1
|
Liu C, Chen FS. Effects of Pretreatment on Stability of Peanut Oil Bodies and Functional Characteristics of Proteins Extracted by Aqueous Enzymatic Method. J Oleo Sci 2024; 73:201-213. [PMID: 38311410 DOI: 10.5650/jos.ess23128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Effects of dry and wet grind on peanut oil and protein yield, oil bodies (OBs) stability, fatty acid composition, protein composition and functional characteristics were systematically analyzed. Results showed that peanut oil and protein yields reached highest at dry grind 90 s (92.56% and 83.05%, respectively), while peanut oil and protein yields were 94.58% and 85.36%, respectively, at wet grind 120 s. Peanut oil and protein yields by wet grind was 2.18% and 2.78% higher than that of dry grind, respectively. Surface protein concentration (Г) and absolute value of zeta potential of OBs extracted by wet grind (WOBs) were 11.53 mg/m 2 and 18.51 mV, respectively, which were higher than OBs extracted by dry grind (DOBs), indicating stability of WOBs was higher than DOBs. Relative contents of oleic acid and linoleic acid in peanut oil, essential and hydrophobic amino acids in protein extracted by wet grind were higher than dry grind. There was little difference in protein composition between wet and dry grind, but thermal denaturation degree of protein obtained by wet grind was lower than dry grind. Solubility, oil retention, emulsion stability, foaming and foam stability of protein obtained by wet grind were better than dry grind. Results from this study provided theoretical basis for grind pretreatment selection of aqueous enzymatic method.
Collapse
Affiliation(s)
- Chen Liu
- College of Biology and Food, Shangqiu Normal University
- College of Food Science and Engineering, Henan University of Technology
| | - Fu-Sheng Chen
- College of Food Science and Engineering, Henan University of Technology
| |
Collapse
|
2
|
Kaur G, Kaur N, Wadhwa R, Tushir S, Yadav DN. Techno-functional attributes of oilseed proteins: influence of extraction and modification techniques. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 38153305 DOI: 10.1080/10408398.2023.2295434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Plant-based protein isolates and concentrates are nowadays becoming popular due to their nutritional, functional as well as religious concerns. Among plant proteins, oilseeds, a vital source of valuable proteins, are continuously being explored for producing protein isolates/concentrates. This article delineates the overview of conventional as well as novel methods for the extraction of protein and their potential impact on its hydration, surface properties, and rheological characteristics. Moreover, proteins undergo several modifications using physical, chemical, and biological techniques to enhance their functionality by altering their microstructure and physical performance. The modified proteins hold a pronounced scope in novel food formulations. An overview of these protein modification approaches and their effects on the functional properties of proteins have also been presented in this review.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Navjot Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Ritika Wadhwa
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Surya Tushir
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Deep Narayan Yadav
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| |
Collapse
|
3
|
Zhang Y, Sun S. Tiger nut ( Cyperus esculentus L.) oil: A review of bioactive compounds, extraction technologies, potential hazards and applications. Food Chem X 2023; 19:100868. [PMID: 37780245 PMCID: PMC10534246 DOI: 10.1016/j.fochx.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Tiger nut is a tuber of a plant native in the Mediterranean coastal countries, which is of great interest in food industry due to its richness in carbohydrates, lipids, starches, minerals, etc. Recent studies have focused on the analysis of the phytochemical composition of tiger nut, including six essential nutrients, polyphenols, and the extraction of proteins, starches, and phenolic compounds from the by-products of tiger nut milk 'horchata'. Few works were focused on the possibility of using tiger nut oil, a nutritious oil comparable to olive oil, as an edible oil. Therefore, this review discussed some extraction technologies of tiger nut oil, and their effects on the properties of oil, such as bioactive compounds, oxidative stability and potential hazards. The information on the emerging applications of tiger nut oil was summarized and an outlook on the utilization of tiger nut oil by-products were also reviewed.
Collapse
Affiliation(s)
- Yiming Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | | |
Collapse
|
4
|
Shi Q, Yang Z, Fan R, Chu J, Fang C, Zhang Y, Shi W, Zhang Y. Isolation, Characterization, and Antioxidant Activity of Melanin from Auricularia auricula (Agaricomycetes). Int J Med Mushrooms 2023; 25:55-73. [PMID: 37522533 DOI: 10.1615/intjmedmushrooms.2023048271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The cell wall of Auricularia auricula fruit bodies is extremely tough, making it difficult to dissolve the melanin using the traditional preparation method. To investigate the efficient preparation of melanin and its resistance to oxidative stress, this paper first used ultrasound-assisted alkaline cellulase to optimize the optimal wall-breaking parameters through a Box-Behnken design based on a single-factor experiment. After optimization, the yield of melanin from A. auricula reached 3.201 ± 0.018%. Then, different types and different proportions of deep eutectic solvents (DES) were used for further extraction. When choline chloride and urea were selected and the ratio was 1:2, the melanin yield was up to 25.99% ± 2.36%. Scanning electron microscope (SEM) images showed that the melanin was amorphous mass with no crystal structure. X-ray photoelectron spectroscopy (XPS) analysis revealed that the melanin was mainly composed of C (5.38%), O (15.69%) and N (30.29%), as was the typical composition of eumelanin. The melanin had a concentration-dependent relationship with both ABTS+ and hydroxyl radical scavenging ability; at the concentration of 0.5 mg/mL, it significantly prolonged Caenorhabditis elegans survival under hydrogen peroxide and methyl viologen stress and increased the glutathione level and enzyme (total superoxide dismutase and catalase) activities in vivo compared with the negative control (P < 0.05), indicating that the melanin enhances oxidative stress resistance in C. elegans.
