1
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Huang J, Zhao Y, Luo X, Luo Y, Ji J, Li J, Lai J, Liu Z, Chen Y, Lin Y, Liu J. Dexmedetomidine inhibits ferroptosis and attenuates sepsis-induced acute kidney injury via activating the Nrf2/SLC7A11/FSP1/CoQ10 pathway. Redox Rep 2024; 29:2430929. [PMID: 39581576 PMCID: PMC11587839 DOI: 10.1080/13510002.2024.2430929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVES The molecular mechanism underlying the protective effects of DEX against sepsis-induced acute kidney injury (SAKI) remains to be elucidated. METHODS We established S-AKI models in vivo via CLP and in vitro with LPS-induced HK-2 cells. RESULTS The Nrf2/SLC7A11/FSP1/CoQ10 pathway was inhibited in S-AKI both in vitro and in vivo. The overexpression of Nrf2 inhibited LPS-induced ferroptosis by activating the SLC7A11/FSP1/CoQ10 pathway. DEX ameliorated kidney tissue damage, as determined by a decrease in BUN, Cr, and inflammatory factor levels, along with renal tubule vacuolation and inflammatory cell infiltration in S-AKI mice. Additionally, DEX treatment significantly ameliorated ferroptosis in S-AKI in vitro and in vivo, as indicated by an improvement in mitochondrial shrinkage and disruption of cristae, a decrease in iron, ROS, MDA, and 4-HNE levels, and an increase in GSH and GPX4 levels. Mechanistically, DEX treatment restored the reduction of Nrf2 expression and nuclear translocation in S-AKI, as well as, the levels of downstream SLC7A11, FSP1, and CoQ10. Knocking down Nrf2 in vitro and administering brusatol in vivo eliminated the protective effect of DEX against S-AKI. CONCLUSIONS DEX mitigated ferroptosis and attenuated S-AKI by activating the Nrf2/SLC7A11/FSP1/CoQ10 pathway. Abbreviation: CLP: Cecal ligation puncture; LPS: Lipopolysaccharide; Nrf2: Nuclear factor-erythroid- 2-related factor 2; SLC7A11: Solute carrier family 7 member 11; FSP1: Ferroptosis suppressor protein 1; CoQ10: Coenzyme Q10; BUN: Blood urea nitrogen; Cr: Serum creatinine; ROS: Reactive oxygen species; MDA: Malondialdehyde; 4-HNE: 4-hydroxynonenal; GSH: Hlutathione; GPX4: Glutathione peroxidase 4.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yunpeng Luo
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, People’s Republic of China
| | - Jiemei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jia Li
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ziru Liu
- Department of Anesthesiology, Yueyang Central Hospital, Yueyang, People’s Republic of China
| | - Yuanyuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yunan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
3
|
Zheng ZL, Ma JW, Luo Y, Liang GJ, Lei SJ, Yan KJ, Meng HB, Liu XJ. Mechanism of dexmedetomidine protection against cisplatin induced acute kidney injury in rats. Ren Fail 2024; 46:2337287. [PMID: 38627212 PMCID: PMC11022910 DOI: 10.1080/0886022x.2024.2337287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 μg/kg, and CP + Dex 25 μg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.
Collapse
Affiliation(s)
- Zeng-lu Zheng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Jun-wei Ma
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Yi Luo
- Department of Respiratory, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Gui-jin Liang
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Shi-jie Lei
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Ke-jin Yan
- Department of Proctology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Hai-bing Meng
- Department of Anesthesiology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| | - Xiu-juan Liu
- Department of Nephrology, The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Nanchang, China
| |
Collapse
|
4
|
Xu W, Li W, Li Y, Kuai D, Sun W, Liu X, Xu B. Genetic insights into blood protein correlations with colorectal cancer: a Mendelian randomization study. Discov Oncol 2024; 15:710. [PMID: 39586851 PMCID: PMC11589031 DOI: 10.1007/s12672-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Several blood proteins might be associated with the development of colorectal cancer (CRC), but many studies on this topic are often biased. By using genetic variation data, which is less influenced by environmental factors, we can better determine the causal relationship between specific blood proteins and the occurrence of colorectal cancer. METHODS Data from a genome-wide association study (GWAS) on blood proteins, encompassing 1,478 proteins, and colorectal cancer (CRC) GWAS data, covering 637,693 subjects, were collected and organized. Additionally, GWAS data for obesity, diabetes mellitus (DM), and smoking were obtained for further analysis. Single nucleotide polymorphisms (SNPs) significantly associated with the exposure factors (blood proteins) were selected to ensure their independence from other confounding factors and outcomes (CRC onset), and that they only affected outcomes through blood proteins. The causal effects of Mendelian Randomization (MR) were primarily estimated using the inverse variance weighted (IVW) method, with other methods serving as supplementary approaches. The Cochran's Q-test assessed heterogeneity among SNP estimates; the MR Egger method evaluated pleiotropy; and the leave-one-out test examined the sensitivity of individual SNPs. Obesity, DM, and smoking were included in the multivariate MR analysis. RESULT A total of 31 SNPs and 8 blood protein exposure factors were identified, specifically TNFRSF16 (4 SNPs), RNF8 (4 SNPs), MRM3 (4 SNPs), ST6GALNAC1 (4 SNPs), TIE1 (4 SNPs), CBP (4 SNPs), DNAJB9 (4 SNPs), and EDN2 (3 SNPs). The IVW results showed a significant causal relationship between all 8 exposure factors and colorectal cancer (P < 0.05). Among these, TNFRSF16, TIE1, and EDN2 were identified as risk factors, while the remaining five served as protective factors. The causal inference in this study was not influenced by pleiotropy or environmental factors such as obesity, diabetes, and smoking. Therefore, the results were both stable and reliable. CONCLUSION Eight blood proteins (or genes) have been identified as having a causal relationship with the onset of colorectal cancer, suggesting their potential use as screening biomarkers and treatment targets.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China
| | - Wei Li
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China
| | - Yaqiang Li
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China
| | - Dayu Kuai
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China
| | - Wei Sun
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China
| | - Xian Liu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China
| | - Baohong Xu
- Department of Gastroenterology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 100000, China.
| |
Collapse
|
5
|
Gui S, Zhu C, Lu Y. Fibronectin type III domain containing protein 5/irisin alleviated sepsis-induced acute kidney injury by abating ferroptosis through the adenosine 5'-monophosphate-activated protein kinase/nuclear factor erythroid-2-related factor 2 signaling pathway. Cytojournal 2024; 21:54. [PMID: 39737132 PMCID: PMC11683371 DOI: 10.25259/cytojournal_62_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/17/2024] [Indexed: 01/01/2025] Open
Abstract
Objective Ferroptosis has been described in association with acute kidney injury (AKI)-induced sepsis. Fibronectin type III domain containing protein 5 (FNDC5)/irisin plays a crucial role in renal protection. The objective of this study was to investigate whether FNDC5/irisin is involved in AKI-induced sepsis by modulating ferroptosis, and the molecular mechanisms that may be involved. Material and Methods A sepsis-induced AKI model was built in vivo and in vitro through lipopolysaccharide (LPS) intervention. FNDC5, adenosine 5'-monophosphate-activated protein kinase (AMPK), phospho-AMPK (p-AMPK), nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), glutathione peroxidase 4 (GPX4), and acyl-CoA synthetase long-chain family member 4 (ACSL4) concentrations in cells and mouse kidney tissues were appraised by Western blot. Pro-inflammatory cytokines concentrations in cell supernatants and mouse kidney tissues were appraised by enzyme-linked immunosorbent assay. Fe2+ concentration in cells and mouse kidney tissue was appraised by kit. The apoptosis rate of cells and mouse kidney tissue was measured by flow cytometry. Automatic biochemical analyzer was to test serum creatinine (SCr) and blood urea nitrogen (BUN). The kidney tissue sections from each groups were observed by hematoxylin and eosin staining. Results LPS abated FNDC5 concentration in human kidney-2 cells and mouse kidney tissue (P < 0.001). Overexpression of FNDC5 can abated proinflammatory cytokines concentrations in cells and mouse kidney tissue (P < 0.01). Meanwhile, overexpression of FNDC5 can boost GPX4 protein concentration, abate ACSL4 protein, and abate Fe2+ concentration in cells and mouse kidney tissues (P < 0.05). In addition, the overexpression of FNDC5 can reduce the rate of apoptosis (P < 0.01). In vivo experiments showed that FNDC5 overexpression reduced serum BUN and SCr concentrations and alleviated pathological damage in the mouse renal tissues (P < 0.05) and exhibited a certain renal protective effect. FNDC5 overexpression can boost p-AMPK/AMPK, Nrf2, and HO-1 protein concentrations (P < 0.01). Conclusion FNDC5/irisin improves sepsis-induced acute renal injury by abating ferroptosis through the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shenghao Gui
- Department of Emergency, The First People’s Hospital of Tongxiang, Tongxiang, Zhejiang, China
| | - Chaochao Zhu
- Department of Emergency, The First People’s Hospital of Tongxiang, Tongxiang, Zhejiang, China
| | - Yunfeng Lu
- Department of Emergency, The First People’s Hospital of Tongxiang, Tongxiang, Zhejiang, China
| |
Collapse
|
6
|
Kayalar O, Bayrak BB, Yildirim M, Yanardag R, Oztay F. Retinoic acid reduces kidney injury by regulating oxidative stress, NRF-2, and apoptosis in hyperoxic mice. Cell Biochem Funct 2024; 42:e4094. [PMID: 39001564 DOI: 10.1002/cbf.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.
Collapse
Affiliation(s)
- Ozgecan Kayalar
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
- School of Medicine, Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Merve Yildirim
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Molecular Biology Division, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
张 方, 刘 刚. [Dexmedetomidine inhibits ferroptosis of human renal tubular epithelial cells by activating the Nrf2/HO-1/GPX4 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1135-1140. [PMID: 38977343 PMCID: PMC11237299 DOI: 10.12122/j.issn.1673-4254.2024.06.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 07/10/2024]
Abstract
OBJECTIVE To investigate the protective effect of dexmedetomidine (DEX) against erastin-induced ferroptosis in human renal tubular epithelial cells (HK-2 cells) and explore the underlying mechanism. METHODS HK-2 cells were treated with erastin alone or in combination with different concentrations (2.5, 5.0 and 10 μmol/L) of DEX, and the changes in cell viability were observed using CCK-8 assay. To explore the mechanism by which DEX inhibits erastin-induced ferroptosis, HK-2 cells were treated with erastin, erastin+10 μmol/L DEX, or erastin+10 μmol/L DEX+ML385 (a Nrf2 inhibitor), after which the cell viability was assessed. The level of intracellular Fe2+ was detected by cell ferrous iron colorimetric assay kit, and flow cytometry was performed to detect reactive oxygen species (ROS); MDA and reduced glutathione assay kits were used to detect the contents of MDA and GSH in the cells; The expressions of Nrf2, HO-1 and GPX4 proteins were detected by Western blotting. RESULTS Erastin treatment significantly inhibited the viability of the cells, decreased GSH content, and increased intracellular levels of Fe2+, ROS and MDA. The combined treatment with 10 μmol/L DEX markedly increased the viability of the cells, increased GSH content, reduced the levels of Fe2+, ROS and MDA, and upregulated the protein expressions of Nrf2, HO-1 and GPX4 in the cells. The application of ML385 obviously blocked the protective effect of DEX and caused significant inhibition of the Nrf2/HO-1/GPX4 pathway, decreased the cell viability and GSH content, and increased the levels of Fe2+, ROS and MDA in HK-2 cells. CONCLUSION The protective effect of DEX against erastin-induced ferroptosis of HK-2 cells is probably mediated by activation of the Nrf2/HO-1/GPX4 pathway to inhibit oxidative stress.
