1
|
Liu ZH, Deng ZF, Lu Y, Fang WH, He F. A modular and self-adjuvanted multivalent vaccine platform based on porcine circovirus virus-like nanoparticles. J Nanobiotechnology 2022; 20:493. [PMID: 36424615 PMCID: PMC9685936 DOI: 10.1186/s12951-022-01710-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Virus-like particles (VLPs) are supramolecular structures composed of multiple protein subunits and resemble natural virus particles in structure and size, making them highly immunogenic materials for the development of next-generation subunit vaccines. The orderly and repetitive display of antigenic epitopes on particle surface allows efficient recognition and cross-link by B cell receptors (BCRs), thereby inducing higher levels of neutralizing antibodies and cellular immune responses than regular subunit vaccines. Here, we present a novel multiple antigen delivery system using SpyCatcher/Spytag strategy and self-assembled VLPs formed by porcine circovirus type 2 (PCV2) Cap, a widely used swine vaccine in solo. RESULTS Cap-SC, recombinant Cap with a truncated SpyCatcher polypeptide at its C-terminal, self-assembled into 26-nm VLPs. Based on isopeptide bonds formed between SpyCatcher and SpyTag, classical swine fever virus (CSFV) E2, the antigen of interest, was linked to SpyTag and readily surface-displayed on SpyCatcher decorated Cap-SC via in vitro covalent conjugation. E2-conjugated Cap VLPs (Cap-E2 NPs) could be preferentially captured by antigen presenting cells (APCs) and effectively stimulate APC maturation and cytokine production. In vivo studies confirmed that Cap-E2 NPs elicited an enhanced E2 specific IgG response, which was significantly higher than soluble E2, or the admixture of Cap VLPs and E2. Moreover, E2 displayed on the surface did not mask the immunodominant epitopes of Cap-SC VLPs, and Cap-E2 NPs induced Cap-specific antibody levels and neutralizing antibody levels comparable to native Cap VLPs. CONCLUSION These results demonstrate that this modularly assembled Cap-E2 NPs retains the immune potential of Cap VLP backbone, while the surface-displayed antigen significantly elevated E2-induced immune potency. This immune strategy provides distinctly improved efficacy than conventional vaccine combination. It can be further applied to the development of dual or multiple nanoparticle vaccines to prevent co-infection of PCV2 and other swine pathogens.
Collapse
Affiliation(s)
- Ze-Hui Liu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Zhuo-Fan Deng
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Ying Lu
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China
| | - Wei-Huan Fang
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| | - Fang He
- grid.13402.340000 0004 1759 700XInstitute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang road, 310058 Hangzhou, China ,grid.13402.340000 0004 1759 700XLaboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
2
|
Shoja Z, Jalilvand S, Latifi T, Roohvand F. Rotavirus VP6: involvement in immunogenicity, adjuvant activity, and use as a vector for heterologous peptides, drug delivery, and production of nano-biomaterials. Arch Virol 2022; 167:1013-1023. [PMID: 35292854 PMCID: PMC8923333 DOI: 10.1007/s00705-022-05407-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
The first-generation, live attenuated rotavirus (RV) vaccines, such as RotaTeq and Rotarix, were successful in reducing the number of RV-induced acute gastroenteritis (AGE) and child deaths globally. However, the low efficacy of these first-generation oral vaccines, coupled with safety concerns, required development of improved RV vaccines. The highly conserved structural protein VP6 is highly immunogenic, and it can generate self-assembled nano-sized structures, including tubes and spheres (virus-like particles; VLPs). Amongst the RV proteins, only VP6 shows these features. Interestingly, VP6-assembled structures, in addition to being highly immunogenic, have several other useful characteristics that could allow them to be used as adjuvants, immunological carriers, and drug-delivery vehicles as well as acting a scaffold for production of valuable nano-biomaterials. This review provides an overview of the self-assembled nano-sized structures of VP6-tubes/VLPs and their various functions.
Collapse
Affiliation(s)
- Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Cates J, Tate JE, Parashar U. Rotavirus vaccines: progress and new developments. Expert Opin Biol Ther 2022; 22:423-432. [PMID: 34482790 PMCID: PMC10839819 DOI: 10.1080/14712598.2021.1977279] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Rotavirus is the primary cause of severe acute gastroenteritis among children under the age of five globally, leading to 128,500 to 215,000 vaccine-preventable deaths annually. There are six licensed oral, live-attenuated rotavirus vaccines: four vaccines pre-qualified for global use by WHO, and two country-specific vaccines. Expansion of rotavirus vaccines into national immunization programs worldwide has led to a 59% decrease in rotavirus hospitalizations and 36% decrease in diarrhea deaths due to rotavirus in vaccine-introducing countries. AREAS COVERED This review describes the current rotavirus vaccines in use, global coverage, vaccine efficacy from clinical trials, and vaccine effectiveness and impact from post-licensure evaluations. Vaccine safety, particularly as it relates to the risk of intussusception, is also summarized. Additionally, an overview of candidate vaccines in the pipeline is provided. EXPERT OPINION Considerable evidence over the past decade has demonstrated high effectiveness (80-90%) of rotavirus vaccines at preventing severe rotavirus disease in high-income countries, although the effectiveness has been lower (40-70%) in low-to-middle-income countries. Surveillance and research should continue to explore modifiable factors that influence vaccine effectiveness, strengthen data to better evaluate newer rotavirus vaccines, and aid in the development of future vaccines that can overcome the limitations of current vaccines.
