1
|
Park CW, Lee J, Hong YH, Kim YS, Suh HJ, Ahn Y. Coadministration of Lactulose with Probiotics Ameliorates Loperamide-Induced Constipation in Mice. Prev Nutr Food Sci 2023; 28:427-435. [PMID: 38188082 PMCID: PMC10764220 DOI: 10.3746/pnf.2023.28.4.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 01/09/2024] Open
Abstract
We evaluated the efficacy of mixtures of lactulose with probiotic strains to ameliorate constipation and to identify suitable probiotic strains. Constipation was induced in Institute of Cancer Research mice (6-week-old, male) by the administering loperamide (5 mg/kg, twice a day) orally for 5 days, whereas the control group was not treated. To evaluate the laxative effects of the lactulose-probiotic and lactulose-magnesium hydroxide mixtures, fecal parameters, the gastrointestinal (GI) transit ratio, and fecal short-chain fatty acid (SCFA) content were analyzed. The administration of lactulose and Bacillus licheniformis or Saccharomyces boulardii significantly improved stool number and water content, which were reduced by loperamide. The GI transit ratio was significantly increased compared with that of the control group. The combined administration of lactulose and probiotics (B. licheniformis or S. boulardii) increased total SCFA content, including that of acetate, more effectively compared with lactulose alone. Similarly, coadministration of lactulose and magnesium hydroxide improved the loperamide-induced changes in fecal parameters and GI transit as well as increased total SCFA content. Overall, the combination of lactulose and probiotics relieves the symptoms of constipation by increasing SCFA content and is more effective compared with lactulose alone.
Collapse
Affiliation(s)
- Chun Woong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Jihyun Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| | - Yang Hee Hong
- Department of Beauty Art, Suwon Women’s University, Gyeonggi 16632, Korea
| | - Young Suk Kim
- Department of Food and Nutrition, Ansan University, Gyeonggi 15328, Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Yip YS, Manas NHA, Jaafar NR, Rahman RA, Puspaningsih NNT, Illias RM. Combined cross-linked enzyme aggregates of cyclodextrin glucanotransferase and maltogenic amylase from Bacillus lehensis G1 for maltooligosaccharides synthesis. Int J Biol Macromol 2023; 242:124675. [PMID: 37127056 DOI: 10.1016/j.ijbiomac.2023.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Maltooligosaccharides (MOS) are functional oligosaccharides that can be synthesized through enzymatic cascade reaction between cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1. To address the problems of low operational stability and non-reusability of free enzymes, both enzymes were co-immobilized as combined cross-linked enzyme aggregates (Combi-CLEAs-CM) with incorporation of bovine serum albumin (BSA) and Tween 80 (Combi-CLEAs-CM-add). Combi-CLEAs-CM and Combi-CLEAs-CM-add showed activity recoveries of 54.12 % and 69.44 %, respectively after optimization. Combi-CLEAs-CM-add showed higher thermal stability at higher temperatures (40 °C) with longer half-life (46.20 min) as compared to those of free enzymes (36.67 min) and Combi-CLEAs-CM (41.51 min). Both combi-CLEAs also exhibited higher pH stability over pH 5 to pH 9, and displayed excellent reusability with >50 % of initial activity retained after four cycles. The reduction in Km value of about 22.80 % and 1.76-fold increase in starch hydrolysis in comparison to Combi-CLEAs-CM attested the improvement of enzyme-substrate interaction by Tween 80 and pores formation by BSA in Combi-CLEAs-CM-add. The improved product specificity of Combi-CLEAs-CM-add also produced the highest yield of MOS (492 mg/g) after 3 h. Therefore, Combi-CLEAs-CM-add with ease of preparation, excellent reusability and high operational stability is believed to be highly efficacious biocatalyst for MOS production.
