1
|
Gao S, Shan Y, Wang Y, Wang W, Li J, Tan H. Polysaccharides from Lonicera japonica Thunb.: Extraction, purification, structural features and biological activities-A review. Int J Biol Macromol 2024; 281:136472. [PMID: 39414197 DOI: 10.1016/j.ijbiomac.2024.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Lonicera japonica Thunb.,commonly referred to as Caprifolium japonicum (Thunb.) Dum. Cours.,is a perennial herb classified under the caprifoliaceae family. It is utilized worldwide as a medicinal plant and also serves as food source and an ornamental plant. Lonicera japonica Thunb. polysaccharides (LJP) constitute one of its primary components, demonstrating a wide range of biological activities including anti-inflammatory, antioxidant, immunomodulatory, anti-Alzheimer's, anti-diabetic, and anti-cancer effects. This paper reviews and summarizes recent research advancements on the extraction, purification, structural characteristics, and biological activities of LJP, offering a valuable foundation and up-to-date insights for the continued development and application of LJP in pharmaceutical and functional food sectors.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin 150076, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin 150076, China
| | - Huixin Tan
- Department of pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin 150001, China.
| |
Collapse
|
2
|
Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Molecules 2023; 28:4828. [PMID: 37375383 DOI: 10.3390/molecules28124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ye Ruan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
3
|
Chen Y, Xu N, Du L, Zhang J, Chen R, Zhu Q, Li W, Wu C, Peng G, Rao L, Wang Q. Light plays a critical role in the accumulation of chlorogenic acid in Lonicera macranthoides Hand.-Mazz. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:793-806. [PMID: 36848865 DOI: 10.1016/j.plaphy.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Nan Xu
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Du
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Jinhao Zhang
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Rong Chen
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Qianfeng Zhu
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, PR China
| | - Guoping Peng
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| | - Liqun Rao
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiming Wang
- College of Bioscience and Biotechnology Hunan Agricultural University, Changsha, 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Barta CÉ, Jenkins BC, Lindstrom DS, Zahnd AK, Székely G. The First Evidence of Gibberellic Acid's Ability to Modulate Target Species' Sensitivity to Honeysuckle ( Lonicera maackii) Allelochemicals. PLANTS (BASEL, SWITZERLAND) 2023; 12:1014. [PMID: 36903875 PMCID: PMC10005159 DOI: 10.3390/plants12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Invasive species employ competitive strategies such as releasing allelopathic chemicals into the environment that negatively impact native species. Decomposing Amur honeysuckle (Lonicera maackii) leaves leach various allelopathic phenolics into the soil, decreasing the vigor of several native species. Notable differences in the net negative impacts of L. maackii metabolites on target species were argued to depend on soil properties, the microbiome, the proximity to the allelochemical source, the allelochemical concentration, or environmental conditions. This study is the first to address the role of target species' metabolic properties in determining their net sensitivity to allelopathic inhibition by L. maackii. Gibberellic acid (GA3) is a critical regulator of seed germination and early development. We hypothesized that GA3 levels might affect the target sensitivity to allelopathic inhibitors and evaluated differences in the response of a standard (control, Rbr), a GA3-overproducing (ein), and a GA3-deficient (ros) Brassica rapa variety to L. maackii allelochemicals. Our results demonstrate that high GA3 concentrations substantially alleviate the inhibitory effects of L. maackii allelochemicals. A better understanding of the importance of target species' metabolic properties in their responses to allelochemicals will contribute to developing novel invasive species control and biodiversity conservation protocols and may contribute to applications in agriculture.
Collapse
Affiliation(s)
- Csengele Éva Barta
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Brian Colby Jenkins
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Devon Shay Lindstrom
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Alyka Kay Zahnd
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Sui M, Kong D, Ruan H, Sun X, Gu W, Guo M, Ding S, Yang M. Distribution Characteristics of Nutritional Elements and Combined Health Risk of Heavy Metals in Medicinal Tea from Genuine Producing Area of China. Biol Trace Elem Res 2023; 201:984-994. [PMID: 35294744 DOI: 10.1007/s12011-022-03173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/20/2022] [Indexed: 01/21/2023]
Abstract
The development of the medicinal tea (MT) system has promoted the health awareness in the whole world, and the nutritional elements are also an important resource of health care delivery except for the medicinal components. Among various medicinal teas, Astragalus membranaceus (AM), Zingiberaceae rhizome (ZR), and Lonicera japonica (LJ) were the most popular ingredients in China. However, except for the nutrition value, MT was inevitably contaminated with heavy metals due to the special planting environment and processing system. This study was aimed to investigate the distribution characteristics of nutrition elements and combined health risk of heavy metals in MT sample, referring to the maximum residue limit (MRL), estimated daily intake (EDI), total target hazard quotients (TTHQs), and lifetime cancer risk (LCR). Furthermore, the bioaccessibility of gastrointestinal phase and bioavailability of human colon adeno carcinoma cell line were selected for elaborating the exact damage degree to human digestive system. The results showed that, the nutritional elements of Na, Se, K, Ca, and Mn were very rich in MT, but a total of 50% of MT were contaminated by Cr, Hg, and Cd in raw material. Although the cumulative lifetime cancer risk can be accepted under the bioaccessibility (26.62-99.27%), the heavy metals of Cr, As, Hg, and Fe in AM and LJ posed a slight threaten of non-carcinogenic risk to consumers. This study will give an exactly assessment of multiple elements in digestive system, thus further to predict the potential health risk under the consumption of MT products.
