1
|
Lian Y, Li Y, Liu A, Ghosh S, Shi Y, Huang H. Dietary antioxidants and vascular calcification: From pharmacological mechanisms to challenges. Biomed Pharmacother 2023; 168:115693. [PMID: 37844356 DOI: 10.1016/j.biopha.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Vascular calcification (VC), an actively regulated process, has been recognized as an independent and strong predictor of cardiovascular disease (CVD) and mortality worldwide. Diet has been shown to have a major role in the progression of VC. Oxidative stress (OS), a common pro-calcification factor, is closely related to VC, and evidence strongly suggests that dietary antioxidants directly prevent VC. Herein, we provided an overview of OS and its key role in VC and underlined the mechanisms of harmful effects of OS on VC. Furthermore, we introduced dietary antioxidants, and discussed about surrounding the challenges of dietary antioxidants in VC management. This review will benefit future research about the effects of dietary antioxidants on cardiovascular health.
Collapse
Affiliation(s)
- Yaxin Lian
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Yue Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Aiting Liu
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Sounak Ghosh
- Department of Internal Medicine, AMRI Hospital, Kolkata, India
| | - Yuncong Shi
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China
| | - Hui Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Rd, Futian District, 518033 Shenzhen, China.
| |
Collapse
|
2
|
Sarajlic P, Vigor C, Avignon A, Zhou B, Oger C, Galano JM, Durand T, Sultan A, Bäck M. Omega-3 to omega-6 fatty acid oxidation ratio as a novel inflammation resolution marker for metabolic complications in obesity. Nutr Metab Cardiovasc Dis 2023; 33:1206-1213. [PMID: 37032252 DOI: 10.1016/j.numecd.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND AND AIMS The oxidative metabolism of polyunsaturated fatty acids (PUFAs) leads to bioactive isoprostanoids. The aim was to establish the associations of a complete urinary isoprostanoid profiling in a cohort study of carefully phenotyped obese subjects to determine possible potential differential implications for omega-6 PUFA- and omega-3 PUFA-derived isoprostanoids for obesity, metabolic indicators, and inflammation. METHODS AND RESULTS PUFA peroxidation compounds were determined in urine samples from obese human subjects (n = 46) by liquid chromatography coupled to tandem mass spectrometry. Increased omega-6 arachidonic acid (AA) oxidation, mainly represented by 5-F2c isoprostane (5-F2c-IsoP) and metabolites of 15-F2t-IsoP, was associated with body mass index, glycated hemoglobin (HbA1c) and mean arterial blood pressure. In addition, we identified the omega-3 PUFA-derived urinary metabolites 14-F4t-NeuroP from docosahexaenoic acid (DHA) and 5-F3t-IsoP from eicosapentaenoic acid (EPA), which declined with age. The omega-3 to omega-6 oxidation ratio was a significant predictor of inflammation in obesity. CONCLUSION The findings point to full urinary isoprostanoid profiling as a more sensitive measure of PUFA oxidative stress in obesity-induced metabolic complications compared with individual isoprostanoid measures. Furthermore, the results suggest the balance between the omega-3 and omega-6 PUFA oxidation as determinative for the consequences of oxidative stress on inflammation in obesity.
Collapse
Affiliation(s)
- Philip Sarajlic
- Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293 Cedex 5 Montpellier, France
| | - Antoine Avignon
- Endocrinology Diabetes Department, CHU Montpellier, Université Montpellier, Montpellier, France; Desbrest Institute of Epidemiology and Public Health, IDESP UMR UA11 INSERM, Université Montpellier, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293 Cedex 5 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293 Cedex 5 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293 Cedex 5 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, Pôle Recherche Chimie Balard, 34293 Cedex 5 Montpellier, France
| | - Ariane Sultan
- Endocrinology Diabetes Department, CHU Montpellier, Université Montpellier, Montpellier, France; Phymedexp, Université de Montpellier, Inserm, CNRS, CHRU de Montpellier, Montpellier, France
| | - Magnus Bäck
- Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, INERM U1116, CHRU Nancy, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
3
|
Helicobacter Pylori Virulence Factor Cytotoxin-Associated Gene A (CagA) Induces Vascular Calcification in Coronary Artery Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065392. [PMID: 36982467 PMCID: PMC10049385 DOI: 10.3390/ijms24065392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Helicobacter pylori (H. pylori) has been associated with cardiovascular diseases. The pro-inflammatory H. pylori virulence factor cytotoxin-associated gene A (CagA) has been detected in serum exosomes of H. pylori-infected subjects and may exert systemic effects throughout the cardiovascular system. The role of H. pylori and CagA in vascular calcification was hitherto unknown. The aim of this study was to determine the vascular effects of CagA through human coronary artery smooth muscle cell (CASMC) osteogenic and pro-inflammatory effector gene expression as well as interleukin 1β secretion and cellular calcification. CagA upregulated bone morphogenic protein 2 (BMP-2) associated with an osteogenic CASMC phenotype switch and induced increased cellular calcification. Furthermore, a pro-inflammatory response was observed. These results support that H. pylori may contribute to vascular calcification through CagA rendering CASMCs osteogenic and inducing calcification.
