1
|
Zhang W, Chen X, Nie R, Guo A, Ling Y, Zhang B, Zhang H. Single-cell transcriptomic analysis reveals regulative mechanisms of follicular selection and atresia in chicken granulosa cells. Food Res Int 2024; 198:115368. [PMID: 39643375 DOI: 10.1016/j.foodres.2024.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Eggs are an important food source for people. Follicle selection and atresia are the two directions of pre-hierarchical follicles that affect egg production in chickens. Granulosa cells (GCs), the vital somatic cells in follicles, determine the fate of follicles. In this study, single-cell RNA sequencing was performed on the GC layers from five follicular stages (small white follicles, atretic small white follicles, small yellow follicles, atretic small yellow follicles, and F6) to map the cellular differentiation trajectories and explore the follicle fate-determining genes. The results showed that GCs were genetically heterogeneous and could be divided into four subtypes, and the presence of GCs-Ⅲ with a steroid-producing capacity in unselected small follicles is a novel finding that differs from conventional wisdom. In addition, degenerated GCs were annotated for the first time, and GC degeneration was found to be significantly related to lipid metabolism disorders. Many candidate switch genes had been marked out, among which the overexpression of transforming growth factor-beta 2 (TGFB2) and insulin like growth factor binding protein 5 (IGFBP5) could inhibit the proliferation and differentiation of GCs and induce their degeneration. This study provided new insights into the regulatory mechanisms of follicle selection and atresia, which have significant value for improving egg production and prolonging the laying period of laying hens.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuejiao Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruixue Nie
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Axiu Guo
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Ling
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Taghipour-Shahbandi M, Zhandi M, Ansari-Pirsaraei Z, Yousefi AR. Exploration of age-related changes in reproductive parameters of female Japanese quail (Coturnix japonica). Poult Sci 2024; 103:104499. [PMID: 39500266 PMCID: PMC11570721 DOI: 10.1016/j.psj.2024.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The decline in reproductive efficiency during post-peak period of production in poultry species holds significant economic implications. This study aimed to investigate the productive and reproductive performance of Japanese quails across distinct production stages and the association between these parameters and some genes expression and histometric alterations within the reproductive system. A total of 180 quails from a commercial flock were selected at varying egg production stages, including young, mature, and old, with 45 female and 15 male quails allocated to each group. The quails were maintained for six weeks. During recording period, daily records of egg production and egg weight were recorded. Additionally, oviduct histometric and Follicle biometric measurements, along with mRNA transcript abundance assessments related to follicular selection and yolk accumulation, were conducted on the oviduct, ovary, and small yellow follicles at the end of the experimental period. The results revealed a decrease in egg production in the old group compared to the young and mature groups (P < 0.05); meanwhile, the old group had the highest egg weight, and F1 follicle weight (P < 0.05). Additionally, the number of prehierarchical follicles was lower in the mature and old groups compared to the young group (P < 0.05). The lowest oviduct length, primary and secondary fold height, and thickness of the isthmus and magnum were noted in the old group (P < 0.05). Fertility and hatchability were lower in the old group compared to the other groups (P < 0.05). The mRNA transcript abundance of anti-Mullerian hormone (AMH), was highest in the old group and lowest in the young group (P < 0.05), while the mRNA transcript abundance of bone morphogenetic protein 15 (BMP15) was higher in the mature group compared to the other groups (P < 0.05). Additionally, the young quails had the highest occludin (OCLN) mRNA transcript abundance compared to other groups (P < 0.05). Overall, the study findings indicate decreased production and reproductive performance, as well as reduced hatchling quality over the production period, attributed to a declining number of follicles, noncooperative gene expression related to follicle selection and yolk accumulation, and diminishing oviduct fold size.