Collapse
Affiliation(s)
- Qianwen Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Zeen Yang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Renhui Fan
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Jialei Chu
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Chenlu Fang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Yusi Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Wenting Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, P.R. China
| |
Collapse
|
5
|
Jiamphun S, Chaiyana W. Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction. Molecules 2022; 27:molecules27103317. [PMID: 35630792 PMCID: PMC9143893 DOI: 10.3390/molecules27103317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
In this research, we aimed to compare the biological activities related to cosmeceutical applications of glutinous rice husk extracted by aqueous enzymatic extraction (AEE) and conventional solvent extraction. Cellulase enzymes were used to assist the extraction process. The vanillic and ferulic acid contents of each extract were investigated by high-performance liquid chromatography, and their antioxidant and anti-aging activities were investigated by spectrophotometric methods. The irritation effects of each extract were investigated by the hen’s egg test on chorioallantoic membrane. The rice husk extract from AEE using 0.5% w/w of cellulase (CE0.5) contained the significantly highest content of vanillic and ferulic acid (p < 0.05), which were responsible for its biological activities. CE0.5 was the most potent antioxidant via radical scavenging activities, and possessed the most potent anti-skin wrinkle effect via collagenase inhibition. Aside from the superior biological activities, the rice husk extracts from AEE were safer than those from solvent extraction, even when 95% v/v ethanol was used. Therefore, AEE is suggested as a green extraction method that can be used instead of the traditional solvent extraction technique given its higher yield and high quality of bioactive compounds. Additionally, CE0.5 is proposed as a potential source of natural antioxidants and anti-aging properties for further development of anti-wrinkle products.
Collapse
Affiliation(s)
- Sudarat Jiamphun
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wantida Chaiyana
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-944343
| |
Collapse
|
6
|
Niu R, Chen F, Liu C, Duan X. Composition and Rheological Properties of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J Oleo Sci 2021; 70:375-383. [PMID: 33583919 DOI: 10.5650/jos.ess20247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the relationship between the composition and rheological properties of peanut oil bodies from aqueous enzymatic extraction was evaluated. Aqueous enzymatic extraction using a combination of cellulase and pectinase at a 1:1 ratio effectively destroyed the structure of the cell wall and resulted in the maximum oil body yield of 90.7%. The microstructure and interfacial membrane composition of the peanut oil bodies were observed by confocal laser scanning microscopy. The oil bodies contained three inherent proteins (oleosin, caleosin, and steroleosin) along with two adsorbed foreign proteins (arachin and lipoxygenase). Five phospholipids were detected using 31P nuclear magnetic resonance spectroscopy. Among them, phosphatidylcholine, which plays a major role in the stability of oil bodies, was the most abundant. The measured rheological properties indicated that the oil bodies were a typical elastic system. Elevated temperature and high-speed shear destroyed the binding between proteins and phospholipids, reducing the oil body stability. The findings will facilitate the commercial application of peanut oil bodies by improving the extraction rate of peanut oil bodies and clarifying their stabilization mechanism.Practical Application: This paper studies the enzymatic extraction, composition and rheological properties of peanut oil bodies. It provides a theoretical basis for the large-scale application of peanut oil bodies in the food and cosmetic industries. It is beneficial to improve the application value of peanut resources.
Collapse
Affiliation(s)
- Ruihao Niu
- College of Food Science and Technology, Henan University of Technology
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology
| | - Chen Liu
- College of Food Science and Technology, Henan University of Technology
| | - Xiaojie Duan
- College of Food Science and Technology, Henan University of Technology
| |
Collapse
|
7
|
Satapathy S, Rout JR, Kerry RG, Thatoi H, Sahoo SL. Biochemical Prospects of Various Microbial Pectinase and Pectin: An Approachable Concept in Pharmaceutical Bioprocessing. Front Nutr 2020; 7:117. [PMID: 32850938 PMCID: PMC7424017 DOI: 10.3389/fnut.2020.00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Both pectin and pectinase are vitally imperative biomolecules in the biotechnological sector. These molecules are a feasible non-toxic contrivance of nature with extensive applicative perception. Understanding pectic substances and their structure, unique depolymerization, and biochemical properties such as a catalytic mechanism and the strong interrelationship among these molecules could immensely enhance their applicability in industries. For instance, gaining knowledge with respect to the versatile molecular heterogeneity of the compounds could be considered as the center of concern to resolve the industrial issues from multiple aspects. In the present review, an effort has been made to orchestrate the fundamental information related to structure, depolymerization characteristics, and classification of pectin as well as the types and biochemical properties of pectinase. Furthermore, various production methods related to the optimization of the product and its significant contribution to the pharmaceutical industry (either pectinase or derived pectic substances) are described in this article.
Collapse
Affiliation(s)
- Sonali Satapathy
- Microbiology Research Laboratory, Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| | | | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | | - Santi Lata Sahoo
- Microbiology Research Laboratory, Post Graduate Department of Botany, Utkal University, Bhubaneswar, India
| |
Collapse
|