1
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
2
|
Wu Z, Tian Y, Wang C, Zhang J, Lin J. MiRNA-192-5p-targeted activated leukocyte cell adhesion molecule improved inflammatory injury of neonatal necrotizing enterocolitis. Pediatr Surg Int 2024; 40:126. [PMID: 38717494 DOI: 10.1007/s00383-024-05713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Neonatal necrotizing enterocolitis (NEC) is a common gastrointestinal emergency in neonates. MiRNA-192-5p was found associated with ulcerative colitis (UC) progression, also with aberrant expression in intestinal cancer tissue. However, the effects of miRNA-192-5p on NEC have not been reported. METHODS Based on the bioinformatics analysis of the GEO dataset, miR-192-5p was identified as the differentially expressed miRNA in NEC, and activated leukocyte cell adhesion molecule (ALCAM) was predicted as its target. After that, in vitro, rat intestinal epithelial cell-6 (IEC-6) were stimulated with LPS to construct a cell model of NEC. IEC-6 cells were transfected with miRNA-192-5p mimics, miRNA-192-5p inhibitors, or miRNA-192-5p inhibitors + sh-ALCAM, and relevant negative control. In vivo, SD rats were treated with artificial feeding, hypoxic reoxygenation, cold stimulation, and LPS gavage to induce NEC, followed by injection of agomiR-NC or agomiRNA-192-5p. Then effects of miRNA-192-5p on NEC model IEC-6 cell viability, apoptosis, ALCAM expression, Interleukin (IL)-1β and IL-6 levels, intestinal injury, intestinal permeability were detected. RESULTS MiRNA-192-5p expression was downregulated in NEC IEC-6 cells, whose overexpression increased IEC-6 cell viability. MiRNA-192-5p inhibitors increased IL-1β, IL-6 levels and promoted IEC-6 cell apoptosis. MiRNA-192-5p targeting of ALCAM decreased ALCAM expression, IL-1β, and IL-6 levels. AgomiRNA-192-5p decreased ALCAM, IL-1β, and IL-6 levels in intestinal tissue and pathological damage and increased miRNA-192-5p levels. CONCLUSION MiR-192-5p protects against intestinal injury by inhibiting ALCAM-mediated inflammation and intestinal epithelial cells, which would provide a new idea for NEC treatment.
Collapse
Affiliation(s)
- Zhenfei Wu
- Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, 310005, Zhejiang, China
| | - You Tian
- Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, 310005, Zhejiang, China
| | - Chen Wang
- Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, 310005, Zhejiang, China
| | - Jie Zhang
- Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, 310005, Zhejiang, China
| | - Jinhan Lin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, West Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
3
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Han Y, Liu X, Kang L, Chen D, Li Y, Zhang H, Sun M, Gao H, Gai Z, Li X. A potential pathogenic hypoxia-related gene HK2 in necrotizing enterocolitis (NEC) of newborns. BMC Pediatr 2022; 22:617. [PMID: 36289463 PMCID: PMC9597967 DOI: 10.1186/s12887-022-03664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) is a disastrous gastrointestinal disease of newborns, and the mortality rate of infants with NEC is approximately 20%-30%. The exploration of pathogenic targets of NEC will be conducive to timely diagnosis of NEC. Methods The whole transcriptome RNA sequencing was performed on NEC samples to reveal the expression of lncRNAs, circRNAs, miRNAs and mRNAs. Using differential expression analysis, cross analysis, target prediction, enrichment analysis, the pathogenic ceRNA network and target was found. Results Preliminarily, 281 DEmRNAs, 21 DEmiRNAs, 253 DElncRNAs and 207 DEcircRNAs were identified in NEC samples compared with controls. After target prediction and cross analyses, a key ceRNA regulatory network was built including 2 lncRNAs, 4 circRNAs, 2 miRNAs and 20 mRNAs. These 20 mRNAs were significantly enriched in many carbohydrate metabolism related pathways. After cross analysis of hypoxia-, carbohydrate metabolism-related genes, and 20 core genes, one gene HK2 was finally obtained. Dendritic cells activated were significantly differentially infiltrated and negatively correlated with HK2 expression in NEC samples. Conclusions The promising pathogenic hypoxia-related gene HK2 has been firstly identified in NEC, which might also involve in the carbohydrate metabolism in NEC. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03664-w.