Collapse
|
8
|
Fu D, Gao S, Li JN, Cui YH, Luo YW, Zhong YJ, Li Q, Luo C, Dai RP, Luo RY, Hu ZL. P75 NTR+CD64 + neutrophils promote sepsis-induced acute lung injury. Clin Immunol 2024; 263:110206. [PMID: 38599263 DOI: 10.1016/j.clim.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.
Collapse
Affiliation(s)
- Di Fu
- Department of Anesthesiology, The Xiangya Hospital, Central South University, Changsha City, Hunan 410008, China
| | - Shan Gao
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Jia-Nan Li
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha City, Hunan 410011, China
| | - Yan-Wei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Yan-Jun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiao Li
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Cong Luo
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Ru-Ping Dai
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China
| | - Ru-Yi Luo
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China.
| | - Zhao-Lan Hu
- Anesthesia Medical Research Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha City, Hunan 410011, China.
| |
Collapse
|
9
|
Lou Y, Zou L, Shen Z, Zheng J, Lin Y, Zhang Z, Chen X, Pan J, Zhang X. Protective effect of dexmedetomidine against delayed bone healing caused by morphine via PI3K/Akt mediated Nrf2 antioxidant defense system. Front Pharmacol 2024; 15:1396713. [PMID: 38863982 PMCID: PMC11165180 DOI: 10.3389/fphar.2024.1396713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Background As a class of analgesics, opioids are frequently used to treat both acute and chronic moderate to severe pain. Patients frequently receive opioid painkillers after orthopedic accidents or surgeries. Evidence suggests that opioid drug users have a 55.1% higher risk of fracture and poor bone repair than non-users of opioid drugs. The key pathogenic alterations in the incidence and progression of poor bone repair are over apoptosis and aging of osteoblasts due to the stress caused by oxidation. Dexmedetomidine (Dex) has been proven to protect against a variety of degenerative illnesses by reducing oxidative stress. However, nothing is known about how it affects bone repair. Methods PI3K/Akt/Nrf2 pathway was detected by immunofluorescence and Western blot. SOD, CAT, JC-1, dihydroethidium and mitosox were used in the Oxidative Stress. Micro-CT, H&E and Masson's staining, immunohistochemically were performed to evaluate the therapeutic effects of DEX on calvarial defects in the morphine-induced rat model. Results We found that morphine-induced an imbalance in the metabolism and catabolism of primary rat Osteoblasts. However, these conditions could be inhibited by DEX treatment. In the meantime, DEX induced the expression of Nrf2-regulated antioxidant enzymes such as NQO1, HO-1, GCLm, GCLc, and TrxR1. DEX-mediated Nrf2 activation is linked to the PI3K/Akt signaling system. Furthermore, it has been established that intravenous DEX enhanced the growth of bone healing in a model of a surgically produced rat cranial lesion. Conclusion This is the first description of the unique DEX mechanism acting as a Nrf2 activator against morphine-mediated oxidative harm, raising the possibility that the substance may be used to prevent bone defects.
Collapse
Affiliation(s)
- Yani Lou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianwei Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhe Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - XuanKuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xutong Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Zhao C, Liu S, Zhang H, Gao M. Does dexmedetomidine reduce the risk of acute kidney injury after cardiac surgery? A meta-analysis of randomized controlled trials. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2024; 74:744446. [PMID: 37453497 PMCID: PMC11148486 DOI: 10.1016/j.bjane.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Acute Kidney Injury (AKI) is a common complication after cardiac surgery and has been associated with poor outcomes. Dexmedetomidine (DEX) has been shown to confer direct renoprotection based on some animal and clinical studies, but data from other trials came to the opposite conclusion following cardiac surgery. This meta-analysis was conducted to evaluate the effects of perioperative DEX administration on the occurrence of AKI and the outcomes after cardiac surgery. METHODS We searched databases including EMBASE, PubMed, and Cochrane CENTRAL for Randomized Controlled Trials (RCTs) focused on DEX for AKI in adult patients after cardiac surgery. The primary outcome was incidence of AKI. Secondary outcomes were Mechanical Ventilation (MV) duration, Intensive Care Unit (ICU) Length Of Stay (LOS), hospital LOS and mortality. RESULTS Fifteen trials enrolling 2907 study patients were collected in the meta-analyses. Compared with controls, DEX reduced the incidence of postoperative AKI (Odds Ratio [OR = 0.66]; 95% Confidence Interval [95% CI 0.48-0.91]; p = 0.01), and there was no significant difference between groups in postoperative mortality (OR = 0.63; 95% CI 0.32-1.26; p = 0.19), MV duration (Weighted Mean Difference [WMD = -0.44]; 95% CI -1.50-0.63; p = 0.42), ICU LOS (WMD = -1.19; 95% CI -2.89-0.51; p = 0.17), and hospital LOS (WMD = -0.31; 95% CI -0.76-0.15; p = 0.19). CONCLUSIONS Perioperative DEX reduced the incidence of postoperative AKI in adult patients undergoing cardiac surgery. No significant decrease existed in mortality, MV duration, ICU LOS and hospital LOS owing to DEX administration.
Collapse
Affiliation(s)
- Chunxiao Zhao
- Capital Medical University, Beijing Shijitan Hospital, Department of Intensive Care Unit, Beijing, China.
| | - Shuo Liu
- Capital Medical University, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Department of Pharmacy, Beijing, China
| | - Huiquan Zhang
- Capital Medical University, Beijing Shijitan Hospital, Department of Intensive Care Unit, Beijing, China
| | - Mengqi Gao
- Capital Medical University, Beijing Shijitan Hospital, Department of Intensive Care Unit, Beijing, China
| |
Collapse
|
11
|
Weng J, Wang Y, Tan Z, Yuan Y, Huang S, Li Z, Li Y, Zhang L, Du Z. Glabridin reduces neuroinflammation by modulating inflammatory signals in LPS-induced in vitro and in vivo models. Inflammopharmacology 2024; 32:1159-1169. [PMID: 38372849 DOI: 10.1007/s10787-023-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/23/2023] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Chronic neuroinflammation has become one of the important causes of common neurodegeneration disease. Therefore, the target of this study was to explore the protective action of glabridin on lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro and its mechanism. METHODS The neuroinflammation model was established by LPS-induced BV2 cells. The cell viability with various concentrations of glabridin was determined by MTT assay, and the content of NO in each group was detected. A neuroinflammatory model was established in male C57BL/6J mice for a water maze test. Subsequently, NF-κB and SOD indices were measured by ELISA, GFAP and IBA-1 indices were measured by immunofluorescence, and Nissl staining was used to explore the Nissl bodies in the hippocampus of mice. RESULTS In vitro experiments, our results expressed that glabridin could markedly increase the cell activity of LPS-induced BV2 cells and reduce the NO expression in cells. It indicated that glabridin had a remarkable impact on the neuroinflammation of LPS-induced BV2 cell protection. In vivo neuroinflammation experiments, mice treated with different doses of glabridin showed significantly improved ability of memory compared with the LPS group in the Morris water maze test. The levels of NF-κB, GFAP, and the number of positive cells in Nissl staining were decreased. High-dose glabridin significantly increased the SOD content in the brain tissue and decreased the IBA-1 levels. CONCLUSION Glabridin can significantly reduce or even reverse LPS-induced neuroinflammation, which may be related to the fact that glabridin can reduce the NO expression, NF-κB, IBA-1, GFAP, and other inflammatory mediators, upregulate the expression of SOD to relieve oxidative stress of brain and inhibit the activation of gliocyte in brain tissue.
Collapse
Affiliation(s)
- Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zekai Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanghe Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyuan Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zexi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiming Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Qian L, Hu N, Yu Y. The effect of the concurrent use of Dexmedetomidine (DEX) during the perioperative period on the renal function of patients following craniocerebral interventional surgery. Int J Neurosci 2024:1-12. [PMID: 38526065 DOI: 10.1080/00207454.2024.2335530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Craniocerebral interventional surgery is a common and essential treatment for cerebrovascular diseases. Despite continuous progress in interventional diagnosis and treatment technology, there is no effective method to alleviate contrast-induced kidney injuries. In this retrospective cohort study, we investigated the effect of the concurrent use of Dexmedetomidine (DEX) during the perioperative period on the renal function of patients following craniocerebral interventional surgery. METHODS We identified 228 cases of patients underwent craniocerebral interventional surgery from January 2018 to March 2022. Patients who used DEX during general anesthesia were in the DEX group (DEX group) or that did not use dexmedetomidine as the control group (CON group). The markers of kidney injury were recorded before and within 48 h after surgery. RESULTS Compared with CON group, the urea nitrogen (BUN) of the DEX group decreased significantly on the first day and the second day after surgery (p < 0.05). The serum cystatin-C and the blood urea nitrogen/creatinine ratio (BUN/Cr) was significantly lower than that in CON group on the second day (p < 0.05). The urine output in the DEX group increased significantly, and the mean arterial pressure (MAP) was higher than the CON group (p < 0.01). There was no difference in postoperative complications, ICU stay time and hospitalization time between the two groups. CONCLUSION The combined use of dexmedetomidine in general anesthesia for craniocerebral interventional surgery can reduce BUN levels within 48 h after surgery, significantly increase intraoperative urine volume, maintain intraoperative circulation stability.
