1
|
Ong CB, Annuar MSM. Potentialities of Tannase-Treated Green Tea Extract in Nutraceutical and Therapeutic Applications. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04946-y. [PMID: 38713339 DOI: 10.1007/s12010-024-04946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Green tea has garnered widespread interest in the past decades due to its content of health-beneficial polyphenols and catechins, besides reportedly exhibiting activities for the prevention, and possibly treatment, of many modern-life-associated afflictions. Hence, the functional food potential of health-beneficial beverages such as green tea is widely and commercially promoted. Biotransformation of green tea extract using enzymes such as tannase ostensibly enhances its beneficial well-being properties and disease-preventing functionalities. The tannase-treated green tea catechins may exhibit enhanced, amongst others, antioxidant, anti-tumour, anti-wrinkle, anti-inflammatory, anti-obesity and anti-sarcopenia properties compared to native green tea extract. Nonetheless, the health benefits and therapeutic and toxicological effects associated with these compounds, before and after tannase treatment, present a scientific gap for detailed studies. Accordingly, the review surveys the literature from the late twentieth century until the year 2023 related to the aforementioned important aspects.
Collapse
Affiliation(s)
- Chong-Boon Ong
- School of Science and Psychology, Faculty of Arts and Science, International University of Malaya-Wales, 50480, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
2
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
German IJS, Pomini KT, Andreo JC, Shindo JVTC, de Castro MVM, Detregiachi CRP, Araújo AC, Guiguer EL, Fornari Laurindo L, Bueno PCDS, de Souza MDSS, Gabaldi M, Barbalho SM, Shinohara AL. New Trends to Treat Muscular Atrophy: A Systematic Review of Epicatechin. Nutrients 2024; 16:326. [PMID: 38276564 PMCID: PMC10818576 DOI: 10.3390/nu16020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Marcia Gabaldi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| |
Collapse
|
4
|
Kim J, Lee JY, Kim CY. A Comprehensive Review of Pathological Mechanisms and Natural Dietary Ingredients for the Management and Prevention of Sarcopenia. Nutrients 2023; 15:nu15112625. [PMID: 37299588 DOI: 10.3390/nu15112625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is characterized by an age-related loss of skeletal muscle mass and function and has been recognized as a clinical disease by the World Health Organization since 2016. Substantial evidence has suggested that dietary modification can be a feasible tool to combat sarcopenia. Among various natural dietary ingredients, the present study focused on botanical and marine extracts, phytochemicals, and probiotics. Aims of this review were (1) to provide basic concepts including the definition, diagnosis, prevalence, and adverse effects of sarcopenia, (2) to describe possible pathological mechanisms including protein homeostasis imbalance, inflammation, mitochondrial dysfunction, and satellite cells dysfunction, and (3) to analyze recent experimental studies reporting potential biological functions against sarcopenia. A recent literature review for dietary ingredients demonstrated that protein homeostasis is maintained via an increase in the PI3K/Akt pathway and/or a decrease in the ubiquitin-proteasome system. Regulation of inflammation has primarily targeted inhibition of NF-κB signaling. Elevated Pgc-1α or Pax7 expression reverses mitochondrial or satellite cell dysfunction. This review provides the current knowledge on dietary components with the potential to assist sarcopenia prevention and/or treatment. Further in-depth studies are required to elucidate the role of and develop various dietary materials for healthier aging, particularly concerning muscle health.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
5
|
Seo H, Lee SH, Park Y, Lee HS, Hong JS, Lim CY, Kim DH, Park SS, Suh HJ, Hong KB. (-)-Epicatechin-Enriched Extract from Camellia sinensis Improves Regulation of Muscle Mass and Function: Results from a Randomized Controlled Trial. Antioxidants (Basel) 2021; 10:1026. [PMID: 34202133 PMCID: PMC8300738 DOI: 10.3390/antiox10071026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Loss of skeletal muscle mass and function with age represents an important source of frailty and functional decline in the elderly. Antioxidants from botanical extracts have been shown to enhance the development, mass, and strength of skeletal muscle by influencing age-related cellular and molecular processes. Tannase-treated green tea extract contains high levels of the antioxidants (-)-epicatechin (EC) and gallic acid that may have therapeutic benefits for age-related muscle decline. The aim of this study was to investigate the effect of tannase-treated green tea extract on various muscle-related parameters, without concomitant exercise, in a single-center, randomized, double-blind, placebo-controlled study. Administration of tannase-treated green tea extract (600 mg/day) for 12 weeks significantly increased isokinetic flexor muscle and handgrip strength in the treatment group compared with those in the placebo (control) group. In addition, the control group showed a significant decrease in arm muscle mass after 12 weeks, whereas no significant change was observed in the treatment group. Blood serum levels of follistatin, myostatin, high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-6, IL-8, insulin-like growth factor-1 (IGF-1), and cortisol were analyzed, and the decrease in myostatin resulting from the administration of tannase-treated green tea extract was found to be related to the change in muscle mass and strength. In summary, oral administration of tannase-treated green tea extract containing antioxidants without concomitant exercise can improve muscle mass and strength and may have therapeutic benefits in age-related muscle function decline.
Collapse
Affiliation(s)
- Hyeyeong Seo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea;
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea; (S.-H.L.); (Y.P.)
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea; (S.-H.L.); (Y.P.)
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Jeong Sup Hong
- Animal Center and Preclinical Evaluation Research Institute, Yonam College, Cheonan 31005, Korea;
| | - Cho Young Lim
- R&D Center, BTC Corporation, Ansan 15588, Korea; (C.Y.L.); (D.H.K.)
| | - Dong Hyeon Kim
- R&D Center, BTC Corporation, Ansan 15588, Korea; (C.Y.L.); (D.H.K.)
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea;
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea;
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea;
| |
Collapse
|
6
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|
7
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
8
|
Impacts of Green Tea on Joint and Skeletal Muscle Health: Prospects of Translational Nutrition. Antioxidants (Basel) 2020; 9:antiox9111050. [PMID: 33126483 PMCID: PMC7692648 DOI: 10.3390/antiox9111050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis and sarcopenia are two major joint and skeletal muscle diseases prevalent during aging. Osteoarthritis is a multifactorial progressive degenerative and inflammatory disorder of articular cartilage. Cartilage protection and pain management are the two most important strategies in the management of osteoarthritis. Sarcopenia, a condition of loss of muscle mass and strength, is associated with impaired neuromuscular innervation, the transition of skeletal muscle fiber type, and reduced muscle regenerative capacity. Management of sarcopenia requires addressing both skeletal muscle quantity and quality. Emerging evidence suggests that green tea catechins play an important role in maintaining healthy joints and skeletal muscle. This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.
Collapse
|