Collapse
Affiliation(s)
- Ming Sui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Dandan Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Wei Gu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Shumin Ding
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
6
|
Shen C, Yang B, Huang L, Chen Y, Zhao H, Zhu Z. Cardioprotective effect of crude polysaccharide fermented by Trametes Sanguinea Lyoyd on doxorubicin-induced myocardial injury mice. BMC Pharmacol Toxicol 2023; 24:1. [PMID: 36627724 PMCID: PMC9832647 DOI: 10.1186/s40360-022-00641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but its clinical application is greatly limited because of the cardiotoxicity. Thus, exploration of effective therapies against DOX-induced cardiotoxicity is necessary. The aim of this study is to investigate the effects and possible mechanisms of Trametes Sanguinea Lyoyd fermented crude polysaccharide (TSLFACP) against DOX-induced cardiotoxicity. We investigated the protective effects of TSLFACP on myocardial injury and its possible mechanisms using two in vitro cells of DOX-treated cardiomyocytes H9C2 and embryonic myocardial cell line CCC-HEH-2 and a in vivo mouse model of DOX-induced myocardial injury. We found that TSLFACP could reverse DOX-induced toxicity in H9C2 and CCC-HEH-2 cells. Similarly, we found that when pretreatment with TSLFACP (200 mg/kg, i.g.) daily for 6 days, DOX-induced myocardial damage was attenuated, including the decrease in serum myocardial injury index, and the amelioration in cardiac histopathological morphology. Additionally, immunohistochemistry and western blotting were used to identify the underlying and possible signal pathways. We found that TSLFACP attenuated the expression of LC3-II, Beclin-1 and PRAP induced by DOX. In conclusion, our results demonstrated that TSLFACP could protect against DOX-induced cardiotoxicity by inhibiting autophagy and apoptosis.
Collapse
Affiliation(s)
- Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Yueru Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, #548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Bladder paraganglioma: basic characteristics and new perspectives on perioperative management. World J Urol 2022; 40:2807-2816. [PMID: 36205740 DOI: 10.1007/s00345-022-04166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/24/2022] [Indexed: 10/10/2022] Open
Abstract
PURPOSE Paraganglioma and pheochromocytoma are rare neuroendocrine tumors with severe metabolic and cardiovascular complications. Bladder PGLs are rare, and their clinical management is not precise. Here, we discuss the basic characteristics and perioperative management of bladder PGLs. METHODS We retrospectively reviewed 20 bladder PGL cases diagnosed at Sun Yat-sen University Cancer Center. Case notes were reviewed, clinical presentations, therapies, and outcomes were collected, and data analysis was performed. RESULTS Ten male and ten female patients with a median age of 47.5 years (range 14-69 years) were included. Most patients (65%) had no symptoms, and PGL was detected incidentally during medical checkups. All patients were treated surgically; 4 (20%) underwent transurethral resection of bladder tumor (TURBT), and 16 (80%) underwent partial cystectomy. Strong intraoperative blood pressure fluctuations were observed in 13 patients (65%). Two patients who were treated preoperatively with α-receptor blockers also experienced severe intraoperative blood pressure fluctuations. Postoperative measurements of troponin I were available for 3 patients, and all were significantly elevated. All patients were diagnosed with bladder PGL on postoperative pathological examination. The median follow-up time was 51 months (range 2-147 months), and 2 patients were lost to follow-up at 1 and 3 months; 16 (88.9%) survived without recurrence, 2 patients (11.1%) experienced recurrence, and 1 patient died. CONCLUSION Most bladder paragangliomas are easily mistaken for bladder urothelial carcinoma, and robust hemodynamic instability during surgery might be a challenge for urologists. Postoperative monitoring of troponin I, regardless of the presence of clinical symptoms, is recommended for patients with bladder PGL.
Collapse
|
8
|
Tang X, Liu X, Zhong J, Fang R. Potential Application of Lonicera japonica Extracts in Animal Production: From the Perspective of Intestinal Health. Front Microbiol 2021; 12:719877. [PMID: 34434181 PMCID: PMC8381474 DOI: 10.3389/fmicb.2021.719877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
Lonicera japonica (L. japonica) extract is rich in active substances, such as phenolic acids, essential oils, flavones, saponins, and iridoids, which have a broad spectrum of antioxidant, anti-inflammatory, and anti-microbial effect. Previous studies have demonstrated that L. japonica has a good regulatory effect on animal intestinal health, which can be used as a potential antibiotic substitute product. However, previous studies about intestinal health regulation mainly focus on experimental animals or cells, like mice, rats, HMC-1 Cells, and RAW 264.7 cells. In this review, the intestinal health benefits including antioxidant, anti-inflammatory, and antimicrobial activity, and its potential application in animal production were summarized. Through this review, we can see that the effects and mechanism of L. japonica extract on intestinal health regulation of farm and aquatic animals are still rare and unclear. Further studies could focus on the regulatory mechanism of L. japonica extract on intestinal health especially the protective effects of L. japonica extract on oxidative injury, inflammation, and regulation of intestinal flora in farm animals and aquatic animals, thereby providing references for the rational utilization and application of L. japonica and its extracts in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|