Collapse
Affiliation(s)
- Lu Qian
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Nianqiang Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
14
|
Wang F, Xu W, Liu X, Zhang J. Dexmedetomidine ameliorates high glucose-induced epithelial-mesenchymal transformation in HK-2 cells through the Cdk5/Drp1/ROS pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:71-81. [PMID: 38013469 PMCID: PMC10875345 DOI: 10.3724/abbs.2023220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/15/2023] [Indexed: 11/29/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays an important role in the progression of diabetic nephropathy. Dexmedetomidine (DEX) has shown renoprotective effects against ischemic reperfusion injury; however, whether and how DEX prevents high glucose-induced EMT in renal tubular epithelial cells is incompletely known. Here, we conduct in vitro experiments using HK-2 cells, a human tubular epithelial cell line. Our results demonstrate that high glucose increases the expressions of EMT-related proteins, including Vimentin, Slug, Snail and Twist, while decreasing the expression of E-cadherin and increasing Cdk5 expression in HK-2 cells. Both Cdk5 knockdown and inhibition by roscovitine increase the expressions of E-cadherin while decreasing the expressions of other EMT-related markers. DEX inhibits Cdk5 expression without affecting cell viability and changes the expressions of EMT-related markers, similar to effects of Cdk5 inhibition. Furthermore, Cdk5 is found to interact with Drp1 at the protein level and mediate the phosphorylation of Drp1. In addition, Drp1 inhibition with mdivi-1 could also restrain the high glucose-induced EMT process in HK-2 cells. Immunofluorescence results show that roscovitine, Mdivi-1 and DEX inhibit high glucose-induced intracellular ROS accumulation, while the oxidant H 2O 2 eliminates the protective effect of DEX on the EMT process. These results indicate that DEX mitigates high glucose-induced EMT progression in HK-2 cells via inhibition of the Cdk5/Drp1/ROS pathway.
Collapse
Affiliation(s)
- Fei Wang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weilong Xu
- Department of Anesthesiologythe Affiliated Hospital of Qingdao UniversityQingdao266000China
| | - Xiaoge Liu
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Jun Zhang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
15
|
Ren Y, He J, Wang X, Liang H, Ma Y. Exosomes from adipose-derived stem cells alleviate premature ovarian failure via blockage of autophagy and AMPK/mTOR pathway. PeerJ 2023; 11:e16517. [PMID: 38107591 PMCID: PMC10725676 DOI: 10.7717/peerj.16517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023] Open
Abstract
Objective The objective of this study was to investigate the effects and mechanisms of adipose-derived stem cell-derived exosome (ADSCs-Exo) in treating premature ovarian failure (POF). Methods We constructed a POF mouse model through intraperitoneal injection of cyclophosphamide, followed by the administration of the autophagy inhibitor 3-methyladenine (3-MA). Pathological injury, follicle stimulating hormone (FSH), malondialdehyde (MDA), reactive oxygen species (ROS), estradiol (E2), superoxide dismutase (SOD), granulosa cell (GC) apoptosis, and autophagy were assessed. Exosomes isolated from ADSCs were used to treat POF in mice. The AMPK-mTOR pathway and its proteins (p-AMPK and p-mTOR) were evaluated. A POF cell model was established using cyclophosphamide-treated human ovarian granulosa-like tumor (KGN) cells. We administered ADSCs-Exo and rapamycin to validate the mechanism of ADSCs-Exo against POF. Results In POF mice, 3-MA treatment attenuated pathological injuries, decreased FSH, MDA, and ROS levels, and increased E2 and SOD levels. 3-MA treatment also inhibited GC apoptosis and autophagy. ADSCs-Exo alleviated pathological injuries, improved ovarian morphology and function, and reduced oxidative stress in POF mice. ADSCs-Exo inhibited GC apoptosis and autophagy. ADSCs-Exo downregulated the expression of AMPK/mTOR pathway proteins (p-AMPK and p-mTOR). In the POF cell model, ADSCs-Exo and rapamycin inhibited AMPK/mTOR-mediated autophagy. Conclusion ADSCs-Exo inhibits POF through the inhibition of autophagy and the AMPK/mTOR pathway. This study provides a potential target for the clinical treatment of POF.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jinying He
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xiao Wang
- Endoscopy Center, Inner Mongolia People’s Hospital, Hohhot, China
| | - Hongyu Liang
- Department of Scientific Research, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yuzhen Ma
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
16
|
Ji X, Liu X, Li X, Du X, Fan L. MircoRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis. Nefrologia 2023; 43 Suppl 2:8-20. [PMID: 37179213 DOI: 10.1016/j.nefroe.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Acute kidney injury (AKI) is a common devastating complication characterized by an abrupt loss of renal function. It is of great significance to explore promising biomarkers for AKI treatment. MATERIALS AND METHODS Here, we established LPS (lipopolysaccharide)-induced AKI mice models and LPS-induced AKI mouse renal tubular epithelial cell model. The severity of AKI was determined by the levels of BUN (blood urea nitrogen) and SCr (serum creatinine), the observation of pathological section as well as the renal tubular injury score. The apoptosis was determined by the measurement of Caspase-3 and Caspase-9 activities, and cell apoptosis assays. qRT-PCR (quantitative real-time PCR) and western blot revealed that miR-322-5p (microRNA-322-5p) was up-regulated in LPS -induced AKI models while Tbx21 (T-box transcription factor 21) was down-regulated in LPS-induced AKI models. Dual-luciferase reporter and RNA pulldown assays detected the interaction of Tbx21 with miR-322-5p. RESULTS We found that miR-322-5p was overtly over-expressed in the in vitro LPS-induced AKI model and promoted the apoptosis of AKI mouse renal tubular epithelial cells via inhibiting Tbx21, which suppressed the mitochondrial fission and cell apoptosis through MAPK/ERK (mitogen-activated protein kinase/extracellular signal-related kinase) pathway. CONCLUSIONS We demonstrated that miR-322-5p promotes LPS-induced mouse AKI by regulating Tbx21/MAPK/ERK axis, which might provide new sights for AKI research.
Collapse
Affiliation(s)
- Xiaobing Ji
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaodong Liu
- Department of Nephrology, The Second People's Hospital of Lianyungang,Affiliated to Kangda College of Nanjing Medical University, Lianyungang 222023, Jiangsu, China
| | - Xiangxiang Li
- Department of Nephrology, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing 210039, Jiangsu, China
| | - Xin Du
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Li Fan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
17
|
Xing H, Li S, Fu Y, Wan X, Zhou A, Cao F, Sun Q, Hu N, Ma M, Li W, Cao C. HYAL1 deficiency attenuates lipopolysaccharide-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice. Ren Fail 2023; 45:2188966. [PMID: 37563795 PMCID: PMC10424626 DOI: 10.1080/0886022x.2023.2188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Renal dysfunction and disruption of renal endothelial glycocalyx are two important events during septic acute kidney injury (AKI). Here, the role and mechanism of hyaluronidase 1 (HYAL1) in regulating renal injury and renal endothelial glycocalyx breakdown in septic AKI were explored for the first time. METHODS BALB/c mice were injected with lipopolysaccharide (LPS, 10 mg/kg) to induce AKI. HYAL1 was blocked in vivo using lentivirus-mediated short hairpin RNA targeting HYAL1 (LV-sh-HYAL1). Biochemical assays were performed to measure the levels and concentrations of biochemical parameters associated with AKI as well as levels of inflammatory cytokines. Renal pathological lesions were determined by hematoxylin-eosin (HE) staining. Cell apoptosis in the kidney was detected using terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) assay. Immunofluorescence and immunohistochemical (IHC) staining assays were used to examine the levels of hyaluronic acid in the kidney. The protein levels of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling, endothelial glycocalyx, and autophagy-associated indicators were assessed by western blotting. RESULTS The knockdown of HYAL1 in LPS-subjected mice by LV-sh-HYAL1 significantly reduced renal inflammation, oxidative stress, apoptosis and kidney dysfunction in AKI, as well as alleviated renal endothelial glycocalyx disruption by preventing the release of hyaluronic acid to the bloodstream. Additionally, autophagy-related protein analysis indicated that knockdown of HYAL1 significantly enhanced autophagy in LPS mice. Furthermore, the beneficial actions of HYAL1 blockade were closely associated with the AMPK/mTOR signaling. CONCLUSION HYAL1 deficiency attenuates LPS-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice.
Collapse
Affiliation(s)
- Hongxia Xing
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Shensen Li
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Yongchao Fu
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Annan Zhou
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Feifei Cao
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Qing Sun
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Nana Hu
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Mengqing Ma
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Wenwen Li
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| | - Changchun Cao
- Department of Nephrology, Sir Run Hospital, Nanjing Medical University, Jiangsu, ChinaNanjing
| |
Collapse
|
18
|
Wang W, Jin Y, Zhang P, Gao P, Wang H, Liu J. Impact of dexmedetomidine on mortality in critically ill patients with acute kidney injury: a retrospective propensity score matching analysis. BMJ Open 2023; 13:e073675. [PMID: 37968013 PMCID: PMC10660201 DOI: 10.1136/bmjopen-2023-073675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023] Open
Abstract
OBJECTIVES This study sought to estimate the effect of dexmedetomidine (DEX) administration on mortality in critically ill patients with acute kidney injury (AKI). DESIGN A retrospective cohort study. SETTING The study sourced its data from the Multiparameter Intelligent Monitoring in Intensive Care Database IV (MIMIC-IV), a comprehensive database of intensive care unit patients. PARTICIPANTS A total of 15 754 critically ill patients with AKI were enrolled from the MIMIC-IV database. PRIMARY AND SECONDARY OUTCOME Primary outcome was in-hospital mortality and secondary outcome was 180-day mortality. RESULTS 15 754 critically ill AKI patients were included in our analysis. We found that DEX use decreased in-hospital mortality risk by 38% (HR 0.62, 95% CI 0.55 to 0.70) and 180-day mortality risk by 23% (HR 0.77, 95% CI 0.69 to 0.85). After adjusting for confounding factors, DEX can reduce all three stages of AKI in in-hospital mortality. CONCLUSIONS Our retrospective cohort study suggests that DEX significantly correlates with decreased risk-adjusted in-hospital and 180-day mortality in critically ill AKI patients. Nonetheless, future randomised controlled trials are warranted to validate our findings.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Jin
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyao Zhang
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Gao
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Wang
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinping Liu
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
He H, Liu P, Li P. Dexmedetomidine Ameliorates Cardiac Ischemia/Reperfusion Injury by Enhancing Autophagy Through Activation of the AMPK/SIRT3 Pathway. Drug Des Devel Ther 2023; 17:3205-3218. [PMID: 37908314 PMCID: PMC10613569 DOI: 10.2147/dddt.s428024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Objective Myocardial ischemia-reperfusion (I/R) injury is a detrimental disease, resulting in high morbidity and mortality globally. In this study, we aimed to investigate the role of Dex in mitigating cardiac I/R injury. Methods H9c2 cells were treated with Dex (1 μM) for 24 h followed by oxygen-glucose deprivation/re-oxygenation (OGD/R). ANP and BNP mRNA of H9c2 cells and the LDH release were measured. Apoptosis of H9c2 cells was analyzed by flow cytometry. Mitochondrial membrane potential and superoxide production were detected by JC-1 staining and MitoSOXTM Red, respectively. Cell aerobic respiration was measured using Seahorse analysis. In vivo, mice were injected with Dex (25 μg/kg, i.p., once daily) for 5 days and then subjected to heart I/R. Heart function was analyzed by echocardiography. CK-MB and LDH were measured by Elisa. Infarct size was measured using TTC-Evans blue staining. Mitochondrial ultrastructure was observed using transmission electron microscopy. DHE staining, SOD activity, the content of MDA, and the content of GSH/GSSG of heart were measured to evaluate the oxidative stress. In addition, inflammatory cytokines were measured in vivo and in vitro. Furthermore, AMPK, SIRT3, and autophagy-related protein expression in the heart were detected by Western blot. Results Dex reduced the H9c2 cells injury exposed to OGD/R, accompanied by improved mitochondrial function and membrane potential. In vivo, Dex improved heart function, myocardial injury, and the mitochondria ultrastructure following I/R injury. Meanwhile, Dex inhibited myocardial oxidative stress and inflammation in the myocardial I/R. Furthermore, Compound C (an AMPK inhibitor) could inhibit Dex-induced autophagy in the I/R heart and the 3-MA (an autophagy inhibitor) could partially interfere with the effects of Dex on the protection of I/R heart. Conclusion Dex suppressed oxidative stress and inflammation by promoting autophagy through activating the AMPK/SIRT3 pathway, thus protecting the heart against the I/R injury.
