1
|
Vijh D, Gupta P. GC-MS analysis, molecular docking, and pharmacokinetic studies on Dalbergia sissoo barks extracts for compounds with anti-diabetic potential. Sci Rep 2024; 14:24936. [PMID: 39438536 PMCID: PMC11496555 DOI: 10.1038/s41598-024-75570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetes is a metabolic condition defined by abnormal blood sugar levels. Targeting starch-hydrolyzing enzymes and Dipeptidyl Peptidase 4 (DPP-4) expressed on the surface of numerous cells is one of the key strategies to lower the risk of Type-2 diabetes mellitus (T2DM). Dalbergia sissoo Roxb. bark (DSB) extracts have been reported to have anti-diabetic properties. This study intended to scientifically validate use of alcoholic and hydro-alcoholic extracts of DSB for T2DM by conducting preliminary phytochemical investigations, characterising potential phytochemicals using Fourier transform infrared (FT-IR) spectroscopy and Gas chromatography-mass spectrometry (GC-MS) analysis followed by comprehensive in-silico analysis. A qualitative phytochemical evaluation indicated the presence of alkaloids, phenolics, glycosides, conjugated acids and flavonoids. Ethanolic extracts showed highest total phenolic content (TPC) (127.072 ± 14.08031 μg GAE/g dry extract) and total flavonoid content (106.911 ± 5.84516 μg QE /g dry extract). Further FT-IR spectroscopy also revealed typical band values associated with phenol, alcohol, alkene, alkane and conjugated acid functional groups. The GC-MS analysis identified 139 compounds, 18 of which had anti-diabetic potential. In-silico ADMET analysis of potential compounds revealed 15 compounds that followed Lipinski's rule and demonstrated drug-like properties, as well as good oral bioavailability. Molecular docking was utilised to analyse their potential to interact with three targets: α-amylase, α-glucosidase, and DPP-4, which are crucial in managing diabetes-related problems. Molecular Docking analysis and membrane permeability test utilising the PerMM platform revealed that compounds in the extracts, such as Soyasapogenol B and Corydine, had better interactions and permeability across the plasma membrane than standard drugs in use. Molecular dynamics simulations also showed that selected compounds remained stable upon interaction with α-amylase. Overall, using the in-silico approaches it was predicted that DSB extracts contain potential phytochemicals with diverse anti-diabetic properties. It further needs to be investigated for possible development as formulation or drug of choice for treating T2DM.
Collapse
Affiliation(s)
- Deepanshi Vijh
- Agriculture Plant Biotechnology Laboratory (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India
| | - Promila Gupta
- Agriculture Plant Biotechnology Laboratory (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India.
| |
Collapse
|
2
|
Shen Q, Ge L, Lu W, Wu H, Zhang L, Xu J, Tang O, Muhammad I, Zheng J, Wu Y, Wang SW, Zeng XX, Xue J, Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food-sourced functional factors and their health benefits. Compr Rev Food Sci Food Saf 2024; 23:e13429. [PMID: 39217524 DOI: 10.1111/1541-4337.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Network pharmacology is an emerging interdisciplinary research method. The application of network pharmacology to reveal the nutritional effects and mechanisms of active ingredients in food is of great significance in promoting the development of functional food, facilitating personalized nutrition, and exploring the mechanisms of food health effects. This article systematically reviews the application of network pharmacology in the field of food science using a literature review method. The application progress of network pharmacology in food science is discussed, and the mechanisms of functional factors in food on the basis of network pharmacology are explored. Additionally, the limitations and challenges of network pharmacology are discussed, and future directions and application prospects are proposed. Network pharmacology serves as an important tool to reveal the mechanisms of action and health benefits of functional factors in food. It helps to conduct in-depth research on the biological activities of individual ingredients, composite foods, and compounds in food, and assessment of the potential health effects of food components. Moreover, it can help to control and enhance their functionality through relevant information during the production and processing of samples to guarantee food safety. The application of network pharmacology in exploring the mechanisms of functional factors in food is further analyzed and summarized. Combining machine learning, artificial intelligence, clinical experiments, and in vitro validation, the achievement transformation of functional factor in food driven by network pharmacology is of great significance for the future development of network pharmacology research.