Collapse
|
4
|
Yan L, Sun C, Zhang Y, Zhang P, Chen Y, Deng Y, Er T, Deng Y, Wang Z, Ma H. The Biological Implication of Semicarbazide-Sensitive Amine Oxidase (SSAO) Upregulation in Rat Systemic Inflammatory Response under Simulated Aerospace Environment. Int J Mol Sci 2023; 24:ijms24043666. [PMID: 36835077 PMCID: PMC9961990 DOI: 10.3390/ijms24043666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
The progress of space science and technology has ushered in a new era for humanity's exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which involves multiple pathophysiological effects on the human body as well on tissues and organs. It has been an important research topic to study the molecular mechanism of body damage and further explore countermeasures against the physiological and pathological changes caused by the space environment. In this study, we used the rat model to study the biological effects of the tissue damage and related molecular pathway under either simulated microgravity or heavy ion radiation or combined stimulation. Our study disclosed that ureaplasma-sensitive amino oxidase (SSAO) upregulation is closely related to the systematic inflammatory response (IL-6, TNF-α) in rats under a simulated aerospace environment. In particular, the space environment leads to significant changes in the level of inflammatory genes in heart tissues, thus altering the expression and activity of SSAO and causing inflammatory responses. The detailed molecular mechanisms have been further validated in the genetic engineering cell line model. Overall, this work clearly shows the biological implication of SSAO upregulation in microgravity and radiation-mediated inflammatory response, providing a scientific basis or potential target for further in-depth investigation of the pathological damage and protection strategy under a space environment.
Collapse
Affiliation(s)
- Liben Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Chunli Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yaxi Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yifan Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Er
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhimin Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Z.W.); (H.M.); Tel.: +86-010-68915996 (Z.W. & H.M.)
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (Z.W.); (H.M.); Tel.: +86-010-68915996 (Z.W. & H.M.)
| |
Collapse
|
5
|
Filip A, Taleb S, Bascetin R, Jahangiri M, Bardin M, Lerognon C, Fève B, Lacolley P, Jalkanen S, Mercier N. Increased atherosclerotic plaque in AOC3 knock-out in ApoE−/− mice and characterization of AOC3 in atherosclerotic human coronary arteries. Front Cardiovasc Med 2022; 9:848680. [PMID: 36176983 PMCID: PMC9513161 DOI: 10.3389/fcvm.2022.848680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Amine oxidase copper containing 3 (AOC3) displays adhesion between leukocytes and endothelial cells and enzymatic functions. Given its controversial role in atherogenesis, we proposed to investigate the involvement of AOC3 in the formation of atherosclerotic plaques in ApoE−/−AOC3−/− mice and human coronary arteries. Methods Lesions, contractile markers, and AOC3 were studied in aortic tissues from 15- and 25-week-old mice and different stages of human coronary atherosclerotic arteries by immunohistochemistry (IHC) and/or western blot. Human VSMCs, treated or not with LJP1586, an AOC3 inhibitor, were used to measure differentiation markers by qPCR. AOC3 co-localization with specific cell markers was studied by using confocal microscopy in mice and human samples. Results At 15 weeks old, the absence of AOC3 was associated with increased lesion size, α-SMA, and CD3 staining in the plaque independently of a cholesterol modification. At 25 weeks old, advanced plaques were larger with equivalent staining for α-SMA while CD3 increased in the media from ApoE−/−AOC3−/− mice. At both ages, the macrophage content of the lesion was not modified. Contractile markers decreased whereas MCP-1 appeared augmented only in the 15-week-old ApoE−/−AOC3. AOC3 is mainly expressed by mice and human VSMC is slightly expressed by endothelium but not by macrophages. Conclusion AOC3 knock-out increased atherosclerotic plaques at an early stage related to a VSMC dedifferentiation associated with a higher T cells recruitment in plaques explained by the MCP-1 augmentation. This suggests that AOC3 may have an important role in atherosclerosis independent of its canonical inflammatory effect. The dual role of AOC3 impacts therapeutic strategies using pharmacological regulators of SSAO activity.
