2023; 32:100662. [PMID: 37456623 PMCID: PMC10339121 DOI: 10.1016/j.bbih.2023.100662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Over 50% of clinical patients affected by the systemic lupus erythematosus disease display impaired neurological cognitive functions and psychiatric disorders, a form called neuropsychiatric systemic lupus erythematosus. Hippocampus is one of the brain structures most sensitive to the cognitive deficits and psychiatric disorders related to neuropsychiatric lupus. The purpose of this study was to compare, layer by layer, neuron morphology in lupus mice model NZB/W F1 versus Wild Type mice. By a morphometric of cells identified on Nissl-stained sections, we evaluated structural alterations between NZB/W F1 and Wild Type mice in seven hippocampal subregions: Molecular dentate gyrus, Granular dentate gyrus, Polymorph dentate gyrus, Oriens layer, Pyramidal layer, Radiatum layer and Lacunosum molecular layer. By principal component analysis we distinguished healthy Wild Type from NZB/W F1 mice. In NZB/W F1 mice hippocampal cytoarchitecture, the neuronal cells resulted larger in size and more regular than those of Wild Type. In NZB/W F1, neurons were usually denser than in WT. The Pyramidal layer neurons were much denser in Wild Type than in NZB/W F1. Application of principal component analysis, allowed to distinguish NZB/W F1 lupus mice from healthy, showing as NZBW subjects presented a scattered distribution and intrasubject variability. Our results show a hypertrophy of the NZB/W F1 hippocampal neurons associated with an increase in perikaryal size within the CA1, CA2, CA3 region and the DG. These results help advance our understanding on hippocampal organization and structure in the NZB/W F1 lupus model, suggesting the hypothesis that the different subregions could be differentially affected in neuropsychiatric systemic lupus erythematosus disease. Leveraging an in-depth analysis of the morphology of neural cells in the hippocampal subregions and applying dimensionality reduction using PCA, we propose an efficient methodology to distinguish pathological NZBW mice from WT mice."
Collapse
Affiliation(s)
- J.-M. Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| | - L. Finos
- Department of Statistical Sciences, University of Padova, Padova, 35100, Italy
| | - V. Vadori
- School of Engineering, London South Bank University, London, SE1 0AA, UK
| | - B. Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| | - R. Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, 35100, Italy
| | - T. Gerussi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| | - Gatto M
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova, 35100, Italy
| | - A. Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova, 35100, Italy
| | - E. Grisan
- School of Engineering, London South Bank University, London, SE1 0AA, UK
| | - L. Corain
- Department of Management and Engineering, University of Padova, Vicenza, 36100, Italy
| | - A. Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020, Italy
| |
Collapse
|
4
|
Koolvisoot A, Chumjang S. Prevalence of cognitive impairment and cognitive improvement in patients with systemic lupus erythematosus during a 6-month follow-up study. Lupus 2023; 32:1199-1210. [PMID: 37592859 DOI: 10.1177/09612033231196215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVES The Montreal Cognitive Assessment (MoCA) is a simple and reliable screening tool for early detection for cognitive impairment in systemic lupus erythematosus (SLE). Most previous studies were cross-sectional with small samples. Research on long-term cognitive changes and reversibility is limited. This study aimed to establish the prevalence of cognitive impairment and changes in SLE patients after 6 months and the associated factors. METHODS A prospective study was conducted in 200 patients with SLE between April 2021 and March 2022. Demographic data, disease activity, and medications were recorded. MoCA was administered at baseline and 6 months; for Thais, scores 17-24 indicate mild cognitive impairment, while ≤16 signifies severe impairment. Multivariate analysis identified factors associated with cognitive impairment and improvement. RESULTS The patients' median age was 44 years (range: 19-73), 96% were female, and 55% had < 12 years of education. The median disease duration was 11 years (range: 0-51.8), and 79% of patients had inactive disease. Cognitive impairment was found in 70% of patients (mild, 63%; severe, 7%). The most often affected domains were delayed recall (82%), abstraction (80.5%), language (76%) and visuospatial/executive function (70.5%), whereas orientation and naming were the least involved. Factors significantly associated with cognitive impairment were age > 40 years (OR, 3.71; 95% CI, 1.72-8.00), formal education < 12 years (OR, 3.11; 95% CI, 1.45-6.63), and prednisolone use (OR, 2.21; 95% CI, 1.08-4.51). Sixty-six (38.2%) of 173 patients completing the 6-month re-evaluation exhibited cognitive changes (52 [30.1%] improved; 14 [8.1%] deteriorated). Except for delayed recall, all commonly affected domains showed significant improvement. Disease activity, prednisolone, antimalarials, or immunosuppressant use did not predict cognitive improvement. CONCLUSIONS Mild cognitive impairment is prevalent among patients with SLE. Due to the possibility of reversibility, early recognition and additional research to identify relevant factors are required.