Collapse
Affiliation(s)
- Hong He
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072People’s Republic of China
| | - Peng Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610044People’s Republic of China
| | - Peng Li
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072People’s Republic of China
| |
Collapse
|
20
|
Casini A, Vivacqua G, Vaccaro R, Renzi A, Leone S, Pannarale L, Franchitto A, Onori P, Mancinelli R, Gaudio E. Expression and role of cocaine-amphetamine regulated transcript (CART) in the proliferation of biliary epithelium. Eur J Histochem 2023; 67:3846. [PMID: 37859350 PMCID: PMC10620849 DOI: 10.4081/ejh.2023.3846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Cholangiocytes, the epithelial cells that line the biliary tree, can proliferate under the stimulation of several factors through both autocrine and paracrine pathways. The cocaine-amphetamine-regulated-transcript (CART) peptide has several physiological functions, and it is widely expressed in several organs. CART increases the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor (BDNF), whose expression has been correlated to the proliferation rate of cholangiocytes. In the present study, we aimed to evaluate the expression of CART and its role in modulating cholangiocyte proliferation in healthy and bile duct ligated (BDL) rats in vivo, as well as in cultured normal rat cholangiocytes (NRC) in vitro. Liver samples from both healthy and BDL (1 week) rats, were analyzed by immunohistochemistry and immunofluorescence for CART, CK19, TrkB and p75NTR BDNF receptors. PCNA staining was used to evaluate the proliferation of the cholangiocytes, whereas TUNEL assay was used to evaluate biliary apoptosis. NRC treated or not with CART were used to confirm the role of CART on cholangiocytes proliferation and the secretion of BDNF. Cholangiocytes proliferation, apoptosis, CART and TrkB expression were increased in BDL rats, compared to control rats. We found a higher expression of TrkB and p75NTR, which could be correlated with the proliferation rate of biliary tree during BDL. The in vitro study demonstrated increased BDNF secretion by NRC after treatment with CART compared with control cells. As previously reported, proliferating cholangiocytes acquire a neuroendocrine phenotype, modulated by several factors, including neurotrophins. Accordingly, CART may play a key role in the remodeling of biliary epithelium during cholestasis by modulating the secretion of BDNF.
Collapse
Affiliation(s)
- Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| | - Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome.
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| | - Anastasia Renzi
- Department of Pathology, Akershus University Hospital, Lorenskog.
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| | - Antonio Franchitto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome.
| |
Collapse
|
21
|
Ye W, Miao Q, Xu G, Jin K, Li X, Wu W, Yu L, Yan M. CircRNA itchy E3 ubiquitin protein ligase improves mitochondrial dysfunction in sepsis-induced acute kidney injury by targeting microRNA-214-3p/ATP-binding cassette A1 axis. Ren Fail 2023; 45:2261552. [PMID: 37782276 PMCID: PMC10547449 DOI: 10.1080/0886022x.2023.2261552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are promising biomarkers and therapeutic targets for acute kidney injury (AKI). In this study, we investigated the mechanism by which circRNA itchy E3 ubiquitin protein ligase (circ-ITCH) regulates sepsis-induced AKI. METHODS A sepsis-induced AKI mouse model was created using LPS induction and circ-ITCH overexpression. Circ-ITCH levels were confirmed via RT-qPCR. Kidney tissue changes were examined through various stains and TUNEL. Enzyme-linked immunosorbent assay (ELISA) gauged oxidative stress and inflammation. Mitochondrial features were studied with electron microscopy. RT-qPCR and western blotting assessed mitochondrial function parameters. Using starBase, binding sites between circ-ITCH and miR-214-3p, as well as miR-214-3p and ABCA1, were predicted. Regulatory connections were proven by dual-luciferase assay, RT-qPCR, and western blotting. RESULTS Circ-ITCH expression was downregulated in LPS-induced sepsis mice. Overexpression of circ-ITCH ameliorates indicators of renal function (serum creatinine [SCr], blood urea nitrogen [BUN], neutrophil gelatinase-associated lipocalin [NGAL], and kidney injury molecule-1 [Kim-1]), reduces renal cell apoptosis, mitigates oxidative stress markers (reactive oxygen species [ROS] and malondialdehyde [MDA]), and diminishes inflammatory markers (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF-α]). Moreover, circ-ITCH overexpression alleviated mitochondrial damage and dysfunction. Furthermore, circ-ITCH acts as a sponge for miR-214-3p, thereby upregulating ABCA1 expression. In addition, the miR-214-3p inhibitor repressed oxidative stress, inflammation, and mitochondrial dysfunction, which was reversed by circ-ITCH knockdown. Further cellular analysis in HK-2 cells supported these findings, highlighting the protective role of circ-ITCH against sepsis-induced AKI, particularly through the miR-214-3p/ABCA1 axis. CONCLUSION The novel circ-ITCH/miR-214-3p/ABCA1 pathway plays an essential role in the regulation of oxidative stress and mitochondrial dysfunction in sepsis-induced AKI.
Collapse
Affiliation(s)
- Weidi Ye
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qi Miao
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guangxin Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Kai Jin
- Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Eye Center Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Weidong Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
22
|
Zeng B, Liu Y, Xu J, Niu L, Wu Y, Zhang D, Tang X, Zhu Z, Chen Y, Hu L, Yu S, Yu P, Zhang J, Wang W. Future Directions in Optimizing Anesthesia to Reduce Perioperative Acute Kidney Injury. Am J Nephrol 2023; 54:434-450. [PMID: 37742618 DOI: 10.1159/000533534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Perioperative acute kidney injury (AKI) is common in surgical patients and is associated with high morbidity and mortality. There are currently few options for AKI prevention and treatment. Due to its complex pathophysiology, there is no efficient medication therapy to stop the onset of the injury or repair the damage already done. Certain anesthetics, however, have been demonstrated to affect the risk of perioperative AKI in some studies. The impact of anesthetics on renal function is particularly important as it is closely related to the prognosis of patients. Some anesthetics can induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. Propofol, sevoflurane, and dexmedetomidine are a few examples of anesthetics that have protective association with AKI in the perioperative period. SUMMARY In this study, we reviewed the clinical characteristics, risk factors, and pathogenesis of AKI. Subsequently, the protective effects of various anesthetic agents against perioperative AKI and the latest research are introduced. KEY MESSAGE This work demonstrates that a thorough understanding of the reciprocal effects of anesthetic drugs and AKI is crucial for safe perioperative care and prognosis of patients. However, more complete mechanisms and pathophysiological processes still need to be further studied.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yinuo Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
- The Second Clinical Medical College of Nanchang University, Nanchang, China,
| | - Jiawei Xu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Liyan Niu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
- Huan Kui College, Nanchang University, Nanchang, China
| | - Yuting Wu
- Huan Kui College, Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deju Zhang
- Huan Kui College, Nanchang University, Nanchang, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leilei Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Wang R, An Y, Xu Y, Li C, Wang Q, Zou Y, Wang G. Exploring anti-acute kidney injury mechanism of Dahuang-Gancao decoction by network pharmacology and experimental validation. Aging (Albany NY) 2023; 15:10072-10088. [PMID: 37724901 PMCID: PMC10599760 DOI: 10.18632/aging.205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
This study aimed to investigate the pharmacological effects and molecular mechanisms of Dahuang-Gancao Decoction (DHGC) on acute kidney injury (AKI). Network pharmacology was utilized to analyze the key targets of DHGC against AKI. These targets were used to construct a protein-protein interaction (PPI) network, which was analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment to predict the mechanism of action. Based on the network pharmacological analysis, Sirtuin 3 (SIRT3) was identified as a key target, and apoptosis was suggested as a mechanism of DHGC for AKI treatment. Subsequently, an AKI mouse model was induced using lipopolysaccharide (LPS), and the study demonstrated that DHGC gradient intervention significantly reduced plasma urea and creatinine levels in AKI mice, ameliorated renal pathological changes, reduced apoptosis, and lowered serum inflammatory factors. The mechanism of DHGC's anti-AKI effect may lie in the activation of the SIRT3/NRF2/HO-1 signaling pathway, which plays an antiapoptotic role in renal cells. In summary, DHGC improved LPS-induced AKI in mice by activating the SIRT3/NRF2/HO-1 signaling pathway. These findings shed light on the potential clinical application of DHGC for the treatment of nephropathy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430065, P.R. China
| | - Yi An
- Department of Endocrinology, Second Affiliated Hospital of Wuhan University of Science and Technology, Wuhan 430065, P.R. China
| | - Yifang Xu
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430065, P.R. China
| | - Chengyin Li
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430065, P.R. China
| | - Qiyuan Wang
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430065, P.R. China
| | - Yinshui Zou
- Department of Oncology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430065, P.R. China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, P.R. China
| |
Collapse
|
24
|
Han J, Wu J, Liu H, Huang Y, Ju W, Xing Y, Zhang X, Yang J. Inhibition of pyroptosis and apoptosis by capsaicin protects against LPS-induced acute kidney injury through TRPV1/UCP2 axis in vitro. Open Life Sci 2023; 18:20220647. [PMID: 37528882 PMCID: PMC10389676 DOI: 10.1515/biol-2022-0647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 08/03/2023] Open
Abstract
Acute kidney injury is a fatal disease characterized by a rapid deterioration of kidney function. Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a natural product extracted from Capsicum. The aim of this study was to explore the protective effect of capsaicin on inflammation, apoptosis, and mitochondrial dysfunction in an in vitro model of acute kidney injury. Lipopolysaccharide (LPS)-induced acute kidney injury model was established in HK-2 cells to investigate the protective effect of capsaicin. Cell viability was assessed using CCK-8 assay, and protein expression was detected using western blot and immunofluorescence assay. Intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential were analyzed by flow cytometry. Cell apoptosis was detected by propidium iodide staining. The results showed that capsaicin ameliorated LPS-induced cytotoxicity in vitro and attenuated the release of interleukin (IL)-1β and IL-18. Intriguingly, genipin abolished the protective effect of capsaicin. Molecularly, capsaicin activated transient receptor potential cation channel subfamily V member 1 -mitochondrial uncoupling protein 2 axis and inhibited caspase-1-mediated pyroptosis. In addition, capsaicin alleviated LPS-induced ROS production and mitochondrial membrane potential disruption and inhibited apoptosis. These findings suggest that capsaicin shows a protective effect in in vitro acute kidney injury model.