Collapse
Affiliation(s)
- Maryam Taghipour-Shahbandi
- Department of Animal Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Zarbakht Ansari-Pirsaraei
- Department of Animal Science, Faculty of Animal Science and Fishery, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
3
|
Weston WC, Hales KH, Hales DB. Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Curr Issues Mol Biol 2024; 46:12322-12342. [PMID: 39590326 PMCID: PMC11592616 DOI: 10.3390/cimb46110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This review provides an integrative framework for understanding flaxseed (Linum utassitissimum) as an antimicrobial alternative for poultry production. We begin by familiarizing the reader with the global legislation of antibiotics in animal husbandry; highlighting gaps and current issues for Salmonella enterica (S. enterica) and Eimeria (coccidiosis-inducing). We then discuss the natural, symbiotic characteristics of the Galliformes order (chicken-like birds) and Linum (the flaxes). The key immunological themes in this review include: (i) flaxseed's regulation of innate and adaptive immunity in chickens, (ii) flaxseed's ability to accelerate chicken recovery from infection with S. enterica and Eimeria, and (iii) flaxseed's strengthening of immunity via vitamin B6 antagonism. Research indicates that whole flaxseed increases adaptive immune capacity by augmenting cecal Bacteroides and short-chain fatty acids while also attenuating the heterophil to lymphocyte ratio in chickens. Moreover, flaxseed accelerates chicken recovery from infection with Salmonella Enteritidis or Eimeria tenella; however, future work is needed to better understand (i) defatted flaxseed's superior performance against Eimeria species and (ii) Eimeria maxima's resilience against whole flaxseed. In the context of vitamin B6 antagonism, we propose that 15% whole flaxseed overcomes S. enterica's insult to estrogen synthesis by sustaining the activity of phosphatidylethanolamine methyltransferase (PEMT) in liver. We also propose that 10% defatted flaxseed (as a metformin homologue) strengthens chicken immunity by safeguarding gonadal physiology and by increasing plasma thymidine bioavailability. The concepts in this review can be used as a template for conducting advanced immunological studies in poultry science.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
4
|
Wang X, Yuan Q, Xiao Y, Cai X, Yang Z, Zeng W, Mi Y, Zhang C. Pterostilbene, a Resveratrol Derivative, Improves Ovary Function by Upregulating Antioxidant Defenses in the Aging Chickens via Increased SIRT1/Nrf2 Expression. Antioxidants (Basel) 2024; 13:935. [PMID: 39199181 PMCID: PMC11351833 DOI: 10.3390/antiox13080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is recognized as a prominent factor contributing to follicular atresia and ovarian aging, which leads to decreased laying performance in hens. Reducing oxidative stress can improve ovarian function and prolong the laying period in poultry. This study investigates the impact of Pterostilbene (PTS), a natural antioxidant, on ovarian oxidative stress in low-laying chickens. Thirty-six Hy-Line White laying chickens were evenly divided into four groups and fed diets containing varying doses of PTS for 15 consecutive days. The results showed that dietary supplementation with PTS significantly increased the laying rate, with the most effective group exhibiting a remarkable 42.7% increase. Furthermore, PTS significantly enhanced the antioxidant capacity of aging laying hens, as evidenced by increased levels of glutathione, glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in the ovaries, livers, and serum. Subsequent experiments revealed decreased expressions of Bax, Caspase-3, and γ-H2AX, along with an increased expression of BCL-2 in the ovaries and livers of laying hens. PTS supplementation also positively affects fat metabolism by reducing abdominal fat accumulation and promoting fat transfer from the liver to the ovary. To elucidate the mechanism underlying the effects of PTS on ovarian function, a series of in vitro experiments were conducted. These in vitro experiments revealed that PTS pretreatment restored the antioxidant capacity of D-galactose-induced small white follicles by upregulating SIRT1/Nrf2 expression. This protective effect was inhibited by EX-527, a specific inhibitor of SIRT1. These findings suggest that the natural antioxidant PTS has the potential to regulate cell apoptosis and fat metabolism in laying chickens by ameliorating oxidative stress, thereby enhancing laying performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (X.W.); (Q.Y.); (Y.X.); (X.C.); (Z.Y.); (W.Z.)
| |
Collapse
|
5
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
6
|
Wang M, Yang L, Sun G, Shao Y, Liu Y, Yang H, Wang Y, Zhang M, Shang Y, Gu X. Assessment of the Effect of Leonurine Hydrochloride in a Mouse Model of PCOS by Gene Expression Profiling. Genes (Basel) 2024; 15:507. [PMID: 38674441 PMCID: PMC11050333 DOI: 10.3390/genes15040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease commonly associated with metabolic disorders in females. Leonurine hydrochloride (Leo) plays an important role in regulating immunity, tumours, uterine smooth muscle, and ovarian function. However, the effect of Leo on PCOS has not been reported. Here, we used dehydroepiandrosterone to establish a mouse model of PCOS, and some mice were then treated with Leo by gavage. We found that Leo could improve the irregular oestros cycle of PCOS mice, reverse the significantly greater serum testosterone (T) and luteinising hormone (LH) levels, significantly reduce the follicle-stimulating hormone (FSH) level, and significantly increase the LH/FSH ratio of PCOS mice. Leo could also change the phenomenon of ovaries in PCOS mice presented with cystic follicular multiplication and a lacking corpus luteum. Transcriptome analysis identified 177 differentially expressed genes related to follicular development between the model and Leo groups. Notably, the cAMP signalling pathway, neuroactive ligand-receptor interactions, the calcium signalling pathway, the ovarian steroidogenesis pathway, and the Lhcgr, Star, Cyp11a, Hsd17b7, Camk2b, Calml4, and Phkg1 genes may be most related to improvements in hormone levels and the numbers of ovarian cystic follicles and corpora lutea in PCOS mice treated by Leo, which provides a reference for further study of the mechanism of Leo.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Li Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guojie Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yongbin Shao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yuran Liu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Huiying Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Mengyuan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Xinli Gu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| |
Collapse
|
7
|
Ju W, Zhao Y, Yu Y, Zhao S, Xiang S, Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne) 2024; 15:1361289. [PMID: 38694941 PMCID: PMC11061492 DOI: 10.3389/fendo.2024.1361289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.