Collapse
Affiliation(s)
- Jordan Cates
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
4
|
Heinimäki S, Lampinen V, Tamminen K, Hankaniemi MM, Malm M, Hytönen VP, Blazevic V. Antigenicity and immunogenicity of HA2 and M2e influenza virus antigens conjugated to norovirus-like, VP1 capsid-based particles by the SpyTag/SpyCatcher technology. Virology 2021; 566:89-97. [PMID: 34894525 DOI: 10.1016/j.virol.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Virus-like particles (VLPs) modified through different molecular technologies are employed as delivery vehicles or platforms for heterologous antigen display. We have recently created a norovirus (NoV) VLP platform, where two influenza antigens, the extracellular domain of matrix protein M2 (M2e) or the stem domain of the major envelope glycoprotein hemagglutinin (HA2) are displayed on the surface of the NoV VLPs by SpyTag/SpyCatcher conjugation. To demonstrate the feasibility of the platform to deliver foreign antigens, this study examined potential interference of the conjugation with induction of antibodies against conjugated M2e peptide, HA2, and NoV VLP carrier. High antibody response was induced by HA2 but not M2e decorated VLPs. Furthermore, HA2-elicited antibodies did not neutralize the homologous influenza virus in vitro. Conjugated NoV VLPs retained intact receptor binding capacity and self-immunogenicity. The results demonstrate that NoV VLPs could be simultaneously used as a platform to deliver foreign antigens and a NoV vaccine.
Collapse
Affiliation(s)
- Suvi Heinimäki
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Vili Lampinen
- Protein Dynamics Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi Tamminen
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna M Hankaniemi
- Protein Dynamics Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Malm
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Protein Dynamics Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Tamminen K, Heinimäki S, Gröhn S, Blazevic V. Fusion Protein of Rotavirus VP6 and SARS-CoV-2 Receptor Binding Domain Induces T Cell Responses. Vaccines (Basel) 2021; 9:vaccines9070733. [PMID: 34358149 PMCID: PMC8309989 DOI: 10.3390/vaccines9070733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Vaccines based on mRNA and viral vectors are currently used in the frontline to combat the ongoing pandemic caused by the novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, there is still an urgent need for alternative vaccine technologies inducing/boosting long-lasting and cross-reactive immunity in different populations. As a possible vaccine candidate, we employed the rotavirus VP6-protein platform to construct a fusion protein (FP) displaying receptor-binding domain (RBD) of SARS-CoV-2 spike protein (S) at the N-terminus of VP6. The recombinant baculovirus-insect cell produced VP6-RBD FP was proven antigenic in vitro and bound to the human angiotensin-converting enzyme 2 (hACE2) receptor. The FP was used to immunize BALB/c mice, and humoral- and T cell-mediated immune responses were investigated. SARS-CoV-2 RBD-specific T cells were induced at a high quantity; however, no RBD or S-specific antibodies were detected. The results suggest that conformational B cell epitopes might be buried inside the VP6, while RBD-specific T cell epitopes are available for T cell recognition after the processing and presentation of FP by the antigen-presenting cells. Further immunogenicity studies are needed to confirm these findings and to assess whether, under different experimental conditions, the VP6 platform may present SARS-CoV-2 antigens to B cells as well.
Collapse
Affiliation(s)
- Kirsi Tamminen
- Correspondence: (K.T.); (V.B.); Tel.: +358-50318-6868 (K.T.); +358-50421-1054 (V.B.)
| | | | | | - Vesna Blazevic
- Correspondence: (K.T.); (V.B.); Tel.: +358-50318-6868 (K.T.); +358-50421-1054 (V.B.)
| |
Collapse
|
6
|
Mi Y, Xie T, Zhu B, Tan J, Li X, Luo Y, Li F, Niu H, Han J, Lv W, Wang J. Production of SARS-CoV-2 Virus-Like Particles in Insect Cells. Vaccines (Basel) 2021; 9:vaccines9060554. [PMID: 34073159 PMCID: PMC8227081 DOI: 10.3390/vaccines9060554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease (COVID-19) causes a serious threat to human health. Virus-like particles (VLPs) constitute a promising platform in SARS-CoV-2 vaccine development. In this study, the E, M, and S genes were cloned into multiple cloning sites of a new triple expression plasmid with one p10 promoter, two pPH promoters, and three multiple cloning sites. The plasmid was transformed into DH10 BacTMEscherichia coli competent cells to obtain recombinant bacmid. Then the recombinant bacmid was transfected in ExpiSf9TM insect cells to generate recombinant baculovirus. After ExpiSf9TM cells infection with the recombinant baculovirus, the E, M, and S proteins were expressed in insect cells. Finally, SARS-CoV-2 VLPs were self-assembled in insect cells after infection. The morphology and the size of SARS-CoV-2 VLPs are similar to the native virions.