Collapse
Affiliation(s)
- Jinrun Han
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Jinhao Wu
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Hong Liu
- The Intensive Care Unit, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Huang
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Ju
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifei Xing
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoping Zhang
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- The Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Chen PP, Zhang JX, Li XQ, Li L, Wu QY, Liu L, Wang GH, Ruan XZ, Ma KL. Outer membrane vesicles derived from gut microbiota mediate tubulointerstitial inflammation: a potential new mechanism for diabetic kidney disease. Theranostics 2023; 13:3988-4003. [PMID: 37554279 PMCID: PMC10405836 DOI: 10.7150/thno.84650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
Rationale: Chronic tubulointerstitial inflammation is a common pathological process in diabetic kidney disease (DKD). However, its underlying mechanism is largely unknown. This study aims at investigating the role of gut microbiota-derived outer membrane vesicles (OMVs) in tubulointerstitial inflammation in DKD. Methods: Gut microbiota in diabetes mellitus rats was manipulated by microbiota depletion and fecal microbiota transplantation to explore its role in tubulointerstitial inflammation. To check the direct effects of OMVs, fecal bacterial extracellular vesicles (fBEVs) were administrated to mice orally and HK-2 cells in vitro. For mechanistic investigations, HK-2 cells were treated with small interfering RNA against caspase-4 and fBEVs pre-neutralized by polymyxin B. Results: By performing gut microbiota manipulation, it was confirmed that gut microbiota mediated tubulointerstitial inflammation in DKD. In diabetic rats, gut microbiota-derived OMVs were increased and were clearly detected in distant renal tubulointerstitium. Diabetic fBEVs directly administered by gavage translocated into tubular epithelial cells and induced tubulointerstitial inflammation and kidney injury. In vitro, OMVs were internalized through various endocytic pathways and triggered cellular inflammatory response. Mechanistically, it was revealed that OMVs-derived lipopolysaccharide induced tubular inflammation, which was mediated by the activation of the caspase-11 pathway. Conclusions: Increased OMVs due to dysbiosis translocated through leaky gut barrier into distant tubulointerstitium and induced cellular inflammation and renal tubulointerstitial injury in DKD. These findings enrich the mechanism understanding of how gut microbiota and its releasing OMVs influence the development and progression of kidney disease.
Collapse
Affiliation(s)
- Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xue Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qin Yi Wu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Liu
- People's Hospital Affiliated to Shandong First Medical University, Shandong, 271100, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiong Zhong Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London (UCL) Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Kun Ling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
26
|
Zhang Y, Zeng M, Li B, Zhang B, Cao B, Wu Y, Ye S, Xu R, Zheng X, Feng W. Ephedra Herb extract ameliorates adriamycin-induced nephrotic syndrome in rats via the CAMKK2/AMPK/mTOR signaling pathway. Chin J Nat Med 2023; 21:371-382. [PMID: 37245875 DOI: 10.1016/s1875-5364(23)60454-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 05/30/2023]
Abstract
This study aimed to investigate the effect and mechanisms of Ephedra Herb (EH) extract on adriamycin-induced nephrotic syndrome (NS), providing an experimental basis for the clinical treatment of NS. Hematoxylin and eosin staining, creatinine, urea nitrogen, and kidn injury molecule-1 were used to evaluate the activities of EH extract on renal function. The levels of inflammatory factors and oxidative stress were detected by kits. The levels of reactive oxygen species, immune cells, and apoptosis were measured by flow cytometry. A network pharmacological approach was used to predict the potential targets and mechanisms of EH extract in the treatment of NS. The protein levels of apoptosis-related proteins and CAMKK2, p-CAMKK2, AMPK, p-AMPK, mTOR and p-mTOR in the kidneys were detected by Western blot. The effective material basis of EH extract was screened by MTT assay. The AMPK pathway inhibitor (compound C, CC) was added to investigate the effect of the potent material basis on adriamycin-induced cell injury. EH extract significantly improved renal injury and relieve inflammation, oxidative stress, and apoptosis in rats. Network pharmacology and Western blot results showed that the effect of EH extract on NS may be associated with the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine significantly ameliorated adriamycin-induced NRK-52e cell injury. Methylephedrine also significantly improved the phosphorylation of AMPK and mTOR, which were blocked by CC. In sum, EH extract may ameliorate renal injury via the CAMKK2/AMPK/mTOR signaling pathway. Moreover, methylephedrine may be one of the material bases of EH extract.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., Zhengzhou 450000, China
| | - Benke Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Yuanyuan Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Shan Ye
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Ruiqi Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., Zhengzhou 450000, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China; The Engineering and Technology Center for Chinese Medicine Development of Henan province, Zhengzhou 450000, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., Zhengzhou 450000, China.
| |
Collapse
|
27
|
Qiu YQ, Zhuang LP, Wu PY, Zhong LY, Zhong XH, Chen B, Liu ZK, Luo HR, Yang LP. Effect of Dexmedetomidine on Postoperative Renal Function in Patients Undergoing Cardiac Valve Surgery Under Cardiopulmonary Bypass: A Randomized Clinical Trial. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00243-4. [PMID: 37179127 DOI: 10.1053/j.jvca.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE The effect of dexmedetomidine on postoperative renal function was investigated in patients undergoing cardiac valve surgery under cardiopulmonary bypass (CPB). DESIGN A randomized controlled trial. SETTING University teaching, grade A tertiary hospital. PARTICIPANTS A total of 70 patients scheduled to undergo cardiac valve replacement or valvuloplasty under CPB were eligible and randomly divided into groups D (n = 35) and C (n = 35) between January 2020 and March 2021. INTERVENTIONS Patients in group D were administered 0.6 μg/kg/h of dexmedetomidine intravenously from 10 minutes before anesthesia induction to 6 hours after surgery; normal saline was used instead of dexmedetomidine in group C. MEASUREMENTS AND MAIN RESULTS The primary outcome was the incidence of acute kidney injury (AKI). Acute kidney injury was defined according to the Kidney Disease Improving Global Outcomes (2012). It was 22.86% and 48.57% in groups D and C, respectively (p = 0.025). The secondary outcomes were intraoperative hemodynamics and various indices in serum. Ten minutes before CPB (T1), 10 minutes after CPB (T2), and 30 minutes after CPB (T3), mean arterial pressure in group D was lower than that in group C, with statistical significance (74.94 ± 8.52 v 81.89 ± 13.66 mmHg, p=0.013; 62.83 ± 11.27 v 71.86 ± 7.89 mmHg, p < 0.001; 72.26 ± 8.75 v 78.57 ± 8.83 mmHg, p = 0.004). At T1, the heart rate in group D was significantly lower than in group C (80.89 ± 14.04 v 95.54 ± 12.53 bpm, p=0.022). The tumor necrosis factor α, interleukin-6, C-reactive protein, and cystatin C levels in group D were lower than those in group C after the surgery (T4) and 24 hours after surgery (T5), with statistical significance. The duration of mechanical ventilation, intensive-care-unit stay time, and hospital stay time in group D were significantly shorter than in group C. The incidences of tachycardia, hypertension, nausea, and vomiting in group D were similar to those in group C. CONCLUSIONS Dexmedetomidine may be considered as a way to reduce the incidence and severity of postoperative AKI in patients undergoing cardiac valve surgery under cardiopulmonary bypass.
Collapse
Affiliation(s)
- Yong-Qiang Qiu
- Department of Anesthesiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lv-Ping Zhuang
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Pei-Yuan Wu
- The Graduate School of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Li-Ying Zhong
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Xiao-Hui Zhong
- Key Laboratory of Sports Function Evaluation of General Administration of Sports of the People's Republic of China, School of PE and Sport Science, Fujian Normal University, Fuzhou, China
| | - Bin Chen
- Department of Colorectal Surgery, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zhong-Kai Liu
- Sports Teaching and Research Department, Fujian Medical University, Fuzhou, China
| | - Hui-Rong Luo
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Li-Ping Yang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
28
|
Yang AY, Choi HJ, Kim K, Leem J. Antioxidant, Antiapoptotic, and Anti-Inflammatory Effects of Hesperetin in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury. Molecules 2023; 28:molecules28062759. [PMID: 36985731 PMCID: PMC10057564 DOI: 10.3390/molecules28062759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a severe inflammatory condition that can cause organ dysfunction, including acute kidney injury (AKI). Hesperetin is a flavonoid aglycone that has potent antioxidant and anti-inflammatory properties. However, the effect of hesperetin on septic AKI has not yet been fully investigated. This study examined whether hesperetin has a renoprotective effect on lipopolysaccharide (LPS)-induced septic AKI. Hesperetin treatment ameliorated histological abnormalities and renal dysfunction in LPS-injected mice. Mechanistically, hesperetin attenuated LPS-induced oxidative stress, as evidenced by the suppression of lipid and DNA oxidation. This beneficial effect of hesperetin was accompanied by downregulation of the pro-oxidant NADPH oxidase 4, restoration of glutathione levels, and activation of antioxidant enzymes. This flavonoid compound also inhibited apoptotic cell death via suppression of p53-dependent caspase-3 pathway. Furthermore, hesperetin alleviated Toll-like receptor 4-mediated cytokine production and macrophage infiltration. Our findings suggest that hesperetin ameliorates LPS-induced renal structural and functional injury through suppressing oxidative stress, apoptosis, and inflammation.
Collapse
|
29
|
Salama AAA, Elgohary R, Fahmy MI. Protocatechuic acid ameliorates lipopolysaccharide-induced kidney damage in mice via downregulation of TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. J Appl Toxicol 2023. [PMID: 36807594 DOI: 10.1002/jat.4447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Acute kidney injury (AKI) is a very critical cause of death in the whole world. Lipopolysaccharide (LPS) induces kidney damage by activating various deleterious inflammatory and oxidative pathways. Protocatechuic acid, a natural phenolic compound, has shown to exert beneficial effects against oxidative and inflammatory responses. The study aimed to clarify the nephroprotective activity of protocatechuic acid in LPS-induced acute kidney damage in mice. Forty male Swiss mice were allocated in four groups as follows: normal control group; LPS (250 μg/kg, ip)-induced kidney injury group; LPS-injected mice treated with protocatechuic acid (15 mg/kg, po), and LPS-injected mice treated with protocatechuic acid (30 mg/kg, po). Significant toll-like receptor 4 (TLR-4)-mediated activation of IKBKB/NF-κB and MAPK/Erk/COX-2 inflammatory pathways has been observed in kidneys of mice treated with LPS. Oxidative stress was revealed by inhibition of total antioxidant capacity, catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and NAD(P)H quinone oxidoreductase (NQO1) enzyme along with increased nitric oxide level. In parallel, focal inflammatory effects were shown in between the tubules and glomeruli as well as in the perivascular dilated blood vessels at the cortex affecting the normal morphology of the kidney tissues of LPS-treated mice. However, treatment with protocatechuic acid reduced LPS-induced changes in the aforementioned parameters and restored normal histological features of the affected tissues. In conclusion, our study uncovered that protocatechuic acid has nephroprotective effects in mice with AKI through opposing different inflammatory and oxidative cascades.