Collapse
Affiliation(s)
- Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuewen Zhao
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yi Yu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Cheng B, Shi Y, Wu Q, Wang Y, Ma Y. Selenium Protects Follicular Granulosa Cells from Apoptosis Induced by Mercury Through Inhibition of ATF6/CHOP Pathway in Laying Hens. Biol Trace Elem Res 2023; 201:5368-5378. [PMID: 36746883 DOI: 10.1007/s12011-023-03589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
The purpose of this research was to explore the effect of selenium on mercury-mediated apoptosis of follicular granulosa cells in laying hens. Moreover, the ATF6/CHOP pathway was investigated to explore the mechanism in this progress. Hg, Se, and 4-phenyl butyric acid were used alone or in combination to treat the cells. Our results showed that the nuclear in cells became condensate after Hg exposure, while Se addition significantly alleviated this change. Hg exposure significantly induced the apoptosis and the reduction of mitochondrial membrane potential in cells (P < 0.05). Nevertheless, co-treatment of Se significantly inhibited these effects (P < 0.05). Additionally, Hg exposure dramatically elevated the gene expressions of Bax/Bcl-2 (P < 0.05), caspase-3 (P < 0.05), caspase-9 (P < 0.05), protein kinase RNA-like endoplasmic reticulum kinase (P < 0.05), activating transcription factor 6 (P < 0.05), C/EBP homologous protein (CHOP; P < 0.05), inositol-requiring enzyme 1α (P < 0.05), tumor necrosis factor-associated factor 2 (P < 0.05), activating transcription factor 6 (ATF6; P < 0.05), and apoptosis signal-regulating kinase 1 (P < 0.05) in cells, whereas Se addition avoided these changes. The exposure to Hg considerably boosted the expression of ATF6 and CHOP protein (P < 0.05), while Se addition significantly alleviated the above-mentioned enhancements (P < 0.05). In summary, Hg exposure induced apoptosis, which was considerably reduced alleviated by Se addition, which was linked to the ATF6/CHOP pathway in follicular granulosa cells in laying hens.
Collapse
Affiliation(s)
- Binyao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
9
|
Li Z, Liu Y, Tian Y, Li Q, Shi W, Zhang J, Zhang H, Tan Y, Yang S, Yang T, Huang X, Du Y. Human umbilical cord mesenchymal stem cell‑derived exosomes improve ovarian function in natural aging by inhibiting apoptosis. Int J Mol Med 2023; 52:94. [PMID: 37615174 PMCID: PMC10483927 DOI: 10.3892/ijmm.2023.5297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Prolonging the reproductive lifespan is beneficial for preserving the physical and psychological health of women. The transplantation of mesenchymal stem cell (MSC)‑derived exosomes (MSC‑Exos) has been reported to be a promising regenerative therapeutic strategy for restoring the function of aging ovaries. The present study thus evaluated the therapeutic efficacy of exosomes derived from human umbilical cord‑MSCs (hUCMSC‑Exos) in a mouse model of natural ovarian aging (NOA), and further investigated the role of exosomal microRNAs (miRNAs/miRs) in the mechanisms of this creative therapy. Specifically, following the administration of hUCMSC‑Exos in mice with NOA, ovarian function was found to improve, as indicated by the restoration of follicle numbers and hormone levels. These exosomes were found to exhibit the ability to inhibit PTEN expression and suppress apoptosis both in vivo and in vitro. Subsequently, miRNA sequencing of the exosomes was performed, following which bioinformatics analysis was used to identify the highly expressed miRNAs that are capable of targeting PTEN expression. Through high‑throughput sequencing and molecular analyses, miR‑21‑5p was found to be the highest in ranking in terms of expression, suggesting that hUCMSC‑Exos can preserve ovarian function by suppressing PTEN expression to inhibit apoptosis by delivering miR‑21‑5p. On the whole, the results of the present study suggest that the application of exosomes can be used to restore ovarian function in mice with NOA. These positive findings also suggest that the transplantation of exosomes derived from MSCs holds promise as an agent against ovarian aging.