Collapse
Affiliation(s)
- Anna Filip
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
| | - Soraya Taleb
- Inserm UMR_S970, Paris Centre de Recherche Cardiovasculaire (PARCC), Paris, France
| | - Rümeyza Bascetin
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
| | - Mohammad Jahangiri
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
| | - Matthieu Bardin
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
| | - Cindy Lerognon
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
| | - Bruno Fève
- Sorbonne Université, Inserm UMR_S938, Centre de Recherche Saint Antoine, IHU ICAN, Service d'Endocrinologie, CRMR PRISIS, APHP Hôpital Saint-Antoine, Paris, France
| | - Patrick Lacolley
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
| | - Sirpa Jalkanen
- Medicity Laboratory, University of Turku, Turku, Finland
| | - Nathalie Mercier
- Université de Lorraine, Inserm, Défaillance Cardiovasculaire Aigue et Chronique (DCAC), Université de Lorraine, Lorraine, France
- *Correspondence: Nathalie Mercier
| |
Collapse
|
6
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
7
|
Phua K, Chew NWS, Kong WKF, Tan RS, Ye L, Poh KK. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics 2022; 12:5189-5203. [PMID: 35836811 PMCID: PMC9274751 DOI: 10.7150/thno.71813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the elucidation of the pathways behind the development of aortic stenosis (AS), there remains no effective medical treatment to slow or reverse its progress. Instead, the gold standard of care in severe or symptomatic AS is replacement of the aortic valve. Oxidative stress is implicated, both directly as well as indirectly, in lipid infiltration, inflammation and fibro-calcification, all of which are key processes underlying the pathophysiology of degenerative AS. This culminates in the breakdown of the extracellular matrix, differentiation of the valvular interstitial cells into an osteogenic phenotype, and finally, calcium deposition as well as thickening of the aortic valve. Oxidative stress is thus a promising and potential therapeutic target for the treatment of AS. Several studies focusing on the mitigation of oxidative stress in the context of AS have shown some success in animal and in vitro models, however similar benefits have yet to be seen in clinical trials. Statin therapy, once thought to be the key to the treatment of AS, has yielded disappointing results, however newer lipid lowering therapies may hold some promise. Other potential therapies, such as manipulation of microRNAs, blockade of the renin-angiotensin-aldosterone system and the use of dipeptidylpeptidase-4 inhibitors will also be reviewed.
Collapse
Affiliation(s)
- Kailun Phua
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Nicholas WS Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| | - William KF Kong
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| |
Collapse
|
8
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
9
|
Calcific aortic valve stenosis and COVID-19: clinical management, valvular damage, and pathophysiological mechanisms. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Li S, Zhang X. Iron in Cardiovascular Disease: Challenges and Potentials. Front Cardiovasc Med 2021; 8:707138. [PMID: 34917655 PMCID: PMC8669346 DOI: 10.3389/fcvm.2021.707138] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Iron is essential for many biological processes. Inadequate or excess amount of body iron can result in various pathological consequences. The pathological roles of iron in cardiovascular disease (CVD) have been intensively studied for decades. Convincing data demonstrated a detrimental effect of iron deficiency in patients with heart failure and pulmonary arterial hypertension, but it remains unclear for the pathological roles of iron in other cardiovascular diseases. Meanwhile, ferroptosis is an iron-dependent cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been reported in several CVDs, namely, cardiomyopathy, atherosclerotic cardiovascular disease, and myocardial ischemia/reperfusion injury. Iron chelation therapy seems to be an available strategy to ameliorate iron overload-related disorders. It is still a challenge to accurately clarify the pathological roles of iron in CVD and search for effective medical intervention. In this review, we aim to summarize the pathological roles of iron in CVD, and especially highlight the potential mechanism of ferroptosis in these diseases.