Collapse
Affiliation(s)
- Ajchara Koolvisoot
- Division of Rheumatology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasamon Chumjang
- Division of Rheumatology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Pentari A, Simos N, Tzagarakis G, Kagialis A, Bertsias G, Kavroulakis E, Gratsia E, Sidiropoulos P, Boumpas DT, Papadaki E. Altered hippocampal connectivity dynamics predicts memory performance in neuropsychiatric lupus: a resting-state fMRI study using cross-recurrence quantification analysis. Lupus Sci Med 2023; 10:e000920. [PMID: 37400223 DOI: 10.1136/lupus-2023-000920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Τo determine whole-brain and regional functional connectivity (FC) characteristics of patients with neuropsychiatric SLE (NPSLE) or without neuropsychiatric manifestations (non-NPSLE) and examine their association with cognitive performance. METHODS Cross-recurrence quantification analysis (CRQA) of resting-state functional MRI (rs-fMRI) data was performed in 44 patients with NPSLE, 20 patients without NPSLE and 35 healthy controls (HCs). Volumetric analysis of total brain and specific cortical and subcortical regions, where significant connectivity changes were identified, was performed. Cognitive status of patients with NPSLE was assessed by neuropsychological tests. Group comparisons on nodal FC, global network metrics and regional volumetrics were conducted, and associations with cognitive performance were estimated (at p<0.05 false discovery rate corrected). RESULTS FC in patients with NPSLE was characterised by increased modularity (mean (SD)=0.31 (0.06)) as compared with HCs (mean (SD)=0.27 (0.06); p=0.05), hypoconnectivity of the left (mean (SD)=0.06 (0.018)) and right hippocampi (mean (SD)=0.051 (0.0.16)), and of the right amygdala (mean (SD)=0.091 (0.039)), as compared with HCs (mean (SD)=0.075 (0.022), p=0.02; 0.065 (0.019), p=0.01; 0.14 (0.096), p=0.05, respectively). Hyperconnectivity of the left angular gyrus (NPSLE/HCs: mean (SD)=0.29 (0.26) and 0.10 (0.09); p=0.01), left (NPSLE/HCs: mean (SD)=0.16 (0.09) and 0.09 (0.05); p=0.01) and right superior parietal lobule (SPL) (NPSLE/HCs: mean (SD)=0.25 (0.19) and 0.13 (0.13), p=0.01) was noted in NPSLE versus HC groups. Among patients with NPSLE, verbal episodic memory scores were positively associated with connectivity (local efficiency) of the left hippocampus (r2=0.22, p=0.005) and negatively with local efficiency of the left angular gyrus (r2=0.24, p=0.003). Patients without NPSLE displayed hypoconnectivity of the right hippocampus (mean (SD)=0.056 (0.014)) and hyperconnectivity of the left angular gyrus (mean (SD)=0.25 (0.13)) and SPL (mean (SD)=0.17 (0.12)). CONCLUSION By using dynamic CRQA of the rs-fMRI data, distorted FC was found globally, as well as in medial temporal and parietal brain regions in patients with SLE, that correlated significantly and adversely with memory capacity in NPSLE. These results highlight the value of dynamic approaches to assessing impaired brain network function in patients with lupus with and without neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Anastasia Pentari
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Nicholas Simos
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - George Tzagarakis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Antonios Kagialis
- Department of Psychiatry, University of Crete School of Medicine, Heraklion, Greece
- Department of Radiology, University of Crete School of Medicine, Heraklion, Greece
| | - George Bertsias
- Laboratory of Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- Department of Rheumatology, Clinical Immunology and Allergy, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | | | - Eirini Gratsia
- Department of Radiology, University of Crete School of Medicine, Heraklion, Greece
| | - Prodromos Sidiropoulos
- Department of Rheumatology, Clinical Immunology and Allergy, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Dimitrios T Boumpas
- Department of Rheumatology, Clinical Immunology and Allergy, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
- Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrosini Papadaki
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Radiology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
6
|
Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, Boumpas DT. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis 2023; 82:646-657. [PMID: 36898766 PMCID: PMC10176423 DOI: 10.1136/ard-2022-223506] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 03/12/2023]
Abstract
INTRODUCTION Inflammatory mediators are detected in the cerebrospinal fluid of systemic lupus erythematosus patients with central nervous system involvement (NPSLE), yet the underlying cellular and molecular mechanisms leading to neuropsychiatric disease remain elusive. METHODS We performed a comprehensive phenotyping of NZB/W-F1 lupus-prone mice including tests for depression, anxiety and cognition. Immunofluorescence, flow cytometry, RNA-sequencing, qPCR, cytokine quantification and blood-brain barrier (BBB) permeability assays were applied in hippocampal tissue obtained in both prenephritic (3-month-old) and nephritic (6-month-old) lupus mice and matched control strains. Healthy adult hippocampal neural stem cells (hiNSCs) were exposed ex vivo to exogenous inflammatory cytokines to assess their effects on proliferation and apoptosis. RESULTS At the prenephritic stage, BBB is intact yet mice exhibit hippocampus-related behavioural deficits recapitulating the human diffuse neuropsychiatric disease. This phenotype is accounted by disrupted hippocampal neurogenesis with hiNSCs exhibiting increased proliferation combined with decreased differentiation and increased apoptosis in combination with microglia activation and increased secretion of proinflammatory cytokines and chemokines. Among these cytokines, IL-6 and IL-18 directly induce apoptosis of adult hiNSCs ex vivo. During the nephritic stage, BBB becomes disrupted which facilitates immune components of peripheral blood, particularly B-cells, to penetrate into the hippocampus further augmenting inflammation with locally increased levels of IL-6, IL-12, IL-18 and IL-23. Of note, an interferon gene signature was observed only at nephritic-stage. CONCLUSION An intact BBB with microglial activation disrupting the formation of new neurons within the hippocampus represent early events in NPSLE. Disturbances of the BBB and interferon signature are evident later in the course of the disease.
Collapse
Affiliation(s)
- Dionysis Nikolopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Manolakou
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anastasia Filia
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Bertsias
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Rheumatology, Clinical Immunology and Allergy Department, Medical School University of Crete, Heraklion, Greece
| | | | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece .,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
7
|
Cox JG, de Groot M, Cole JH, Williams SCR, Kempton MJ. A meta-analysis of structural MRI studies of the brain in systemic lupus erythematosus (SLE). Clin Rheumatol 2023; 42:319-326. [PMID: 36534349 PMCID: PMC9873736 DOI: 10.1007/s10067-022-06482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
A comprehensive search of published literature in brain volumetry was conducted in three autoimmune diseases - systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and ulcerative colitis (UC) - with the intention of performing a meta-analysis of published data. Due to the lack of data in RA and UC, the reported meta-analysis was limited to SLE. The MEDLINE database was searched for studies from 1988 to March 2022. A total of 175 papers met the initial inclusion criteria, and 16 were included in a random-effects meta-analysis. The reduction in the number of papers included in the final analysis is primarily due to the lack of overlap in measured and reported brain regions. A significantly lower volume was seen in patients with SLE in the hippocampus, corpus callosum, and total gray matter volume measurements as compared to age- and sex-matched controls. There were not enough studies to perform a meta-analysis for RA and UC; instead, we include a summary of published volumetric studies. The meta-analyses revealed structural brain abnormalities in patients with SLE, suggesting that lower global brain volumes are associated with disease status. This volumetric difference was seen in both the hippocampus and corpus callosum and total gray matter volume measurements. These results indicate both gray and white matter involvements in SLE and suggest there may be both localized and global reductions in brain volume.