Collapse
Affiliation(s)
- Yujie Han
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Xianghong Liu
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Lili Kang
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Dong Chen
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Yongqing Li
- Department of Neonatal, LaoLing Maternity and Child Health Care Hospital, 118 Anju Road, Laoling County, Dezhou, Shandong Province, 253600 People’s Republic of China
| | - Huiping Zhang
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Mingying Sun
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Hui Gao
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Zhongtao Gai
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| | - Xiaoying Li
- grid.27255.370000 0004 1761 1174Department of Neonatal, Children’s Hospital Affiliated to Shandong University/Jinan Children’s Hospital, No. 23976 Huaiyin District, Jinan, 250022 Shandong, People’s Republic of China
| |
Collapse
|
5
|
Donda K, Bose T, Dame C, Maheshwari A. The Impact of MicroRNAs in Neonatal Necrotizing Enterocolitis and other Inflammatory Conditions of Intestine: A Review. Curr Pediatr Rev 2022; 19:5-14. [PMID: 35040406 DOI: 10.2174/1573396318666220117102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/28/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023]
Abstract
The understanding of necrotizing enterocolitis (NEC) etiopathogenesis is incomplete, contributing to the lack of early biomarkers and therapeutic options. Micro RNAs (miRNAs) are a class of RNAs that can alter gene expression and modulate various physiological and pathological processes. Several studies have been performed to evaluate the role of miRNA in the pathogenesis of NEC. In this article, we review the information on miRNAs that have been specifically identified in NEC or have been noted in other inflammatory bowel disorders that share some of the histopathological abnormalities seen frequently in NEC. This review highlights miRNAs that could be useful as early biomarkers of NEC and suggests possible approaches for future translational studies focused on these analytes. It is a novel field with potential for immense translational and clinical relevance in preventing, detecting, or treating NEC in very premature infants. Impact • Current information categorizes necrotizing enterocolitis (NEC) as a multifactorial disease, but microRNAs (miRNAs) may influence the risk of occurrence of NEC. • MiRNAs may alter the severity of the intestinal injury and the clinical outcome of NEC. • The literature on intestinal diseases of adults suggests additional miRNAs that have not been studied in NEC yet but share some features and deserve further exploration in human NEC, especially if affecting gut dysbiosis, intestinal perfusion, and coagulation disorders.
Collapse
Affiliation(s)
- Keyur Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, FL, United States
| | - Tanima Bose
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - Christof Dame
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Akhil Maheshwari
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, MD, USA
| |
Collapse
|
6
|
Cai L, Lai D, Gao J, Wu H, Shi B, Ji H, Tou J. The role and mechanisms of miRNA in neonatal necrotizing enterocolitis. Front Pediatr 2022; 10:1053965. [PMID: 36518784 PMCID: PMC9742607 DOI: 10.3389/fped.2022.1053965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC), the most significant causes of neonatal mortality, is a disease of acute intestinal inflammation. At present, it is not clear exactly how the disease is caused, but it has been suggested that this disorder is a result of a complex interaction among prematurity, enteral feeding and inappropriate pro-inflammation response and bacterial infection of the intestine. A microRNA (miRNA) is a class of endogenous non-coding single-stranded RNA that is about 23 nucleotides long engaging in the regulation of the gene expression. Recently, numerous studies have determined that abnormal miRNA expression plays important roles in various diseases, including NEC. Here, we summarized the role of miRNAs in NEC. We introduce the biosynthetic and function of miRNAs and then describe the possible mechanisms of miRNAs in the initiation and development of NEC, including their influence on the intestinal epithelial barrier's function and regulation of the inflammatory process. Finally, this review aids in a comprehensive understanding of the current miRNA to accurately predict the diagnosis of NEC and provide ideas to find potential therapeutic targets of miRNA for NEC. In conclusion, our aims are to highlight the close relationship between miRNAs and NEC and to summarize the practical value of developing diagnostic biomarkers and potential therapeutic targets of NEC.