Collapse
Affiliation(s)
- Shizhen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Li H, Du S, Niu P, Gu X, Wang J, Zhao Y. Vascular Adhesion Protein-1 (VAP-1)/Semicarbazide-Sensitive Amine Oxidase (SSAO): A Potential Therapeutic Target for Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2021; 12:679707. [PMID: 34322017 PMCID: PMC8312380 DOI: 10.3389/fphar.2021.679707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is a semicarbazide-sensitive amine oxidase (SSAO), whose enzymatic activity regulates the adhesion/exudation of leukocytes in/from blood vessels. Due to its abundant expressions in vascular systems and prominent roles in inflammations, increasing attentions have been paid to the roles of VAP-1/SSAO in atherosclerosis, a chronic vascular inflammation that eventually drives clinical cardiovascular events. Clinical studies have demonstrated a potential value of soluble VAP-1 (sVAP-1) for the diagnosis and prognosis of cardiovascular diseases. Recent findings revealed that VAP-1 is expressed in atherosclerotic plaques and treatment with VAP-1 inhibitors alleviates the progression of atherosclerosis. This review will focus on the roles of VAP-1/SSAO in the progression of atherosclerotic lesions and therapeutic potentials of VAP-1 inhibitors for cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiyu Du
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Panpan Niu
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Mercier N, Bäck M. The double-action of hydrogen peroxide on the oxidative atherosclerosis battlefield. Atherosclerosis 2021; 331:28-30. [PMID: 34391571 DOI: 10.1016/j.atherosclerosis.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nathalie Mercier
- CHRU de Nancy and Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, France.
| | - Magnus Bäck
- CHRU de Nancy and Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, France; Department of Cardiology Karolinska University Hospital and Department of Medicine Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Roos CM, Zhang B, Hagler MA, Arghami A, Miller JD. MnSOD protects against vascular calcification independent of changes in vascular function in hypercholesterolemic mice. Atherosclerosis 2021; 331:31-37. [PMID: 34147244 DOI: 10.1016/j.atherosclerosis.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS The overall goal of this study was to determine the effects of MnSOD-deficiency on vascular structure and function in hypercholesterolemic mice. Previous work suggested that increases in mitochondrial-derived reactive oxygen species (ROS) can exacerbate vascular dysfunction and atherosclerosis. It remains unknown, however, how MnSOD-deficiency and local compensatory mechanisms impact atherosclerotic plaque composition. METHODS AND RESULTS We used a hypercholesterolemic mouse model (ldlr-/-/ApoB100/100; LA), either wild-type for MnSOD (LA-MnSOD+/+) or MnSOD-haploinsufficient (LA-MnSOD+/-), that was fed a western diet for either 3 or 6 months. Consistent with previous reports, reductions of MnSOD did not significantly worsen hypercholesterolemia-induced endothelial dysfunction in the aorta. Critically, dramatic impairment of vascular function with Nox2 inhibition or catalase pretreatment suggested the presence of a significant NO-independent vasodilatory mechanism in LA-MnSOD+/- mice (e.g. H2O2). Despite remarkably well-preserved overall vascular relaxation, loss of mitochondrial antioxidant capacity in LA-MnSOD+/- mice significantly increased osteogenic signalling and vascular calcification compared to the LA-MnSOD+/+ littermates. CONCLUSIONS Collectively, these data are the first to suggest that loss of mitochondrial antioxidant capacity in hypercholesterolemic mice results in dramatic upregulation of NADPH oxidase-derived H2O2. While this appears to be adaptive in the context of preserving overall endothelium-dependent relaxation and vascular function, these increases in ROS appear to be remarkably maladaptive and deleterious in the context of vascular calcification.