Collapse
Affiliation(s)
- Qing Shen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Huixiang Wu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Zhang
- Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, China
| | - Jun Xu
- Ningbo Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Oushan Tang
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Imran Muhammad
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jing Zheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Yeshun Wu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-Wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Keyun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
3
|
Lv L, Du J, Wang D, Yan Z. A Comprehensive Study to Investigate the Tumor-Suppressive Role of Radix Bupleuri on Gastric Cancer with Network Pharmacology and Molecular Docking. Drug Des Devel Ther 2024; 18:375-394. [PMID: 38347958 PMCID: PMC10860608 DOI: 10.2147/dddt.s441126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Background Gastric cancer (GC) is a common fatal malignancy. The aim of this study was to explore and validate the tumor-suppressive role and mechanism of Radix Bupleuri in GC. Methods The active constituents of Radix Bupleuri were screened using TCMSP database. SwissTargetPrediction database was used to predict potential target genes of the compounds. GeneCards, TTD, DisGeNET, OMIM, and PharmGKB databases were used to search for GC-related targets. STRING database and Cytoscape 3.10 software were used for protein-protein interaction network construction and screening of core targets. DAVID database was used for GO and KEGG analyses. Core targets were validated using molecular docking. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry after GC cells were treated with isorhamnetin. The mRNA and protein expression levels of genes were detected using qRT PCR and Western blot. The metastasis potential of GC cells was evaluated in a nude mouse model. Results A total of 371 potential targets were retrieved by searching the intersection of Radix Bupleuri and GC targets. Petunidin, 3',4',5',3,5,6,7-Heptamethoxyflavone, quercetin, kaempferol, and isorhamnetin were identified as the main bioactive compounds in Radix Bupleuri. SRC, HSP90AA1, AKT1, and EGFR, were core targets through which Radix Bupleuri suppressed GC. The tumor-suppressive effect of Radix Bupleuri on GC was mediated by multiple pathways, including PI3K-AKT, cAMP, and TNF signaling. The key compounds of Radix Bupleuri had good binding affinity with the core target. Isorhamnetin, a key component of Radix Bupleuri, could inhibit proliferation and metastasis, and induces apoptosis of GC cells. In addition, isorhamnetin could also reduce the mRNA expression of core targets, and the activation of PI3K/AKT pathway. Conclusion This study identified potential targets and pathways of Radix Bupleuri against GC through network pharmacology and molecular docking, providing new insights into the pharmacological mechanisms of Radix Bupleuri in GC treatment.
Collapse
Affiliation(s)
- Long Lv
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Jinghu Du
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Daorong Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Zeqiang Yan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| |
Collapse
|
4
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
5
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
6
|
Wang C, Liu X, Guo S. Network pharmacology-based strategy to investigate the effect and mechanism of α-solanine against glioma. BMC Complement Med Ther 2023; 23:371. [PMID: 37865727 PMCID: PMC10589944 DOI: 10.1186/s12906-023-04215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND An anti-tumour activity has been demonstrated for α-solanine, a bioactive compound extracted from the traditional Chinese herb Solanum nigrum L. However, its efficacy in the treatment of gliomas and the underlying mechanisms remain unclear. The aim of this study was to investigate the inhibitory effects of α-solanine on glioma and elucidate its mechanisms and targets using network pharmacology, molecular docking, and molecular biology experiments. METHODS Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was utilized to predict the potential targets of α-solanine. GeneCards was used to gather glioma-related targets, and the STRING online database was used to analyze protein-protein interaction (PPI) networks for the shared targets. Hub genes were identified from the resulting PPI network and further investigated using Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Additionally, prognostic and gene set enrichment analyses (GSEA) were carried out to identify potential therapeutic targets and their underlying mechanisms of action in relation to the prognosis of gliomas. In vitro experiments were conducted to verify the findings from the network pharmacology analysis. RESULTS A total of 289 α-solanine targets and 1149 glioma-related targets were screened, of which 78 were common targets. 11 hub genes were obtained, including SRC, HRAS, HSP90AA1, IGF1, MAPK1, MAPK14, KDR, STAT1, JAK2, MAP2K1, and IGF1R. The GO and KEGG pathway analyses unveiled that α-solanine was strongly associated with several signaling pathways, including positive regulation of MAP kinase activity and PI3K-Akt. Moreover, α-solanine (10 µM and 15 µM) inhibited the proliferation and migration but promoted the apoptosis of glioma cells. Finally, STAT1 was identified as a potential mediator of the effect of α-solanine on glioma prognosis. CONCLUSION α-Solanine can inhibit the proliferation and migration of gliomas by regulating multiple targets and signalling pathways. These findings lay the foundation for the creation of innovative clinical anti-glioma agents.