Collapse
Affiliation(s)
- Linghao Cai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiafang Gao
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wu
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Bo Shi
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haosen Ji
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinfa Tou
- Department of Neonatal Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Liu Y, Wang Z, Huang H, Shou K. miR-200a-3p improves neonatal necrotizing enterocolitis by regulating RIPK1. Am J Transl Res 2021; 13:12662-12672. [PMID: 34956481 PMCID: PMC8661221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an acquired disease, which mainly occurs in premature infants or sick newborns. microRNA (miR), as a common non-coding RNA in recent years, is found in many diseases. In this research, miR usefulin NEC is analyzed by GEO. METHOD The differentially expressed miRs in NEC were screened by analyzing GSE68054, and miR-200a-3p in IEC-6 cells induced by lipopolysaccharide (LPS) and serum of NEC children were detected by qRT-PCR. The role of miR-200a-3p in LPS-induced IEC-6 cells was tested using CCK-8, PI dyeing, and inflammatory cytokine detection. The direct downstream molecules of miR-200a-3p were identified using TargetScanHuman and verified by luciferase reporter gene assay. The mechanism of action was explored using western blot. RESULTS miR-200a-3p in IEC-6 treated with NEC and LPS was significantly decreased. In vitro experiments revealed that miR-200a-3p mimetic could inhibit IL-6 and TNF-α in IEC-6 cells induced by LPS and reduce the positive rate of PI. In addition, it was determined that receptor-interacting protein kinase 1 (RIPK1) was a downstream molecule of miR-200a-3p, and overexpression of RIPK1 could aggravate LPS-induced IEC-6 injury, while miR-200a-3p mimics could alleviate the overexpression of RIPK1. miR-200a-3p mimics inhibited the elevation of necrosis-related molecules and the interaction between RIPK1 and RIPK3 in LPS-induced IEC-6 cells. CONCLUSION miR-200a-3p can protect intestinal epithelial cells from LPS injury by inhibiting inflammation and necrosis mediated by RIPK1, which provides a possible target for NEC.
Collapse
Affiliation(s)
- Yulu Liu
- Department of Neonatal Intensive Care Unit, The First People’s Hospital of ShangqiuShangqiu 476100, Henan Province, China
| | - Zhansheng Wang
- Department of Neonatal Intensive Care Unit, The First People’s Hospital of ShangqiuShangqiu 476100, Henan Province, China
| | - Hua Huang
- General Neonatal Surgery, Henan Women and Children Hospital and Care InstituteZhengzhou, Henan Province, China
| | - Kaijun Shou
- Department of Anorectal Surgery, Zhuji Affiliated Hospital of Shaoxing UniversityZhuji 311800, Zhejiang Province, China
| |
Collapse
|
8
|
Farr RJ, Rootes CL, Rowntree LC, Nguyen THO, Hensen L, Kedzierski L, Cheng AC, Kedzierska K, Au GG, Marsh GA, Vasan SS, Foo CH, Cowled C, Stewart CR. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009759. [PMID: 34320031 PMCID: PMC8318295 DOI: 10.1371/journal.ppat.1009759] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
The host response to SARS-CoV-2 infection provide insights into both viral pathogenesis and patient management. The host-encoded microRNA (miRNA) response to SARS-CoV-2 infection, however, remains poorly defined. Here we profiled circulating miRNAs from ten COVID-19 patients sampled longitudinally and ten age and gender matched healthy donors. We observed 55 miRNAs that were altered in COVID-19 patients during early-stage disease, with the inflammatory miR-31-5p the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-423-5p, miR-23a-3p and miR-195-5p) independently classified COVID-19 cases with an accuracy of 99.9%. In a ferret COVID-19 model, the three-miRNA signature again detected SARS-CoV-2 infection with 99.7% accuracy, and distinguished SARS-CoV-2 infection from influenza A (H1N1) infection and healthy controls with 95% accuracy. Distinct miRNA profiles were also observed in COVID-19 patients requiring oxygenation. This study demonstrates that SARS-CoV-2 infection induces a robust host miRNA response that could improve COVID-19 detection and patient management. While it is recognized that the host response to infection plays a critical role in determining the severity and outcome of COVID-19, the host microRNA (miRNA) response to SARS-CoV-2 infection is poorly defined. Here we have used next-generation sequencing and bioinformatics to profile circulating miRNAs in 10 COVID-19 patients that were sampled longitudinally over time. COVID-19 was associated with altered expression of 55 plasma miRNAs, with miR-776-3p and miR-1275 among the most strongly down-regulated, and miR-4742-3p, miR-31-5p and miR-3215-3p the most up-regulated. An artificial intelligence methodology was used to identify a miRNA signature, consisting of miR423-5p, miR-23a-3p, miR-195-5p, which could independently classify COVID-19 patients from healthy controls with 99.9% accuracy. When applied to the ferret model of COVID-19, the same signature classified COVID-19 cases with 99.8% accuracy and could distinguish between COVID-19 and influenza A(H1N1) infection with >95% accuracy. In summary this study profiles the host miRNA response to COVID-19 and suggests that the measurement of select host molecules may have potential to independently detect disease cases.
Collapse
Affiliation(s)
- Ryan J. Farr
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Christina L. Rootes
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Gough G. Au
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Seshadri S. Vasan
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
- Department of Health Sciences, University of York, York, United Kingdom
| | - Chwan Hong Foo
- Exios Bio LLC, Conshohocken, Pennsylvania, United States of America
| | - Christopher Cowled
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Cameron R. Stewart
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|