Collapse
Affiliation(s)
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Cairo, Egypt
| | - Mohamed Ibrahim Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
30
|
Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023; 11:1120148. [PMID: 36845189 PMCID: PMC9949729 DOI: 10.3389/fbioe.2023.1120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results from a rapid decline in renal structure or renal functional impairment with the main pathological feature of sublethal and lethal damage to renal tubular cells. However, many potential therapeutic agents cannot achieve the desired therapeutic effect because of their poor pharmacokinetics and short retention time in the kidneys. With the recent emergence and progress of nanotechnology, nanodrugs with unique physicochemical properties could prolong circulation time, enhance efficient targeted delivery, and elevate the accumulation of therapeutics that can cross the glomerular filtration barrier and indicate comprehensive application prospects in the prevention and treatment of AKI. In this review, various types of nanosystems (such as liposomes, polymeric nanosystems, inorganic nanoparticles and cell-derived extracellular vesicles) are designed and applied to improve the pharmacokinetics of drug formation, which could further relieve the burden on the kidneys caused by the final cumulative dose of drugs in conventional treatments. Moreover, the passive or active targeting effect of nanosystems can also reduce the total therapeutic dose and off-target adverse effects on other organs. Nanodelivery systems for treating AKI that alleviate oxidative stress-induced renal cell damage and regulate the inflammatory kidney microenvironment are summarized.
Collapse
Affiliation(s)
- Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Yao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| |
Collapse
|
31
|
CHAC1 exacerbates LPS-induced ferroptosis and apoptosis in HK-2 cells by promoting oxidative stress. Allergol Immunopathol (Madr) 2023; 51:99-110. [PMID: 36916093 DOI: 10.15586/aei.v51i2.760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/16/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (AKI) is a singularly grievous and life-threatening syndrome. Its pathogenesis is closely related to inflammatory response, apoptosis, oxidative stress, and ferroptosis. Cation transport regulator-like protein 1 (CHAC1), as a proapoptic factor, may be involved in apoptosis, oxidative stress, and ferroptosis. This study aimed to explore the role of CHAC1 in the lipopolysaccharide (LPS)-induced the human renal proximal tubular epithelial (HK-2) cells. METHODS HK-2 cells were challenged with LPS to construct a model of sepsis-induced AKI in vitro. The role of CHAC1 in the LPS-induced HK-2 cells was explored using Western blot assay, cell counting kit-8 (CCK-8), flow cytometry, and colorimetric assays. Additionally, N-acetyl cysteine (NAC) was incubated with HK-2 cells to define deeply the relation between oxidative stress and apoptosis or ferroptosis. RESULTS The expression of CHAC1 was enhanced in the kidney tissues of mice with sepsis--induced multiple organ dysfunction syndrome (MODS), through the Gene Expression Omnibus database (GSE60088 microarray dataset), and in the LPS-induced HK-2 cells. The cell viability was significantly reduced by LPS treatment, which was at least partly restored by the transfection of siCHAC1#1 and siCHAC1#2 but not siNC. In addition, down-regulation of CHAC1 counteracted the LPS-induced reactive oxygen species level and malonaldehyde concentrations while restored the LPS-induced glutathione concentrations. Meanwhile, interference of CHAC1 neutralized LPS-induced apoptosis rate, and the relative level of cleaved poly(ADP-ribose) polymerase (PARP)/PARP, and cleaved caspase-3/caspase-3. In addition, silencing of CHAC1 recovered the LPS-induced enhanced protein level of glutathione peroxidase 4 (GPx4) whereas antagonized the LPS-induced relative protein level of ACSL4 and that of iron. Moreover, application of NAC inverted the effect of CHAC1 on apoptosis and ferroptosis in HK-2 cells. CONCLUSION CHAC1 exacerbated ferroptosis and apoptosis by enhancing oxidative stress in LPS-induced HK-2 cells.
Collapse
|
32
|
Qiu W, Zhang X, Pang X, Huang J, Zhou S, Wang R, Tang Z, Su R. Asiatic acid alleviates LPS-induced acute kidney injury in broilers by inhibiting oxidative stress and ferroptosis via activation of the Nrf2 pathway. Food Chem Toxicol 2022; 170:113468. [DOI: 10.1016/j.fct.2022.113468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
33
|
Liu X, Hu Q, Chen Q, Jia J, Liao YH, Feng J. Effect of dexmedetomidine for prevention of acute kidney injury after cardiac surgery: an updated systematic review and meta-analysis. Ren Fail 2022; 44:1150-1159. [PMID: 35834360 PMCID: PMC9291681 DOI: 10.1080/0886022x.2022.2097923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious complication related to cardiac surgery. Several studies have been conducted to investigate the effect of dexmedetomidine administration on AKI prevention. OBJECTIVE To assess if dexmedetomidine is associated with a protective effect of renal function after cardiac surgery. And the aim of conducting this meta-analysis is to summarize the literature and determine the clinical utility of dexmedetomidine administration in patients undergoing cardiac surgery. METHODS PubMed, Cochrane Library, and EMBASE databases were comprehensively searched for all randomized controlled trials (RCTs) published before 1 December, 2021 that investigated the effect of dexmedetomidine on AKI prevention. RESULTS Our analysis included 16 studies involving 2148 patients. Compared with the control group, dexmedetomidine administration significantly reduced AKI incidence (OR, 0.47; 95% CI, 0.36-0.61; p < 0.00001; I2 = 26%) and the length of stay in the intensive care unit (ICU) but did not alter mortality rate, length of stay in the hospital, and mechanical ventilation time. Furthermore, the incidence of delirium among patients treated with dexmedetomidine was significantly decreased. CONCLUSION Dexmedetomidine administration has a positive effect on preventing AKI and postoperative delirium after cardiac surgery and significantly reduces the length of stay in the ICU.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qinxue Hu
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qianxiu Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Jia
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong-Hong Liao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Yan Y, Zhu N, Jin D, Lin F, Lv Y. Remifentanil attenuates endoplasmic reticulum stress and inflammatory injury in LPS-induced damage in HK-2 cells. Ren Fail 2022; 44:1769-1779. [PMID: 36263441 PMCID: PMC9586623 DOI: 10.1080/0886022x.2022.2134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Renal injury is a fatal complication in critically ill patients with sepsis. As an ultrashort-acting synthetic opioid derivative, remifentanil has been reported to mitigate renal injury and sepsis. Nevertheless, whether remifentanil also suppresses sepsis-triggered renal injury is uncertain. The aim of this study was to investigate the effect of remifentanil on endoplasmic reticulum stress (ERS) and inflammatory response in an in vitro lipopolysaccharide (LPS)-stimulated renal tubular epithelial cell (HK-2) model and its mechanism. The viability of HK-2 cells with the absence or presence of LPS treatment was surveyed by cell counting kit-8 assay. Under the condition of LPS treatment, apoptosis was appraised by TUNEL assay and western blot. Levels of inflammatory factors were estimated though corresponding kits. Western blot tested the expression of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling-associated proteins. Also, the expression of ERS-related proteins was detected by western blot. Further, ERS inducer tunicamycin (TM) was added and the aforementioned experiments were conducted again. The results underlined the protective effects of remifentanil on LPS-evoked viability injury, inflammation, activation of TLR4/NF-κB signaling and ERS in HK-2 cells. Moreover, the impacts of remifentanil on the biological events of LPS-insulted HK-2 cells were all reversed by TM administration. To conclude, remifentanil might have a remarkable ameliorative effect on sepsis-induced renal injury, which implied the potential of remifentanil-based drug therapy in sepsis-induced renal injury.
Collapse
Affiliation(s)
- Yixiu Yan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Na Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dan Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Ya Lv
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
35
|
Zhang W, Zhang J, Huang H. Exosomes from adipose-derived stem cells inhibit inflammation and oxidative stress in LPS-acute kidney injury. Exp Cell Res 2022; 420:113332. [PMID: 36084668 DOI: 10.1016/j.yexcr.2022.113332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Acute renal damage presents a significant danger to kidney health. Previous research has found that acute kidney injury shows high levels of oxidative stress and inflammation caused by sepsis. Although mesenchymal stem cells (MSCs) can repair acute kidney injury. However, involvement of MSCs exosomes generated from adipose tissue and bone marrow in lipopolysaccharide-induced acute kidney damage is not clear. LPS (7.5 mg/kg) intraperitoneal injection was used to produce AKI, and 30 min before the LPS administration, adipose-derived MSCs (ADSCs) exosomes (1 × 105 and 5 × 105) and bone marrow-derived MSCs(BMSCs) exosomes (1 × 105 and 5 × 105) were delivered individually. The function of the rat kidney was explored. Inflammation, oxidative stress, and autophagy levels were further investigated. Both adipose-derived and bone marrow-derived MSCs can enhance renal function and structural damage, such as BUN, Creatinine, and cystatin C levels, as well as tubular damage scores. These findings indicate that both adipose-derived MSCs exosomes and bone marrow-derived MSCs exosomes decrease oxidative stress and inflammation, as well as make a substantial influence on kidney tissue in autophagy levels. Furthermore, compared to bone marrow-derived MSCs exosomes, adipose-derived MSCs exosomes improved kidney function and structure more significantly. We discovered that adipose-derived MSCs exosomes protect against LPS-induced AKI by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen Zhang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Jian Zhang
- Department of Radiology the First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
36
|
ÖZ GERGİN Ö, CENGİZ MAT Ö, BOLAT D, KABADAYI M, PEHLİVAN SS, COŞKUN G. Vankomisin kaynaklı nefrotoksisiteyi önlemede melatoninin etkinliği: deneysel bir çalışma. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: The aim of the study explores probable toxic effects of vancomycin on kidney and analysis of the probable protective effects of melatonin.
Materials and Methods: In this study, rats were randomly divided into 4 groups: the control group; the melatonin (10 mg/kg/day) group; the vancomycin-treated (200 mg/kg) group; and the vancomycin (200 mg/kg) + melatonin (10 mg/kg/day) group. Rats in the treatment group were given two doses of vancomycin a day with an interval of seven consecutive days and melatonin (10 mg/kg/day) once daily for seven consecutive days. The experiment was continued for 15 days. In each group, seven rats were grouped together. 15 days after the experiment, the rats were sacrificed under anesthesia and among all groups. Kidney tissues were collected and processed for further TNF- expression analysis, as well as histological analyses such as hematoxylin and eosin (H&E), Masson's tricrom, and Periodic acid schiff (PAS) staining to assess pathological severity. In addition, a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to evaluate apoptosis.