Collapse
Affiliation(s)
- Jennifer G Cox
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | | | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Matthew J Kempton
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Li S, Bai R, Yang Y, Zhao R, Upreti B, Wang X, Liu S, Cheng Y, Xu J. Abnormal cortical thickness and structural covariance networks in systemic lupus erythematosus patients without major neuropsychiatric manifestations. Arthritis Res Ther 2022; 24:259. [PMID: 36443835 PMCID: PMC9703716 DOI: 10.1186/s13075-022-02954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Non-neuropsychiatric systemic lupus erythematosus (non-NPSLE) has been confirmed to have subtle changes in brain structure before the appearance of obvious neuropsychiatric symptoms. Previous literature mainly focuses on brain structure loss in non-NPSLE; however, the results are heterogeneous, and the impact of structural changes on the topological structure of patients' brain networks remains to be determined. In this study, we combined neuroimaging and network analysis methods to evaluate the changes in cortical thickness and its structural covariance networks (SCNs) in patients with non-NPSLE. METHODS We compare the cortical thickness of non-NPSLE patients (N=108) and healthy controls (HCs, N=88) using both surface-based morphometry (SBM) and regions of interest (ROI) methods, respectively. After that, we analyzed the correlation between the abnormal cortical thickness results found in the ROI method and a series of clinical features. Finally, we constructed the SCNs of two groups using the regional cortical thickness and analyzed the abnormal SCNs of non-NPSLE. RESULTS By SBM method, we found that cortical thickness of 34 clusters in the non-NPSLE group was thinner than that in the HC group. ROI method based on Destrieux atlas showed that cortical thickness of 57 regions in the non-NPSLE group was thinner than that in the HC group and related to the course of disease, autoantibodies, the cumulative amount of immunosuppressive agents, and cognitive psychological scale. In the SCN analysis, the cortical thickness SCNs of the non-NPSLE group did not follow the small-world attribute at a few densities, and the global clustering coefficient appeared to increase. The area under the curve analysis showed that there were significant differences between the two groups in clustering coefficient, degree, betweenness, and local efficiency. There are a total of seven hubs for non-NPSLE, and five hubs in HCs, the two groups do not share a common hub distribution. CONCLUSION Extensive and obvious reduction in cortical thickness and abnormal topological organization of SCNs are observed in non-NPSLE patients. The observed abnormalities may not only be the realization of brain damage caused by the disease, but also the contribution of the compensatory changes within the nervous system.
Collapse
Affiliation(s)
- Shu Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ru Bai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yifan Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruotong Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bibhuti Upreti
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangyu Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
9
|
Zhou C, Dong M, Duan W, Lin H, Wang S, Wang Y, Zhang Y, Shi J, Liu S, Cheng Y, Xu X, Xu J. White matter microstructure alterations in systemic lupus erythematosus: A preliminary coordinate-based meta-analysis of diffusion tensor imaging studies. Lupus 2021; 30:1973-1982. [PMID: 34652991 DOI: 10.1177/09612033211045062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Systemic lupus erythematosus is often accompanied with neuropsychiatric symptoms. Neuroimaging evidence indicated that microstructural white matter (WM) abnormalities play role in the neuropathological mechanism. Diffusion tensor imaging (DTI) studies allows the assessment of the microstructural integrity of WM tracts, but existing findings were inconsistent. This present study aimed to conduct a coordinate-based meta-analysis (CBMA) to identify statistical consensus of DTI studies in SLE. METHODS Relevant studies that reported the differences of fractional anisotropy (FA) between SLE patients and healthy controls (HC) were searched systematically. Only studies reported the results in Talairach or Montreal Neurological Institute (MNI) coordinates were included. The anisotropic effect size version of signed differential mapping (AES-SDM) was applied to detect WM alterations in SLE. RESULTS Totally, five studies with seven datasets which included 126 patients and 161 HC were identified. The pooled meta-analysis demonstrated that SLE patients exhibited significant FA reduction in the left striatum and bilateral inferior network, mainly comprised the corpus callosum (CC), bilateral inferior fronto-occipital fasciculus (IFOF), bilateral anterior thalamic projections, bilateral superior longitudinal fasciculus (SLF), left inferior longitudinal fasciculus (ILF), and left insula. No region with higher FA was identified. CONCLUSIONS Disorders of the immune system might lead to subtle WM microstructural alterations in SLE, which might be related with cognitive deficits or emotional distress symptoms. This provides a better understanding of the pathological mechanism of microstructural brain abnormalities in SLE.