Collapse
Affiliation(s)
- Youjun Mi
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Tao Xie
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
- Correspondence:
| | - Jiying Tan
- Institute of Immunology, School of Basic Medicine, Lanzhou University, Lanzhou 730070, China; (J.T.); (Y.L.)
| | - Xuefeng Li
- Institute of Combined Western and Chinese Traditional Medicine, Lanzhou University, Lanzhou 730070, China;
| | - Yanping Luo
- Institute of Immunology, School of Basic Medicine, Lanzhou University, Lanzhou 730070, China; (J.T.); (Y.L.)
| | - Fei Li
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Jiangyuan Han
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Wei Lv
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| | - Juan Wang
- Lanzhou Center for Tuberculosis Research and Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730070, China; (Y.M.); (T.X.); (F.L.); (H.N.); (J.H.); (W.L.); (J.W.)
| |
Collapse
|
7
|
Gröhn S, Heinimäki S, Tamminen K, Blazevic V. Expression of influenza A virus-derived peptides on a rotavirus VP6-based delivery platform. Arch Virol 2021; 166:213-217. [PMID: 33067651 PMCID: PMC7567002 DOI: 10.1007/s00705-020-04847-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Recombinant protein technology enables the engineering of modern vaccines composed of a carrier protein displaying poorly immunogenic heterologous antigens. One promising carrier is based on the rotavirus inner-capsid VP6 protein. We explored different VP6 insertion sites for the presentation of two peptides (23 and 140 amino acids) derived from the M2 and HA genes of influenza A virus. Both termini and three surface loops of VP6 were successfully exploited as genetic fusion sites, as demonstrated by the expression of the fusion proteins. However, further studies are needed to assess the morphology and immunogenicity of these constructs.
Collapse
Affiliation(s)
- Stina Gröhn
- Faculty of Medicine and Health Technology, Vaccine Development and Immunology/Vaccine Research Center, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Suvi Heinimäki
- Faculty of Medicine and Health Technology, Vaccine Development and Immunology/Vaccine Research Center, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Kirsi Tamminen
- Faculty of Medicine and Health Technology, Vaccine Development and Immunology/Vaccine Research Center, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Vesna Blazevic
- Faculty of Medicine and Health Technology, Vaccine Development and Immunology/Vaccine Research Center, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| |
Collapse
|
8
|
Rotavirus Inner Capsid VP6 Acts as an Adjuvant in Formulations with Particulate Antigens Only. Vaccines (Basel) 2020; 8:vaccines8030365. [PMID: 32645976 PMCID: PMC7565724 DOI: 10.3390/vaccines8030365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Novel adjuvants present a concern for adverse effects, generating a need for alternatives. Rotavirus inner capsid VP6 protein could be considered a potential candidate, due to its ability to self-assemble into highly immunogenic nanospheres and nanotubes. These nanostructures exhibit immunostimulatory properties, which resemble those of traditional adjuvants, promoting the uptake and immunogenicity of the co-administered antigens. We have previously elucidated an adjuvant effect of VP6 on co-delivered norovirus and coxsackievirus B1 virus-like particles, increasing humoral and cellular responses and sparing the dose of co-delivered antigens. This study explored an immunostimulatory effect of VP6 nanospheres on smaller antigens, P particles formed by protruding domain of a norovirus capsid protein and a short peptide, extracellular matrix protein (M2e) of influenza A virus. VP6 exhibited a notable improving impact on immune responses induced by P particles in immunized mice, including systemic and mucosal antibody and T cell responses. The adjuvant effect of VP6 nanospheres was comparable to the effect of alum, except for induction of superior mucosal and T cell responses when P particles were co-administered with VP6. However, unlike alum, VP6 did not influence M2e-specific immune responses, suggesting that the adjuvant effect of VP6 is dependent on the particulate nature of the co-administered antigen.
Collapse
|
9
|
Tamminen K, Heinimäki S, Gröhn S, Blazevic V. Internalization and antigen presentation by mouse dendritic cells of rotavirus VP6 preparations differing in nanostructure. Mol Immunol 2020; 123:26-31. [DOI: 10.1016/j.molimm.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022]
|