Collapse
Affiliation(s)
- Yee Seng Yip
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Nardiah Rizwana Jaafar
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Roshanida A Rahman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ni Nyoman Tri Puspaningsih
- Laboratory of Proteomics, University-CoE Research Center for Bio-Molecule Engineering, Universitas Airlangga, Kampus C-UNAIR, Surabaya, East Java, Indonesia
| | - Rosli Md Illias
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Cheon S, Kim G, Bae JH, Lee DH, Seong H, Kim DH, Han JS, Lim SY, Han NS. Comparative analysis of prebiotic effects of four oligosaccharides using in vitro gut model: digestibility, microbiome, and metabolome changes. FEMS Microbiol Ecol 2023; 99:6979797. [PMID: 36623850 PMCID: PMC9875365 DOI: 10.1093/femsec/fiad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Fructooligosaccharides (FOS), Ad-fructooligosaccharides (Ad-FOS), resistant maltodextrin (RMD), and maltooligosaccharides (MOS) are commercially available prebiotic oligosaccharides. In this study, the effects of prebiotics on the human gut microbial ecosystem were evaluated using an in vitro gut model. FOS and Ad-FOS showed tolerance to digestion, whereas RMD and MOS showed moderate digestion by digestive enzymes. In in vitro fecal fermentation, Bifidobacterium spp. increased in the following order: FOS, Ad-FOS, MOS, and RMD, whereas Bacteroides spp. increased in RMD medium. Bacteroides xylanisolvens exhibited cross-feeding by enabling the growth of other beneficial bacteria during co-culture in RMD medium. In metabolome analysis, total short-chain fatty acids (SCFAs) were highly produced in the following order: RMD, FOS, MOS, and Ad-FOS; acetate in the order of FOS, MOS/RMD, and Ad-FOS; butyrate in the order of RMD, MOS, FOS, and Ad-FOS; and propionate only in RMD. In addition, the conversion of betaine to trimethylamine was rarely affected in the following order: MOS, RMD, FOS, and Ad-FOS. Lastly, the four oligosaccharides inhibited the adhesion of pathogenic Escherichia coli to human epithelial cells to a similar extent. The comparative analysis results obtained in this study will provide comprehensive information of these substances to manufacturers and customers.
Collapse
Affiliation(s)
| | | | - Jae-Han Bae
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dong Hyeon Lee
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jung-Sook Han
- Samyang Corp. 295 Pangyo-ro, Samyang Corporation Food Biotech R&D Center, Bundang-gu, Seongnam-si Gyeonggi-do 13488, Republic of Korea
| | - Su-Youn Lim
- Samyang Corp. 295 Pangyo-ro, Samyang Corporation Food Biotech R&D Center, Bundang-gu, Seongnam-si Gyeonggi-do 13488, Republic of Korea
| | - Nam Soo Han
- Corresponding author: Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea. Tel: +82-43-261-2567; Fax: +82-43-271-4412; E-mail:
| |
Collapse
|
4
|
Lee H, An J, Kim J, Choi D, Song Y, Lee CK, Kong H, Kim SB, Kim K. A Novel Bacterium, Butyricimonas virosa, Preventing HFD-Induced Diabetes and Metabolic Disorders in Mice via GLP-1 Receptor. Front Microbiol 2022; 13:858192. [PMID: 35655996 PMCID: PMC9152154 DOI: 10.3389/fmicb.2022.858192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Knowledge of the impact of the gut microbiota on human health has increased, and modulation of the bacterial community is now considered a therapeutic target for various diseases. Certain novel bacterial species have probiotic properties associated with improvement in obesity and related metabolic disorders. The relative abundance of Butyricimonas spp. is correlated with metabolic parameters; however, the physiological role of Butyricimonas in metabolic improvement is unclear. In this study, live and heat-killed Butyricimonas virosa were administered to mice with high-fat diet (HFD)-induced obesity. Both live and heat-killed B. virosa ameliorated HFD-impaired body weight, serum glucose level, insulin resistance, and liver steatosis. Moreover, activation of the glucagon-like peptide-1 receptor (GLP-1R) and peroxisome proliferator-activated receptor α (PPARα) was observed in the liver, and the expression levels of insulin receptor substrate (IRS)-1, IRS-2, Toll-like receptor 5 (TLR5), and zonula occludens-1 (ZO-1) were upregulated in the ileum. Finally, we demonstrated that the effect of B. virosa treatment on glucose regulation may be linked to the upregulation of GLP-1R in the liver and is not a result of colonization of the gut by B. virosa or B. virosa-produced butyrate. Our results provide a rationale for the development of Butyricimonas spp.-based therapeutics and prophylactics for hyperglycemia.