Collapse
Affiliation(s)
| | - Bin Zhang
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Arman Arghami
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jordan D Miller
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA; Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Saraieva I, Benetos A, Labat C, Franco-Cereceda A, Bäck M, Toupance S. Telomere Length in Valve Tissue Is Shorter in Individuals With Aortic Stenosis and in Calcified Valve Areas. Front Cell Dev Biol 2021; 9:618335. [PMID: 33777932 PMCID: PMC7990782 DOI: 10.3389/fcell.2021.618335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Short telomere length (TL) is associated with age-related diseases, in particular cardiovascular diseases. However, whether the onset and course of aortic stenosis (AS) is linked to TL in aortic valves remains unknown. Objectives To assess telomere dynamics (TL and telomerase activity) in aortic valves and the possible implication of TL in onset and course of AS. Methods DNA was extracted from aortic valves obtained from 55 patients (78.2% men; age, 37–79 years), who had undergone replacement surgery due to AS (AS group, n = 32), aortic valve regurgitation and aortic dilation (Non-AS group, n = 23). TL was measured by telomere restriction fragment analysis (TRF) in calcified and non-calcified aortic valve areas. Telomerase activity was evaluated using telomerase repeat amplification protocol (TRAP) in protein extracts from non-calcified and calcified areas of valves obtained from 4 additional patients (50% men; age, 27–70 years). Results TL was shorter in calcified aortic valve areas in comparison to non-calcified areas (n = 31, 8.58 ± 0.73 kb vs. 8.12 ± 0.75 kb, p < 0.0001), whereas telomerase activity was not detected in any of those areas. Moreover, patients from AS group displayed shorter telomeres in non-calcified areas than those from the Non-AS group (8.40 ± 0.64 kb vs. 8.85 ± 0.65, p = 0.01). Conclusions Short telomeres in aortic valves may participate in the development of AS, while concurrently the calcification process seems to promote further local decrease of TL in calcified areas of valves.
Collapse
Affiliation(s)
| | - Athanase Benetos
- INSERM, DCAC, Université de Lorraine, Nancy, France.,CHRU-Nancy, Pôle "Maladies du Vieillissement, Gérontologie et Soins Palliatifs", Université de Lorraine, Nancy, France
| | - Carlos Labat
- INSERM, DCAC, Université de Lorraine, Nancy, France
| | - Anders Franco-Cereceda
- Karolinska University Hospital, Theme Heart and Vessels, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- INSERM, DCAC, Université de Lorraine, Nancy, France.,CHRU-Nancy, Pôle "Maladies du Vieillissement, Gérontologie et Soins Palliatifs", Université de Lorraine, Nancy, France.,Karolinska University Hospital, Theme Heart and Vessels, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | | |
Collapse
|
15
|
Artiach G, Bäck M. Omega-3 Polyunsaturated Fatty Acids and the Resolution of Inflammation: Novel Therapeutic Opportunities for Aortic Valve Stenosis? Front Cell Dev Biol 2020; 8:584128. [PMID: 33304901 PMCID: PMC7693622 DOI: 10.3389/fcell.2020.584128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation is well-established in cardiovascular disease, including valvular heart disease. Inflammation is a key process in the fibrosis and calcification of the aortic valve leaflets, which ultimately clinically manifest as aortic valve stenosis characterized by valve dysfunction and cardiac obstruction. In the absence of pharmacological treatment, either surgical or transcatheter aortic valve replacement is currently the only available therapeutic strategy for patients with severe aortic valve stenosis. Omega-3 polyunsaturated fatty acids, which exert beneficial effects in several cardiovascular diseases, serve as the substrate for several bioactive lipid mediators that regulate inflammation. Recent findings point to the beneficial effects of omega-3 fatty acids in cardiac valves, being inversely associated with aortic valve calcification and contributing to the resolution of valvular inflammation by means of the pro-resolving mediator resolvin E1 and downstream signaling through its receptor ChemR23.