Results: While vancomycin upregulated TNF-α expression, melatonin reduced levels of TNF-α immunoreactivity intensity and clearly improved pathological severity in rat kidneys. Further, melatonin significantly inhibited vancomycin-induced TUNEL-positive cell numbers.
Conclusion: Melatonin has protective activity against vancomycin-induced pro-inflammatory and proapoptotic effects in kidneys during organ preservation time and improves kidney function.
Collapse
|
37
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
38
|
Liu W, Gan Y, Ding Y, Zhang L, Jiao X, Liu L, Cao H, Gu Y, Yan L, Wang Y, Wang L, Chen S, Shao F. Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113881. [PMID: 35863214 DOI: 10.1016/j.ecoenv.2022.113881] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Cobalt is a transition element that abundantly exists in the environment. Besides direct hypoxia stress, cobalt ions indirectly induce hypoxia-reoxygenation injury (HRI), the main cause of acute kidney injury (AKI), a life-threatening clinical syndrome characterized by the necrosis of the proximal tubular epithelial cells (PTECs) and inflammation. Pyroptosis, a type of inflammatory programmed cell death, might play an essential role in HRI-AKI. However, whether pyroptosis is involved in cobalt chloride (CoCl2)-induced HRI-AKI remains unknown. Autophagy is a cellular biological process maintaining cell homeostasis that is involved in cell damage in AKI, yet the underlying regulatory mechanism of autophagy on pyroptosis has not been fully understood. In this study, the in vitro and in vivo models of CoCl2-induced HRI-AKI were established with HK-2 cell line and C57BL/6J mouse. Pyroptosis-related markers were detected with western blotting and immunofluorescence assays, and results showed that gasdermin E (GSDME)-mediated pyroptosis was involved in the cell damage in HRI-AKI. Specific chemical inhibitors of caspase 3, caspase 8, and caspase 9 significantly inhibited GSDME-mediated pyroptosis, verifying that GSDME-mediated pyroptosis was induced via the activation of caspase 3/8/9. The western blotting and immunofluorescence assays were adopted to detect the accumulation of the autophagosomes, and results suggested that HRI increased the autophagic level. The effects of autophagy on apoptosis and pyroptosis were evaluated using lentivirus transfection assays to knock down autophagy-specific genes atg5 and fip200, and results demonstrated that autophagy induced GSDME-mediated pyroptosis via apoptotic pathways in HRI-AKI. Our results revealed the involvement of GSDME-mediated pyroptosis in CoCl2-induced HRI-AKI and promoted the understanding of the regulatory mechanism of GSDME cleavage. Our study might provide a potential therapeutic target for HRI-AKI, and will be helpful for the risk evaluation of cobalt exposure.
Collapse
Affiliation(s)
- Wenna Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yujin Gan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yun Ding
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lina Zhang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Lu Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Yanliang Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Limeng Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China.
| | - Song Chen
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China.
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China.
| |
Collapse
|
39
|
Wang H, Zhang C, Li Y, Jia Y, Yuan S, Wang J, Yan F. Dexmedetomidine and acute kidney injury following cardiac surgery in pediatric patients—An updated systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:938790. [PMID: 36093139 PMCID: PMC9448974 DOI: 10.3389/fcvm.2022.938790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common postoperative complication in pediatric patients undergoing cardiac surgery and associated with poor outcomes. Dexmedetomidine has the pharmacological features of organ protection in cardiac surgery patients. The aim of this meta-analysis is to investigate the effect of dexmedetomidine infusion on the incidence of AKI after cardiac surgery in pediatric patients. Methods The databases of Pubmed, Embase, and Cochrane Library were searched until April 24, 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RevMan 5.3 was used to perform statistical analyses. Results Five relevant trials with a total of 630 patients were included. The pooled result using fixed-effects model with OR demonstrated significant difference in the incidence of AKI between patients with dexmedetomidine and placebo (OR = 0.49, 95% CI: [0.33, 0.73], I2 = 0%, p for effect = 0.0004). Subgroup analyses were performed based on congenital heart disease (CHD) types and dexmedetomidine intervention time. Pooled results did not demonstrate considerable difference in the incidence of AKI in pediatric patients receiving intraoperative (OR = 0.53, 95% CI: [0.29, 0.99], I2 = 0%, p for effect = 0.05) or postoperative dexmedetomidine infusion (OR = 0.56, 95% CI: [0.31, 1.04], p for effect = 0.07), but a significant difference in patients receiving combination of intra- and postoperative dexmedetomidine infusion (OR = 0.27, 95% CI: [0.09, 0.77], p for effect = 0.01). Besides, there was no significant difference in duration of mechanical ventilation (SMD: –0.19, 95% CI: –0.46 to 0.08, p for effect = 0.16; SMD: –0.16, 95% CI: –0.37 to 0.06, p for effect = 0.15), length of ICU (SMD: 0.02, 95% CI: –0.41 to 0.44, p for effect = 0.93) and hospital stay (SMD: 0.2, 95% CI: –0.13 to 0.54, p for effect = 0.23), and in-hospital mortality (OR = 1.26, 95% CI: 0.33–4.84, p for effect = 0.73) after surgery according to the pooled results of the secondary outcomes. Conclusion Compared to placebo, dexmedetomidine could significantly reduce the postoperative incidence of AKI in pediatric patients undergoing cardiac surgery with cardiopulmonary bypass (CPB), but the considerable difference was reflected in the pediatric patients receiving combination of intra- and postoperative dexmedetomidine infusion. Besides, there was no significant difference in duration of mechanical ventilation, length of ICU and hospital stay, or in-hospital mortality after surgery.
Collapse
Affiliation(s)
- Hongbai Wang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaobin Zhang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen (Sun Yat-sen Cardiovascular Hospital, Shenzhen), Shenzhen, China
| | - Yinan Li
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Jia
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su Yuan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhui Wang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianhui Wang,
| | - Fuxia Yan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Fuxia Yan,
| |
Collapse
|
40
|
Tao WH, Shan XS, Zhang JX, Liu HY, Wang BY, Wei X, Zhang M, Peng K, Ding J, Xu SX, Li LG, Hu JK, Meng XW, Ji FH. Dexmedetomidine Attenuates Ferroptosis-Mediated Renal Ischemia/Reperfusion Injury and Inflammation by Inhibiting ACSL4 via α2-AR. Front Pharmacol 2022; 13:782466. [PMID: 35873574 PMCID: PMC9307125 DOI: 10.3389/fphar.2022.782466] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a serious clinical pathology associated with acute kidney injury (AKI). Ferroptosis is non-apoptotic cell death that is known to contribute to renal I/R injury. Dexmedetomidine (Dex) has been shown to exert anti-inflammatory and organ protective effects. This study aimed to investigate the detailed molecular mechanism of Dex protects kidneys against I/R injury through inhibiting ferroptosis. We established the I/R-induced renal injury model in mice, and OGD/R induced HEK293T cells damage in vitro. RNA-seq analysis was performed for identifying the potential therapeutic targets. RNA-seq analysis for differentially expressed genes (DEGs) reported Acyl-CoA synthetase long-chain family member 4 (ACSL4) related to ferroptosis and inflammation in I/R mice renal, which was validated in rodent renal. Liproxstatin-1, the specific small-molecule inhibitor of ferroptosis, significantly attenuated ferroptosis-mediated renal I/R injury with decreased LPO, MDA, and LDH levels, and increased GSH level. Inhibiting the activity of ACSL4 by the Rosiglitazone (ROSI) resulted in the decreased ferroptosis and inflammation, as well as reduced renal tissue damage, with decreasing LPO, MDA and LDH level, increasing GSH level, reducing COX2 and increasing GPx4 protein expression, and suppressing the TNF-α mRNA and IL-6 mRNA levels. Dex as a α2-adrenergic receptor (α2-AR) agonist performed renal protective effects against I/R-induced injury. Our results also revealed that Dex administration mitigated tissue damage, inhibited ferroptosis, and downregulated inflammation response following renal I/R injury, which were associated with the suppression of ACSL4. In addition, ACSL4 overexpression abolishes Dex-mediated protective effects on OGD/R induced ferroptosis and inflammation in HEK293T cells, and promotion of ACSL4 expression by α2-AR inhibitor significantly reversed the effects on the protective role of Dex. This present study indicated that the Dex attenuates ferroptosis-mediated renal I/R injury and inflammation by inhibiting ACSL4 via α2-AR.
Collapse
Affiliation(s)
- Wen-hui Tao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Xi-sheng Shan
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Jia-xin Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
| | - Hua-yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Bi-ying Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
| | - Xiang Wei
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
| | - Mian Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Jun Ding
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
| | - Shang-xian Xu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
| | - Lin-gui Li
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Jun-kai Hu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
| | - Xiao-wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
- *Correspondence:Xiao-wen Meng, ; Fu-hai Ji,
| | - Fu-hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, China
- Institute of Anesthesiology, Soochow University, Soochow, China
- *Correspondence:Xiao-wen Meng, ; Fu-hai Ji,
| |
Collapse
|
41
|
Liang NN, Zhao Y, Guo YY, Zhang ZH, Gao L, Yu DX, Xu DX, Xu S. Mitochondria-derived reactive oxygen species are involved in renal cell ferroptosis during lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol 2022; 107:108687. [DOI: 10.1016/j.intimp.2022.108687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
|
42
|
Hispidulin Ameliorates Endotoxin-Induced Acute Kidney Injury in Mice. Molecules 2022; 27:molecules27062019. [PMID: 35335387 PMCID: PMC8948942 DOI: 10.3390/molecules27062019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that plays a crucial role in septic acute kidney injury (AKI). Hispidulin is a natural flavonoid that possesses various biological activities. Recent studies have shown that hispidulin administration alleviates various inflammatory diseases in animal models. This study aimed to investigate the renoprotective effect of hispidulin on LPS-induced AKI. Male C57BL/6 mice were administered LPS (10 mg/kg) with or without hispidulin (50 mg/kg). Hispidulin administration attenuated renal dysfunction, histological alterations, and the upregulation of neutrophil gelatinase-associated lipocalin. This flavonoid also reduced cytokine production and Toll-like receptor 4 expression, inhibited nuclear factor-κB and mitogen-activated protein kinase cascades, and alleviated immune cell infiltration. The oxidation of lipids and DNA was also inhibited by hispidulin administration. This antioxidant effect of hispidulin was associated with the downregulation of NADPH oxidase 4, the activation of catalase and superoxide dismutase activities, and the restoration of glutathione levels. Moreover, hispidulin administration attenuated tubular cell apoptosis by inhibiting caspase-3 pathway. These data suggest that hispidulin ameliorates endotoxin-induced kidney injury by suppressing inflammation, oxidative stress, and tubular cell death.