Collapse
Affiliation(s)
- Cong Zhou
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Man Dong
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Weiwei Duan
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Hao Lin
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Shuting Wang
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Yuxin Wang
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Yujia Zhang
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Jiameng Shi
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Shirui Liu
- School of Mental Health, 74496Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Bawazir YM, Bahlas S, Jali I, Mukhtar DA, Almohammmadi N, Mustafa M. Association Between Hypocomplementemia (C3 and C4) and MRI Findings in Different Neuropsychiatric Lupus Syndromes in a Tertiary Hospital. Cureus 2021; 13:e17939. [PMID: 34548991 PMCID: PMC8437204 DOI: 10.7759/cureus.17939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/05/2022] Open
Abstract
Objective The aim of this study was to describe the magnetic resonance imaging (MRI) findings and correlate them with the complements level. Methodology This is a retrospective chart review study involving 187 lupus patients attending the rheumatology clinic during the period between 2010 and 2020. Out of the 187 patients, only 49 patients were diagnosed to have neuropsychiatric lupus manifestation and underwent MRI study. Results We included 49 neuropsychiatric systemic lupus erythematosus patients with a mean age of 35.33 years; most of them were Saudi (51%), with disease duration between -six and nine years (40.8%). In regard to MRI brain findings, 51% had abnormal findings, most commonly white matter changes in 42.9% followed by contrast enhancement in 36.7% and mild volume loss in 16.3%. Regarding the complement level, 21 (42.9%) patients had a low C3 level and 35 (71.4%) had a low C4 level. Lastly, following the main objective, C3 and C4 do not have a statistically significant relationship with white matter lesion given the sample of this data (p = 0.589 and p = 0.657, respectively). Conclusion MRI provides a significant clinical information to evaluate neuropsychiatric lupus manifestations. These clinical data can be correlated with immunological findings, which can help in the early diagnosis and management of this disease.
Collapse
Affiliation(s)
- Yasser M Bawazir
- Rheumatology/Internal Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Sami Bahlas
- Rheumatology/Internal Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | - Ibtisam Jali
- Medicine, King Abdulaziz University Faculty of Medicine, Jeddah, SAU
| | | | | | - Mohammad Mustafa
- Rheumatology/Internal Medicine, University of Jeddah, Jeddah, SAU
| |
Collapse
|
11
|
TWEAKing the Hippocampus: The Effects of TWEAK on the Genomic Fabric of the Hippocampus in a Neuropsychiatric Lupus Mouse Model. Genes (Basel) 2021; 12:genes12081172. [PMID: 34440346 PMCID: PMC8392718 DOI: 10.3390/genes12081172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.
Collapse
|
12
|
Zarfeshani A, Carroll KR, Volpe BT, Diamond B. Cognitive Impairment in SLE: Mechanisms and Therapeutic Approaches. Curr Rheumatol Rep 2021; 23:25. [PMID: 33782842 PMCID: PMC11207197 DOI: 10.1007/s11926-021-00992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
A wide range of patients with systemic lupus erythematosus (SLE) suffer from cognitive dysfunction (CD) which severely impacts their quality of life. However, CD remains underdiagnosed and poorly understood. Here, we discuss current findings in patients and in animal models. Strong evidence suggests that CD pathogenesis involves known mechanisms of tissue injury in SLE. These mechanisms recruit brain resident cells, in particular microglia, into the pathological process. While systemic immune activation is critical to central nervous system injury, the current focus of therapy is the microglial cell and not the systemic immune perturbation. Further studies are critical to examine additional potential therapeutic targets and more specific treatments based on the cause and progress of the disease.
Collapse
Affiliation(s)
- Aida Zarfeshani
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kaitlin R Carroll
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|