Collapse
Affiliation(s)
- Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
TLR7 Expression Is Associated with M2 Macrophage Subset in Calcific Aortic Valve Stenosis. Cells 2020; 9:cells9071710. [PMID: 32708790 PMCID: PMC7407122 DOI: 10.3390/cells9071710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is a common age-related disease characterized by active calcification of the leaflets of the aortic valve. How innate immune cells are involved in disease pathogenesis is not clear. In this study we investigate the role of the pattern recognition receptor Toll-like receptor 7 (TLR7) in CAVS, especially in relation to macrophage subtype. Human aortic valves were used for mRNA expression analysis, immunofluorescence staining, or ex vivo tissue assays. Response to TLR7 agonist in primary macrophages and valvular interstitial cells (VICs) were investigated in vitro. In the aortic valve, TLR7 correlated with M2 macrophage markers on mRNA levels. Expression was higher in the calcified part compared with the intermediate and healthy parts. TLR7+ cells were co-stained with M2-type macrophage receptors CD163 and CD206. Ex vivo stimulation of valve tissue with the TLR7 ligand imiquimod significantly increased secretion of IL-10, TNF-α, and GM-CSF. Primary macrophages responded to imiquimod with increased secretion of IL-10 while isolated VICs did not respond. In summary, in human aortic valves TLR7 expression is associated with M2 macrophages markers. Ex vivo tissue challenge with TLR7 ligand led to secretion of immunomodulatory cytokine IL-10. These results connect TLR7 activation in CAVS to reduced inflammation and improved clearance.
Collapse
|
17
|
Artiach G, Carracedo M, Plunde O, Wheelock CE, Thul S, Sjövall P, Franco-Cereceda A, Laguna-Fernandez A, Arnardottir H, Bäck M. Omega-3 Polyunsaturated Fatty Acids Decrease Aortic Valve Disease Through the Resolvin E1 and ChemR23 Axis. Circulation 2020; 142:776-789. [PMID: 32506925 PMCID: PMC7439935 DOI: 10.1161/circulationaha.119.041868] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Aortic valve stenosis (AVS), which is the most common valvular heart disease, causes a progressive narrowing of the aortic valve as a consequence of thickening and calcification of the aortic valve leaflets. The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in cardiovascular prevention have recently been demonstrated in a large randomized, controlled trial. In addition, n-3 PUFAs serve as the substrate for the synthesis of specialized proresolving mediators, which are known by their potent beneficial anti-inflammatory, proresolving, and tissue-modifying properties in cardiovascular disease. However, the effects of n-3 PUFA and specialized proresolving mediators on AVS have not yet been determined. The aim of this study was to identify the role of n-3 PUFA–derived specialized proresolving mediators in relation to the development of AVS. Methods: Lipidomic and transcriptomic analyses were performed in human tricuspid aortic valves. Apoe−/− mice and wire injury in C57BL/6J mice were used as models for mechanistic studies. Results: We found that n-3 PUFA incorporation into human stenotic aortic valves was higher in noncalcified regions compared with calcified regions. Liquid chromatography tandem mass spectrometry–based lipid mediator lipidomics identified that the n-3 PUFA–derived specialized proresolving mediator resolvin E1 was dysregulated in calcified regions and acted as a calcification inhibitor. Apoe−/− mice expressing the Caenorhabditis elegans Fat-1 transgene (Fat-1tg×Apoe−/−), which enables the endogenous synthesis of n-3 PUFA and increased valvular n-3 PUFA content, exhibited reduced valve calcification, lower aortic valve leaflet area, increased M2 macrophage polarization, and improved echocardiographic parameters. Finally, abrogation of the resolvin E1 receptor ChemR23 enhanced disease progression, and the beneficial effects of Fat-1tg were abolished in the absence of ChemR23. Conclusions: n-3 PUFA-derived resolvin E1 and its receptor ChemR23 emerge as a key axis in the inhibition of AVS progression and may represent a novel potential therapeutic opportunity to be evaluated in patients with AVS.
Collapse
Affiliation(s)
- Gonzalo Artiach
- Department of Medicine (G.A., M.C., O.P., S.T., A.L.-F., H.A., M.B.), Karolinska Institutet, Stockholm, Sweden
| | - Miguel Carracedo
- Department of Medicine (G.A., M.C., O.P., S.T., A.L.-F., H.A., M.B.), Karolinska Institutet, Stockholm, Sweden
| | - Oscar Plunde
- Department of Medicine (G.A., M.C., O.P., S.T., A.L.-F., H.A., M.B.), Karolinska Institutet, Stockholm, Sweden
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, (C.E.W.), Karolinska Institutet, Stockholm, Sweden
| | - Silke Thul
- Department of Medicine (G.A., M.C., O.P., S.T., A.L.-F., H.A., M.B.), Karolinska Institutet, Stockholm, Sweden
| | - Peter Sjövall
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, Borås, Sweden (P.S.)
| | - Anders Franco-Cereceda
- Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden. (A.F.-C., M.B.)