Collapse
Affiliation(s)
- Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Yibin Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Wenxin Shi
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Huihui Zhang
- R&D Department, Shandong Qilu Cell Therapy Engineering Technology Co., Ltd
| | - Yi Tan
- R&D Department, Shandong Qilu Cell Therapy Engineering Technology Co., Ltd
- Institute of Immunotherapy, Shandong Yinfeng Life Science Research Institute, Jinan, Shandong 25000
| | - Shuangshuang Yang
- R&D Department, Shandong Qilu Cell Therapy Engineering Technology Co., Ltd
| | - Tao Yang
- Department of Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Yanfang Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| |
Collapse
|
10
|
Velazquez C, Herrero Y, Bianchi MS, Cohen DJ, Cuasnicu P, Prost K, Marinoni R, Pascuali N, Parborell F, Abramovich D. Beneficial effects of metformin on mice female fertility after a high-fat diet intake. Mol Cell Endocrinol 2023; 575:111995. [PMID: 37364632 DOI: 10.1016/j.mce.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.
Collapse
Affiliation(s)
- Candela Velazquez
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Yamila Herrero
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Débora Juana Cohen
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Cuasnicu
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Katherine Prost
- Hospital Interzonal General de Agudos Pedro Fiorito, sector de Endocrinología, Av. Manuel Belgrano 827, B1870 Avellaneda, Provincia de Buenos Aires, Argentina
| | - Rocío Marinoni
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina; Department of Pathology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, United States
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Cavalcante MB, Sampaio OGM, Câmara FEA, Schneider A, de Ávila BM, Prosczek J, Masternak MM, Campos AR. Ovarian aging in humans: potential strategies for extending reproductive lifespan. GeroScience 2023; 45:2121-2133. [PMID: 36913129 PMCID: PMC10651588 DOI: 10.1007/s11357-023-00768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian reserve is a term used to estimate the total number of immature follicles present in the ovaries. Between birth and menopause, there is a progressive decrease in the number of ovarian follicles. Ovarian aging is a continuous physiological phenomenon, with menopause being the clinical mark of the end of ovarian function. Genetics, measured as family history for age at the onset of menopause, is the main determinant. However, physical activity, diet, and lifestyle are important factors that can influence the age of menopause. The low estrogen levels after natural or premature menopause increased the risk for several diseases, resulting in increased mortality risk. Besides that, the decreasing ovarian reserve is associated to reduced fertility. In women with infertility undergoing in vitro fertilization, reduced markers of ovarian reserve, including antral follicular count and anti-Mullerian hormone, are the main indicators of reduced chances of becoming pregnant. Therefore, it becomes clear that the ovarian reserve has a central role in women's life, affecting fertility early in life and overall health later in life. Based on this, the ideal strategy for delaying ovarian aging should have the following characteristics: (1) be initiated in the presence of good ovarian reserve; (2) maintained for a long period; (3) have an action on the dynamics of primordial follicles, controlling the rate of activation and atresia; and (4) safe use in pre-conception, pregnancy, and lactation. In this review, we therefore discuss some of these strategies and its feasibility for preventing a decline in the ovarian reserve.
Collapse
Affiliation(s)
- Marcelo Borges Cavalcante
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil.
| | - Olga Goiana Martins Sampaio
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil
| | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | | | - Juliane Prosczek
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
12
|
Li N, Fan X, Liu L, Liu Y. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived extracellular vesicles on ovarian functions through the PI3K/Akt cascade in mice with premature ovarian failure. Eur J Histochem 2023; 67:3506. [PMID: 37503653 PMCID: PMC10476539 DOI: 10.4081/ejh.2023.3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/28/2022] [Indexed: 07/29/2023] Open
Abstract
Premature ovarian failure (POF) mainly refers to ovarian dysfunction in females younger than forty. Mesenchymal stem cells (MSCs) are considered an increasingly promising therapy for POF. This study intended to uncover the therapeutic effects of human umbilical cord MSC-derived extracellular vesicles (hucMSCEVs) on POF. hucMSCs were identified by observing morphology and examining differentiation capabilities. EVs were extracted from hucMSCs and later identified utilizing nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. POF mouse models were established by injecting D-galactose (Dgal). The estrous cycles were assessed through vaginal cytology, and serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-mullerian hormone (AMH), estradiol (E2), and progesterone (P) were measured by ELISA. The human ovarian granulosa cell line KGN was used for in vitro experiments. The uptake of hucMSC-EVs by KGN cells was detected. After D-gal treatment, cell proliferation and apoptosis were assessed via CCK-8 assay and flow cytometry. The PI3K/Akt pathway-related proteins were determined by Western blotting. Our results revealed that POF mice had prolonged estrous cycles, increased FSH and LH levels, and decreased AMH, E2, and P levels. Treatment with hucMSC-EVs partially counteracted the above changes. D-gal treatment reduced proliferation and raised apoptosis in KGN cells, while hucMSC-EV treatment annulled the changes. D-gal-treated cells exhibited downregulated p-PI3K/PI3K and p-Akt/Akt levels, while hucMSC-EVs activated the PI3K/Akt pathway. LY294002 suppressed the roles of hucMSC-EVs in promoting KGN cell proliferation and lowering apoptosis. Collectively, hucMSC-EVs facilitate proliferation and suppress apoptosis of ovarian granulosa cells by activating the PI3K/Akt pathway, thereby alleviating POF.