Collapse
|
43
|
Luan P, Zhang H, Chen X, Zhu Y, Hu G, Cai J, Zhang Z. Melatonin relieves 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced apoptosis and mitochondrial dysfunction through the AMPK-Sirt1-PGC-1α axis in fish kidney cells (CIK). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113276. [PMID: 35123185 DOI: 10.1016/j.ecoenv.2022.113276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist in aquatic environments with nephrotoxicity to non-target aquatic species. Melatonin (MT) exhibits an inhibitory effect of oxidative stress and apoptosis in various diseases. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is the main homolog of PBDE samples. Therefore, we investigated the toxic mechanism of BDE-47 and the alleviation effect of MT, the ctenopharyngodon idellus kidney (CIK) cells were treated with BDE-47 (100 μM) and/or MT (60 μM) for 24 h. Firstly, BDE-47 exposure could inhibit oxidative stress-related antioxidant enzymes (T-AOC, SOD, CAT and GPx) and increase the content of malondialdehyde (MDA) to cause oxidative stress. Secondly, BDE-47 enhanced mitochondrial division and inhibited fusion to induce mitochondrial membrane potential in CIK cells. BDE-47 enhanced the mRNA and protein levels of mitochondrial-pathway apoptosis related genes (Cas 3, Cyt-c, and BAX). Thirdly, BDE-47 treatment decreased the expression levels of mitochondrial-related regulatory factors AMPK-Sirt1-PGC-1α signal pathway. Intriguingly, BDE-47-induced oxidative stress, mitochondrial pathway apoptosis and mitochondrial dynamics disorder could be alleviated by MT treatment. Overall, we concluded that MT could relieve BDE-47-induced oxidative stress, mitochondrial dysfunction and apoptosis through the AMPK-Sirt1-PGC-1α axis. These results enrich the mechanisms of BDE-47 poisoning and reveal that MT treatment may be a potential strategy for solving BDE-47 poisoning.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
44
|
Lyu X, Tao Y, Dang X. Efficacy and Safety of Intranasal Dexmedetomidine vs. Oral Chloral Hydrate for Sedation in Children Undergoing Computed Tomography/Magnetic Resonance Imaging: A Meta-Analysis. Front Pediatr 2022; 10:872900. [PMID: 35433538 PMCID: PMC9008694 DOI: 10.3389/fped.2022.872900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This meta-analysis aims to evaluate the sedative efficacy and safety of intranasal administration of dexmedetomidine (DEX) compared with oral chloral hydrate for Computed tomography (CT) or Magnetic Resonance Imaging (MRI) examination in Children. METHODS Cochrane Library, PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and China WanFang Databases were searched to collect randomized controlled trials (RCTs) investigating intranasal DEX (test group) vs. oral chloral hydrate (control group) in pediatric CT/MRI examinations up to December 30, 2021. The data were analyzed using Stata 15.0 software. RESULTS Seven RCTs with 1,846 children were identified. The meta-analysis results showed that the success rate of sedation (RR = 1.14, 95% CI: 1.03-1.26, P = 0.011), sedation onset time [weighted mean difference (WMD) = -0.87, 95% CI: -1.42 to -0.31, P = 0.002], sedation duration (WMD = -9.05, 95% CI:-14.69 to -3.42, P = 0.002), time to awakening (WMD = -9.75, 95% CI:-17.57 to -1.94, P = 0.014), and incidence of nausea and vomiting [relative risk (RR) = 0.09, 95% CI:0.04-0.23, P < 0.001) of the test group were significantly better than those of the control group. However, no significant differences were identified in incidence of hypotension (RR = 1.18, 95% CI: 0.51-2.74) and bradycardia (RR = 1.17, 95% CI: 0.13-22.11) between the two groups. CONCLUSION Intranasal administration of DEX is superior to oral chloral hydrate for sedation during pediatric CT/MRI examinations and has a better safety profile.
Collapse
Affiliation(s)
- Xiaoqian Lyu
- Department of Anaesthesiology, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Yujuan Tao
- Department of Anaesthesiology, Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, China
| | - Xiujing Dang
- Department of Anaesthesiology, Qilu Children's Hospital of Shandong University, Jinan, China
| |
Collapse
|
45
|
Zhang W, Qi R, Li T, Zhang X, Shi Y, Xu M, Zhu T. Kidney Organoids as a Novel Platform to Evaluate Lipopolysaccharide-Induced Oxidative Stress and Apoptosis in Acute Kidney Injury. Front Med (Lausanne) 2021; 8:766073. [PMID: 34912825 PMCID: PMC8666666 DOI: 10.3389/fmed.2021.766073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening syndrome. Lipopolysaccharide (LPS) is a widely used inducer for modeling SA-AKI both in vivo and in vitro. However, due to the innate complexity of the kidney architecture, the mechanisms underlying the pathogenesis of SA-AKI, as well as those involved in LPS-induced kidney injury remain to be clarified. Kidney organoids derived from human pluripotent stem cells (hPSCs) act as a model of multiple types of kidney cells in vitro and eliminate potential confounders in vivo. In the current study, we established LPS-induced kidney injury models both in vivo and in human kidney organoids. Kidney function, pathological changes, and markers of oxidative stress were evaluated with/without the presence of methylprednisolone (MP) treatment both in vivo and in vitro. The extent of LPS-induced oxidative stress and apoptosis in kidney organoids was further investigated in vitro. LPS-induced acute kidney injury in mice, together with pathological changes and increased oxidative stress, as well as enhanced apoptosis in kidney cells were evaluated. These phenomena were ameliorated by MP treatment. Experiments in kidney organoids showed that the LPS-induced apoptotic effects occurred mainly in podocytes and proximal tubular cells. Our experiments demonstrated the efficacy of using kidney organoids as a solid platform to study LPS-induced kidney injury. LPS induced oxidative stress as well as apoptosis in kidney cells independently of changes in perfusion or immune cell infiltration. MP treatment partially alleviated LPS-induced injury by reducing kidney cell oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tingting Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuepeng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
46
|
Luo W, Sun JJ, Tang H, Fu D, Hu ZL, Zhou HY, Luo WJ, Xu JM, Li H, Dai RP. Association of Apoptosis-Mediated CD4 + T Lymphopenia With Poor Outcome After Type A Aortic Dissection Surgery. Front Cardiovasc Med 2021; 8:747467. [PMID: 34869652 PMCID: PMC8632808 DOI: 10.3389/fcvm.2021.747467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Many patients with type A aortic dissection (AAD) show low lymphocyte counts pre-operatively. The present study investigated the prognostic values of lymphopenia and lymphocyte subsets for the postoperative major adverse events (MAEs) in AAD patients undergoing surgery, and explore mechanisms of lymphopenia. Methods: We retrospectively analyzed pre-operative lymphocyte counts in 295 AAD patients treated at two hospitals, and evaluated their correlation with MAEs. We prospectively recruited 40 AAD patients and 20 sex- and age-matched healthy donors (HDs), and evaluated lymphocyte subsets, apoptosis, and pyroptosis by flow cytometry. Results: Multivariable regression analysis of the retrospective cohort revealed pre-operative lymphopenia as a strong predictor of MAEs (odds ratio, 4.152; 95% CI, 2.434–7.081; p < 0.001). In the prospective cohort, lymphocyte depletion in the AAD group was mainly due to loss of CD4+ and CD8+ T cells as compared with HDs (CD4+ T cells: 346.7 ± 183.6 vs. 659.0 ± 214.6 cells/μl, p < 0.0001; CD8+ T cells: 219.5 ± 178.4 vs. 354.4 ± 121.8 cells/μl, p = 0.0036). The apoptosis rates of CD4+ and CD8+ T cells were significantly higher in AAD patients relative to HDs (both p < 0.0001). Furthermore, the pre-operative CD4+ T cells count at a cut-off value of 357.96 cells/μl was an effective and reliable predictor of MAEs (area under ROC curve = 0.817; 95% CI, 0.684-0.950; sensitivity, 74%; specificity, 81%; p < 0.005). Pre-operative lymphopenia, mainly due to CD4+ T cells exhaustion by apoptosis, correlates with poor prognosis in AAD patients undergoing surgery. Conclusion: Pre-operative lymphopenia in particular CD4+ T lymphopenia via apoptosis correlates with poor prognosis in AAD patients undergoing surgery.
Collapse
Affiliation(s)
- Wei Luo
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Jing-Jing Sun
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Di Fu
- Department of Anesthesiology, XiangYa Hospital, Central South University, Changsha, China
| | - Zhan-Lan Hu
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Hai-Yang Zhou
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Wan-Jun Luo
- Department of Cardiovascular Surgery, XiangYa Hospital, Central South University, Changsha, China
| | - Jun-Mei Xu
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
HU J, HE A, YUE X, ZHOU M, ZHOU Y. METRNL reduced inflammation in sepsis-induced renal injury via PPARδ-dependent pathways. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.61821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jin HU
- Chongqing University Cancer Hospital, China
| | - Aiting HE
- Chongqing University Cancer Hospital, China
| | | | | | | |
Collapse
|
48
|
Guo C, Ye FX, Jian YH, Liu CH, Tu ZH, Yang DP. MicroRNA-214-5p aggravates sepsis-related acute kidney injury in mice. Drug Dev Res 2021; 83:339-350. [PMID: 34370322 DOI: 10.1002/ddr.21863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a devastating comorbidity in sepsis and correlates with a very poor prognosis and increased mortality. Currently, we use lipopolysaccharide (LPS) to establish sepsis-related AKI and try to demonstrate the pathophysiological role of microRNA-214-5p (miR-214-5p) in this process. Mice were intravenously injected with the miR-214-5p agomir, antagomir or negative controls for three consecutive days and then received a single intraperitoneal injection of LPS (10 mg/kg) for 24 h to induce AKI. Besides, the Boston University mouse proximal tubular cell lines were stimulated with LPS (10 μg/ml) for 8 h to investigate the role of miR-214-5p in vitro. To inhibit adenosine monophosphate-activated protein kinase (AMPK), compound C (CpC) was used in vivo. For glucagon-like peptide-1 receptor (GLP-1R) silence, cells were transfected with the small interfering RNA against GLP-1R. miR-214-5p level was upregulated in LPS-treated kidneys and proximal tubular cell lines. The miR-214-5p antagomir reduced LPS-induced renal inflammation and oxidative stress, thereby preventing renal damage and dysfunction. In contrast, the miR-214-5p agomir aggravated LPS-induced inflammation, oxidative stress and AKI in vivo and in vitro. Mechanistically, we found that the miR-214-5p antagomir prevented septic AKI via activating AMPK and that CpC treatment completely abrogated its renoprotective effect in mice. Further detection showed that miR-214-5p directly bound to the 3'-untranslational region of GLP-1R to inhibit GLP-1R/AMPK axis. Our data identify miR-214-5p as a promising therapeutic candidate to treat sepsis-related AKI.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Xiong Ye
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Hong Jian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Hua Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hui Tu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ding-Ping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|