Collapse
Affiliation(s)
- Heetae Lee
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Jinho An
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Jiyeon Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Dohyun Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Hyunseok Kong
- College of Animal Biotechnology and Resource, Sahmyook University, Seoul, South Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Kyungjae Kim
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| |
Collapse
|
5
|
Lekakarn H, Bunterngsook B, Pajongpakdeekul N, Prongjit D, Champreda V. A novel low temperature active maltooligosaccharides-forming amylase from Bacillus koreensis HL12 as biocatalyst for maltooligosaccharide production. 3 Biotech 2022; 12:134. [PMID: 35615748 DOI: 10.1007/s13205-022-03188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Maltooligosaccharide-forming amylases (MFAses) are promising enzymes for a variety of industrial applications. In this study, a maltooligosaccharide-forming amylase (BkAmy) isolated from Bacillus koreensis HL12 was first heterologous expressed and characterized. According to structural-sequence alignment, BkAmy contained seven conserved regions which are the signature of a novel GH13 subfamily. The gene was expressed in Pichia pastoris KM71 as an extracellular protein with a volumetric activity of 3.38 U/mL culture medium after 72 h induction by 3% (w/v) of methanol. The recombinant BkAmy migrated as a single protein band with an expected size approximately of 55 kDa. BkAmy exhibited the highest catalytic activity on soluble starch with a specific activity of 42.2 U/mg at 40 °C, pH 7.0. The enzyme exhibited 65% relative activity at 30 °C, indicating its advantage on application at moderate reaction temperature desirable for energy saving and reduction of side unwanted reactions. The enzyme exhibited a specific cleavage pattern by releasing maltose (G2), maltotriose (G3) and maltotetraose (G4) from cassava starch with the highest yield of 363 mg/g substrate equivalent to 36% conversion using 40 U/g substrate at 60 min. The work demonstrates the potential of this enzyme on maltooligosaccharide production from starch to create high value-added products in starch processing industries. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03188-1.
Collapse
|
6
|
Nostoc sphaeroides Kütz Polysaccharide Improved Constipation and Promoted Intestinal Motility in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5596531. [PMID: 34354758 PMCID: PMC8331270 DOI: 10.1155/2021/5596531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Natural products and medicinal foods have attracted more and more attention because of their potential prevention and inhibition effect on constipation. Nostoc sphaeroides Kütz Polysaccharide (NSKP) polysaccharide is a natural product rich in polysaccharides. This work attempted to prove the effects of aqueous extracts of NSKP on STC treatment and to determine the possible mechanisms by a loperamide-induced slow transit constipation (STC) model. The results show that, in rats of the NSKP group, compared with the model group, the colon propulsion rate was improved, the time of the first grain of black stool was shortened, and the fecal wet weight was increased remarkably. The 5-HT levels were increased, but the VIP and NO levels were reduced dramatically. The number of interstitial cells of cajal (ICC) was increased by c-kit/SCF signal pathway, and the intestines were moisturized; then, constipation was relieved. It is interesting to note that NSKP appeared to be effective on constipation, so further experiments are necessary to clarify the exact mechanisms involved.
Collapse
|
7
|
Jang EY, Hong KB, Chang YB, Shin J, Jung EY, Jo K, Suh HJ. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber. Molecules 2020; 25:molecules25215201. [PMID: 33182247 PMCID: PMC7664926 DOI: 10.3390/molecules25215201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
This study measured the proliferative activity of malto-oligosaccharide (MOS) as a prebiotic against Bifidobacteria, resistance to digestion in vitro, and changes during in vitro fermentation by human fecal microorganisms. It consisted of 21.74%, 18.84%, and 11.76% of maltotriose, maltotetraose, and maltopentaose produced by amylase (HATT), respectively. When 1% of MOS was added to a modified PYF medium as the carbon source, proliferation of Bifidobacterium breve was increased significantly. During the in vitro digestion test, MOS was partially degraded by intestinal enzymes. Fermentation characteristics by human fecal microorganisms were evaluated by adding 1% galacto-oligosaccharide (GOS), as well as 1% and 2% MOS as carbon sources to the basal medium, respectively. In comparison with the addition of 1% of MOS and GOS, the total short chain fatty acid (SCFA) content increased over time when 2% of MOS was added. The species diversity and richness of intestinal microbiota increased significantly with 2% MOS compared to those with 1% GOS. In addition, the 2% addition of MOS reduced intestinal pathobiont microorganisms and increased commensal microorganisms including Bifidobacterium genus. Collectively, MOS produced by amylase increased the SCFA production and enhanced the growth of beneficial bacteria during in vitro fermentation by human fecal microbiota.
Collapse
Affiliation(s)
- Eun Yeong Jang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
| | - Ki-Bae Hong
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
| | - Jungcheul Shin
- Department of R&D, Neo Cremar Co., Ltd., Seoul 05702, Korea;
| | - Eun Young Jung
- Department of Home Economic Education, Jeonju University, Jeonju 55069, Korea;
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
- Correspondence: (K.J.); (H.J.S.); Tel.: +82-2-940-2764 (K.J.); +82-2-3290-5639 (H.J.S.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
- Correspondence: (K.J.); (H.J.S.); Tel.: +82-2-940-2764 (K.J.); +82-2-3290-5639 (H.J.S.)
| |
Collapse
|