Collapse
Affiliation(s)
- Nan Li
- Department of Gynecological Ward, The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou.
| | - Xue Fan
- Department of Gynecological Ward, The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou.
| | - Lihong Liu
- Department of Gynecological Ward, The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou.
| | - Yanbing Liu
- Department of Gynecological Ward, The Third Affiliated Hospital, Jinzhou Medical University, Jinzhou.
| |
Collapse
|
13
|
Liao C, Cui J, Lei J, Guo Y, Zhang B. Effects of Bacillus subtilis Natto NB205 and Its Mutant NBMK308 on Egg Quality in Aging Laying Hens. Life (Basel) 2023; 13:1109. [PMID: 37240754 PMCID: PMC10223476 DOI: 10.3390/life13051109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
In aging laying hens, reproductive changes reduce egg quality. Bacillus subtilis natto (B. subtilis) is a versatile bacterium with high vitamin K2 content, providing health benefits for animals and humans. This study investigated the effect of B. subtilis natto NB205 and its mutant NBMK308 on egg quality in aging laying hens. Results showed that NB205 and NBMK308 supplementation significantly improved albumen height (p < 0.001), Haugh units (p < 0.05), and eggshell thickness (p < 0.001) compared to the control group. Supplementation also increased ovalbumin expression, regulated tight junction (TJ) proteins, reduced pro-inflammatory cytokine levels, and improved the health and productivity of aging laying hens by regulating key apoptosis-related genes in the magnum part of the oviduct. There were differences in the expression of vitamin K-dependent proteins (VKDPs) in the magnum between NB205 and NBMK308, but no significant differences in the improvement of egg quality. Supplementation with NB205 and NBMK308 can improve egg quality in aging laying hens.
Collapse
Affiliation(s)
| | | | | | | | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Xu W, Ayu Y, Wang J, Zeng Q, Bai S, Ding X, Lv L, Peng H, Xuan Y, Zhang K. Effects of dietary theabrownins on production performance, egg quality and ovarian function of laying hens with different ages. Poult Sci 2023; 102:102545. [PMID: 37019071 PMCID: PMC10106962 DOI: 10.1016/j.psj.2023.102545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/25/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
This experiment was conducted to investigate the effect of theabrownins (TB) on production performance, egg quality, and ovarian function of laying hens at different ages. A total of 240 Lohmann laying hens were assigned in a 2 × 2 factorial design, which encompassed 2 layers ages (47-wk-old and 67-wk-old) and 2 dietary levels of TB (0 and 100 mg/kg) for 12 wk. Results showed that older layers had lower laying rate, egg mass, and higher feed-to-egg ratio (F/E), egg weight and unqualified egg rate than the younger layers (P(AGE) < 0.01) during all the experimental period. The effect of TB was found to increase egg laying rate and feed efficiency during 5 to 8 wk, 9 to 12 wk and the overall phases and decreased unqualified egg rate during 1 to 4 wk and the overall phases (P(TB) ≤ 0.05). The eggshell quality (strength, thickness), albumen quality (albumen height and Haugh unit) of eggs from older layers were decreased during overall phases (P(AGE) ≤ 0.05). TB increased eggshell strength during all phases and enhanced eggshell thickness at the end of wk 4 and 8 and increased albumen height and Haugh unit at the end of wk 8 and 12 of older layers (P(Interaction) ≤ 0.05). In addition, TB also increased egg quality of older layers after 14 d storage. A decrease in the serum concentration of progesterone, melatonin, follicle stimulating hormone, estradiol was observed in the older compared to the younger ones (P(AGE) < 0.05), while the increase in serum concentration of progesterone, melatonin, anti-Müllerian hormone (AMH) were more emphasized when older hens received TB supplemented diet (P(Interaction) < 0.05). The older layer demonstrated lower the concentration of glutathione (GSH) (P(AGE) < 0.05). And the activity of glutathione-s-transferase (GST) was significantly decreased in layers under 67-wk-old (P(AGE) <0.05). The increase in concentration of GSH and the decrease in concentration of malondialdehyde (MDA) were more pronounced when TB were supplemented in 67-wk-old layers (P(Interaction) ≤ 0.05). Layers at 67-wk-old had lower mRNA expression of Heme oxygenase 1 (HO-1) (P(AGE) < 0.01) in ovary. Dietary TB supplementation upregulated mRNA gene expression of HO-1, Nuclear factor E2 related factor 2 (Nrf2), Quinone oxidoreductase 1 (NQO1) (P(TB) < 0.01). Dietary TB upregulated mRNA expression of ovarian reproductive hormone receptor (estrogen receptor 1 [ESR1] and steroidogenic acute regulatory protein 1 [StAR1]]; P(TB) < 0.01). The results suggest feeding TB (100 mg/kg) could improve the egg production rate, egg quality, and antioxidant capacity of the ovary. Moreover, the effect of TB was more pronounced in older layers (64-wk-old vs. 47-wk-old).