| | - Andres Laguna-Fernandez
- Department of Medicine (G.A., M.C., O.P., S.T., A.L.-F., H.A., M.B.), Karolinska Institutet, Stockholm, Sweden
| | - Hildur Arnardottir
- Department of Medicine (G.A., M.C., O.P., S.T., A.L.-F., H.A., M.B.), Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden. (A.F.-C., M.B.)
| |
Collapse
|
18
|
Ebert T, Pawelzik SC, Witasp A, Arefin S, Hobson S, Kublickiene K, Shiels PG, Bäck M, Stenvinkel P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel) 2020; 12:E227. [PMID: 32260373 PMCID: PMC7232447 DOI: 10.3390/toxins12040227] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Persistent low-grade inflammation and premature ageing are hallmarks of the uremic phenotype and contribute to impaired health status, reduced quality of life, and premature mortality in chronic kidney disease (CKD). Because there is a huge global burden of disease due to CKD, treatment strategies targeting inflammation and premature ageing in CKD are of particular interest. Several distinct features of the uremic phenotype may represent potential treatment options to attenuate the risk of progression and poor outcome in CKD. The nuclear factor erythroid 2-related factor 2 (NRF2)-kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1 (KEAP1) signaling pathway, the endocrine phosphate-fibroblast growth factor-23-klotho axis, increased cellular senescence, and impaired mitochondrial biogenesis are currently the most promising candidates, and different pharmaceutical compounds are already under evaluation. If studies in humans show beneficial effects, carefully phenotyped patients with CKD can benefit from them.
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sven-Christian Pawelzik
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Anna Witasp
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Samsul Arefin
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sam Hobson
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Karolina Kublickiene
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Paul G. Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow G61 1QH, UK;
| | - Magnus Bäck
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Peter Stenvinkel
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| |
Collapse
|
19
|
Artiach G, Carracedo M, Seime T, Plunde O, Laguna-Fernandez A, Matic L, Franco-Cereceda A, Bäck M. Proteoglycan 4 is Increased in Human Calcified Aortic Valves and Enhances Valvular Interstitial Cell Calcification. Cells 2020; 9:E684. [PMID: 32168892 PMCID: PMC7140654 DOI: 10.3390/cells9030684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/31/2023] Open
Abstract
Aortic valve stenosis (AVS), a consequence of increased fibrosis and calcification of the aortic valve leaflets, causes progressive narrowing of the aortic valve. Proteoglycans, structural components of the aortic valve, accumulate in regions with fibrosis and moderate calcification. Particularly, proteoglycan 4 (PRG4) has been identified in fibrotic parts of aortic valves. However, the role of PRG4 in the context of AVS and aortic valve calcification has not yet been determined. Here, transcriptomics, histology, and immunohistochemistry were performed in human aortic valves from patients undergoing aortic valve replacement. Human valve interstitial cells (VICs) were used for calcification experiments and RNA expression analysis. PRG4 was significantly upregulated in thickened and calcified regions of aortic valves compared with healthy regions. In addition, mRNA levels of PRG4 positively associated with mRNA for proteins involved in cardiovascular calcification. Treatment of VICs with recombinant human PRG4 enhanced phosphate-induced calcification and increased the mRNA expression of bone morphogenetic protein 2 and the runt-related transcription factor 2. In summary, PRG4 was upregulated in the development of AVS and promoted VIC osteogenic differentiation and calcification. These results suggest that an altered valve leaflet proteoglycan composition may play a role in the progression of AVS.
Collapse
Affiliation(s)
- Gonzalo Artiach
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (G.A.); (M.C.); (O.P.); (A.L.-F.)
| | - Miguel Carracedo
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (G.A.); (M.C.); (O.P.); (A.L.-F.)
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden; (T.S.); (L.M.); (A.F.-C.)
| | - Oscar Plunde
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (G.A.); (M.C.); (O.P.); (A.L.-F.)
| | - Andres Laguna-Fernandez
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (G.A.); (M.C.); (O.P.); (A.L.-F.)
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden; (T.S.); (L.M.); (A.F.-C.)
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden; (T.S.); (L.M.); (A.F.-C.)
- Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; (G.A.); (M.C.); (O.P.); (A.L.-F.)
- Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, 17177 Stockholm, Sweden
| |
Collapse
|