Collapse
Affiliation(s)
- Wenwen Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiang Ayu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Lv
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
15
|
Ma Y, Shi Y, Wang Y, Wu Q, Cheng B, Li Y, Wang Z, Chai X, Ren A, Li G. Role of Endoplasmic Reticulum Stress in Nano-Selenium Alleviating Prehierarchical Follicular Atresia Induced by Mercury in Laying Hens. Biol Trace Elem Res 2022; 200:5205-5217. [PMID: 35094234 DOI: 10.1007/s12011-021-03084-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
This study investigated that the effect of nano-selenium (nano-Se) addition preventing prehierarchical follicular atresia induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se in vitro. The results revealed that Hg could significantly reduce laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition partially reversed the reductions. Besides, Hg significantly induced the deposition of Hg in prehierarchical follicles (P < 0.05) and prehierarchical follicular atresia (P < 0.05), whereas nano-Se addition could alleviate these toxicities in vitro. In addition, Hg exposure could significantly reduce cell viability (P < 0.05) and induce pyknotic nucleus in prehierarchical granulosa cells, while nano-Se addition reversed these effects. The levels of follicle-stimulating hormone (P < 0.05), luteinizing hormone (P < 0.05), progesterone (P < 0.05), and estradiol (P < 0.05) were significantly decreased after Hg exposure in vitro. However, nano-Se addition reversed the decreases of sex hormone levels. Furthermore, Hg exposure significantly increased the gene expressions of CHOP (P < 0.05), PERK (P < 0.05), ATF4 (P < 0.05), ATF6 (P < 0.05), ASK1 (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), caspase-9 (P < 0.05), caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se addition reversed these increases of gene expressions in vitro. In summary, this study provides that Hg can induce prehierarchical follicular atresia, whereas nano-Se addition can ameliorate it, and elucidates an important role of ER stress in nano-Se alleviating prehierarchical follicular atresia induced by Hg in laying hens.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Binyao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yumeng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhuosi Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaoying Chai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Ao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
16
|
Ma Y, Cheng B, Li Y, Wu Q, Wang Y, Chai X, Ren A. Protective effect of nano-selenium on mercury-induced prehierarchical follicular atresia in laying hens. Poult Sci 2022; 101:102190. [PMID: 36252503 PMCID: PMC9579407 DOI: 10.1016/j.psj.2022.102190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
This study investigated the effect of nano-selenium (nano-Se) in protecting laying hens from mercury (Hg)-induced prehierarchical follicular atresia. Furthermore, the endoplasmic reticulum stress (ERS) was explored to reveal the molecular mechanism. In vivo, 720 Hyline-Brown laying hens were treated with Hg and nano-Se alone or in combination. In vitro, the prehierarchical follicles were treated with Hg, nano-Se and 4-phenyl butyric acid (4-PBA) alone or in combination (Control, 25 μM Hg group, 10 μM nano-Se group, 20 μM nano-Se group, 25 μM Hg + 10 μM nano-Se group, 25 μM Hg + 20 μM nano-Se group, 25 μM Hg + 4-PBA group, and 25 μM Hg + 20 μM nano-Se + 4-PBA group). The GCs were treated with Hg and nano-Se alone or in combination (Control, 15 μM Hg group, 6 μM nano-Se group, 12 μM nano-Se group, 15 μM Hg + 6 μM nano-Se group, 15 μM Hg + 12 μM nano-Se group). The results revealed that dietary Hg significantly reduced laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition prevented these reductions (P < 0.05). Hg exposure significantly induced the accumulation of Hg in PHFs (P < 0.05), prehierarchical follicular atresia (P < 0.05) and apoptosis in PHFs, whereas nano-Se addition significantly prevented these effects (P < 0.05). The levels of sex hormones (P < 0.05) were significantly decreased after Hg exposure in vivo and in vitro, while nano-Se addition prevented the reductions. Furthermore, the RNA-Seq results showed that the key factors of the ERS presented differential expression, including C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) in GCs. Hg exposure significantly increased the key gene expression of endoplasmic reticulum stress in GCs, whereas nano-Se addition prevented the induction of expression of these genes. In addition, the protein levels of PERK, inositol requiring protein 1α (IRE1α) and ATF6 were significantly increased, whereas nano-Se addition prevented the enhancements of protein expression in GCs. In conclusion, this study shows that Hg exposure can reduce induce prehierarchical follicular atresia, whereas nano-Se can prevent these effects. Our results also elucidate a key role of ERS in these protective effects of nano-Se in laying hens.
Collapse
|
17
|
Li H, Hou Y, Chen J, Wu H, Huang L, Hu J, Zhang Z, Lu Y, Liu X. Dietary naringin supplementation on laying performance and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult Sci 2022; 101:102023. [PMID: 35901650 PMCID: PMC9334325 DOI: 10.1016/j.psj.2022.102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, the effects of 3 graded dietary levels (0.1%, 0.2%, and 0.4%) of naringin were studied in Three-Yellow breeder hens during the late laying period (55-62 wk). A total of 480 Three-Yellow breeder hens (54-wk-old) were randomly divided into 4 groups (6 replicates of 20 hens): basal diet group (C), and basal diets supplemented with 0.1%, 0.2%, and 0.4% of naringin (N1, N2, and N3), respectively. Results showed that dietary supplementation with 0.1%, 0.2%, and 0.4% of naringin for 8 wk increased the laying rate and egg mass, enhanced egg yolk color, and decreased the feed egg ratio (P < 0.05). Meanwhile, compared with hens in C group, there were more preovulatory follicles and higher ovarian index as well as an enhanced ovarian somatic cell proliferation in hens of N2 and N3 groups (P < 0.05). With 0.2% and 0.4% naringin, glutathione concentration, the activity of catalase and total superoxide dismutase, and the total antioxidant capacity of ovarian tissues and serum increased (P < 0.05), while the contents of malondialdehyde and hydrogen peroxide decreased (P < 0.05). Moreover, compared to C group, the transcription levels of antioxidant genes in ovarian tissues increased in hens from N2 and N3 groups (P < 0.05). In conclusion, supplementation with 0.2% and 0.4% naringin both could improve the laying rate, ovarian and serum antioxidant capacity of Three-Yellow breeder hens during the late laying period.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiming Chen
- Guangxi Shenhuang Breeding Group Co. Ltd., Yulin, 537000, China
| | - Hanxiao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zongyao Zhang
- Guangxi Shenhuang Breeding Group Co. Ltd., Yulin, 537000, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
18
|
Wei X, Zheng L, Tian Y, Wang H, Su Y, Feng G, Wang C, Lu Z. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling. J Mol Cell Biol 2022; 14:6674768. [PMID: 36002018 PMCID: PMC9764209 DOI: 10.1093/jmcb/mjac048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 08/17/2022] [Indexed: 01/14/2023] Open
Abstract
In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Lanping Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Youqiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao Wang
- Correspondence to: Chao Wang, E-mail:
| | | |
Collapse
|
19
|
Huang L, Hou Y, Li H, Wu H, Hu J, Lu Y, Liu X. Endoplasmic reticulum stress is involved in small white follicular atresia in chicken ovaries. Theriogenology 2022; 184:140-152. [DOI: 10.1016/j.theriogenology.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/26/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
|
20
|
Zhou S, Zhao A, Wu Y, Bao T, Mi Y, Zhang C. Protective Effect of Follicle-Stimulating Hormone on DNA Damage of Chicken Follicular Granulosa Cells by Inhibiting CHK2/p53. Cells 2022; 11:1291. [PMID: 35455970 PMCID: PMC9031212 DOI: 10.3390/cells11081291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
The increase in follicular atresia and the decrease in the fecundity of laying hens occur with the aging process. Therefore, the key measure for maintaining high laying performance is to alleviate follicular atresia in the aging poultry. Follicle-stimulating hormone (FSH), as an important pituitary hormone to promote follicle development and maturation, plays an important role in preventing reproductive aging in diverse animals. In this study, the physiological state of the prehierarchical small white follicles (SWFs) and atretic SWFs (ASWFs) were compared, followed by an exploration of the possible capacity of FSH to delay ASWFs' progression in the hens. The results showed that the DNA damage within follicles increased with aging, along with Golgi complex disintegration, cell cycle arrest, increased apoptosis and autophagy in the ASWFs. Subsequently, the ACNU-induced follicular atresia model was established to evaluate the enhancing capacity of FSH on increasing cell proliferation and attenuating apoptosis in ASWFs. FSH inhibited DNA damage and promoted DNA repair by regulating the CHK2/p53 pathway. Furthermore, FSH inhibited CHK2/p53, thus, suppressing the disintegration of the Golgi complex, cell cycle arrest, and increased autophagy in the atretic follicles. Moreover, these effects from FSH treatment in ACNU-induced granulosa cells were similar to the treatment by a DNA repair agent AV-153. These results indicate that FSH protects aging-resulted DNA damage in granulosa cells by inhibiting CHK2/p53 in chicken prehierarchical follicles.
Collapse
Affiliation(s)
| | | | | | | | | | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.Z.); (Y.W.); (T.B.); (Y.M.)
| |
Collapse
|
21
|
Bao T, Yao J, Zhou S, Ma Y, Dong J, Zhang C, Mi Y. Naringin prevents follicular atresia by inhibiting oxidative stress in the aging chicken. Poult Sci 2022; 101:101891. [PMID: 35561460 PMCID: PMC9111992 DOI: 10.1016/j.psj.2022.101891] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is an essential inducement in follicle atresia and ovarian aging, resulting in decline in female fecundity. As a natural and effective antioxidant, naringin was investigated to relieve chicken follicle atresia and ovarian aging. First, the cultured small white follicles (SWFs) from D280 hens were pretreated with 0.5 mM naringin for 24 h and then treated with H2O2 for 72 h to establish the oxidative stress model to evaluate the putative attenuating effects of naringin on follicle atresia. Meanwhile, SWFs of D580 hens were treated with naringin for 72 h to examine the attenuating effect on the physiological aging of SWFs. Finally, each hen was fed with naringin at a dose of 50 mg/kg every day to explore the effect of naringin on follicular development and laying performance in D580 hens. Results showed that naringin could rescue the antioxidant capacity decline by increasing the antioxidant-related indexes and expression of antioxidation-associated genes. It could also maintain the homeostasis of SWFs in both the H2O2-induced group and natural physiological aging group. In addition, naringin increased estrogen levels, capacity of antioxidants, and the laying performance in aged laying chickens. The thickness and strength of the eggshell were increased in the naringin-treated group as well. In conclusion, this study showed that naringin is capable of relieving SWFs atresia that was induced by oxidative stress and maintaining the laying performance of aging low-yielding hens by reducing oxidative stress.
Collapse
Affiliation(s)
- Tingting Bao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jinwei Yao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yanfen Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Juan Dong
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
22
|
Zhou S, Zhao A, Wu Y, Mi Y, Zhang C. Protective Effect of Grape Seed Proanthocyanidins on Oxidative Damage of Chicken Follicular Granulosa Cells by Inhibiting FoxO1-Mediated Autophagy. Front Cell Dev Biol 2022; 10:762228. [PMID: 35242756 PMCID: PMC8886245 DOI: 10.3389/fcell.2022.762228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
A significant decrease in poultry egg production occurs due to ovarian aging and autophagy is one of the important factors of ovarian aging that is induced predominantly by oxidative stress. Increasing evidence showed potential roles of plant-derived grape seed proanthocyanidin (GSPs) in protecting ovarian granulosa cells (GCs) from oxidative damage, although the underlying mechanism is still unclear. Here we investigated the possible functions of autophagy involved in the preventive effect of GSPs on oxidative stress in the GCs of ovarian hierarchical follicles of laying chickens. The results showed that increased autophagy was observed in the aging hens (580-day-old, D580) compared with the peak-lay hens (D280). Treatment of GSPs significantly restored the elevated autophagy and decreased viability of cultured D280 chicken GCs that were elicited by hydrogen peroxide. GSPs also suppressed the increased autophagy in the natural aging hens. Similar to the effect of GSPs on GC viability, inhibition of autophagy also showed a protective effect on the decreased viability of GCs under oxidative damage. However, GSPs were not able to provide further protection in GCs that were pretreated with 3-methyladenine (an autophagy inhibitor). In addition to its promoting action on antioxidant capacity, treatment with GSPs increased survival of GCs from autophagy that was caused by oxidative stress through the FoxO1-related pathway. Inhibition of FoxO1 or activation of PI3K-Akt pathway by GSPs increased the confrontation of GCs to oxidative damage and decreased autophagy in GCs. In addition, activation of the SIRT1 signal inhibited the GCs autophagy that was caused by oxidative stress via GSPs-induced deacetylation of FoxO1. These results revealed a new mechanism of GSPs against oxidative stress of GCs via inhibiting FoxO1, which was probably a possible target for alleviating ovarian aging in laying poultry.
Collapse
Affiliation(s)
- Shuo Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Zhang T, Ning Z, Chen Y, Wen J, Jia Y, Wang L, Lv X, Yang W, Qu C, Li H, Wang H, Qu L. Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes (Basel) 2021; 13:genes13010089. [PMID: 35052428 PMCID: PMC8774386 DOI: 10.3390/genes13010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.
Collapse
Affiliation(s)
- Tongyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yu Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Liang Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Xueze Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Weifang Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang 236037, China;
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Huie Wang
- College of Animal Science, Tarim University, Alar 843300, China;
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
- Correspondence:
| |
Collapse
|