Collapse
Affiliation(s)
- ChunPeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - XiaoHui Liu
- Department of Medical Oncology, Anyang Cancer Hospital, An Yang, 455000, China
| | - ShiWen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
7
|
Zhong YT, Liao HB, Ye ZQ, Jiang HS, Li JX, Ke LM, Hua JY, Wei B, Wu X, Cui L. Eurycomanone stimulates bone mineralization in zebrafish larvae and promotes osteogenic differentiation of mesenchymal stem cells by upregulating AKT/GSK-3β/β-catenin signaling. J Orthop Translat 2023; 40:132-146. [PMID: 37457309 PMCID: PMC10338906 DOI: 10.1016/j.jot.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background Eurycomanone (EN) is a diterpenoid compound isolated from the roots of Eurycoma longifolia (E. longifolia). Previous studies have confirmed that E. longifolia can enhance bone regeneration and bone strength. We previously isolated and identified ten quassinoids from E. longifolia, and the result displayed that five aqueous extracts have the effects on promotion of bone formation, among whom EN showed the strongest activity. However, the molecular mechanism of EN on bone formation was unknown, and we further investigated in this study. Methods After the verification of purity of extracted EN, following experiments were conducted. Firstly, the pharmacologic action of EN on normal bone mineralization and the therapeutic effect of EN on Dex-induced bone loss using zebrafish larvae. The mineralization area and integral optical density (IOD) were evaluated using alizarin red staining. Then the vital signaling pathways of EN relevant to OP was identified through network pharmacology analysis. Eventually in vitro, the effect of EN on cell viability, osteogenesis activities were investigated in human bone marrow mesenchymal stem cells (hMSCs) and C3H10 cells, and the molecular mechanisms by which applying AKT inhibitor A-443654 in hMSCs. Results In zebrafish larvae, the administration in medium of EN (0.2, 1, and 5 μM) dramatically enhanced the skull mineralization area and integral optical density (IOD), and increased mRNA expressions of osteoblast formation genes (ALP, RUNX2a, SP7, OCN). Meanwhile, exposure of EN remarkably alleviated the inhibition of bone formation induced by dexamethasone (Dex), prominently improved the mineralization, up-regulated osteoblast-specific genes and down-regulated osteoclast-related genes (CTSK, RANKL, NFATc1, TRAF6) in Dex-treated bone loss zebrafish larvae. Network pharmacology outcomes showed the MAPK and PI3K-AKT signaling pathways are closely associated with 10 hub genes (especially AKT1), and AKT/GSK-3β/β-catenin was selected as the candidate analysis pathway. In hMSCs and C3H10 cells, results showed that EN at appropriate concentrations of 0.008-5 μM effectively increased the cell proliferation. In addition, EN (0.04, 0.2, and 1 μM) significantly stimulated osteogenic differentiation and mineralization as well as significantly increased the protein phosphorylation of AKT and GSK-3β, and expression of β-catenin, evidencing by the results of ALP and ARS staining, qPCR and western blotting. Whereas opposite results were presented in hMSCs when treated with AKT inhibitor A-443654, which effectively inhibited the pro-osteogenesis effect induced by EN, suggesting EN represent powerful potential in promoting osteogenesis of hMSCs, which may be closely related to the AKT/GSK-3β/β-catenin signaling pathway. Conclusions Altogether, our findings indicate that EN possesses remarkable effect on bone formation via activating AKT/GSK-3β/β-catenin signaling pathway in most tested concentrations. The translational potential of this article This study demonstrates EN is a new effective monomer in promoting bone formation, which may be a promising anabolic agent for osteoporosis (OP) treatment.
Collapse
Affiliation(s)
- Yan-ting Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong-bo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-qiang Ye
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Hua-sheng Jiang
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jia-xiao Li
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Lin-mao Ke
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jun-ying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xin Wu
- The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Liu F, Cao B, Zhang H, Zou Q, Liu G, Dong Y, Su D, Ren DL. Exploring the mechanism of Tengli Kangliu Decoction in the prevention and treatment of colorectal cancer precancerous based on network pharmacology. Medicine (Baltimore) 2022; 101:e31690. [PMID: 36401413 PMCID: PMC9678516 DOI: 10.1097/md.0000000000031690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE This study aimed to predict the targets and signaling pathways affected by Tengli Kangliu Decoction (TKD) in the treatment of colorectal cancer (CRC) precursor lesions and to determine TKDs mechanism of action based on previous experimental results using network pharmacology techniques and methods. METHODS Using the traditional Chinese medicine systems pharmacology database (TCMSP) and UniProt database, the active ingredients and potential targets of TKD were identified. Human colorectal adenoma (CRA) targets were analyzed using the GeneCards database, the Online mendelian inheritance in man (OMIM) database, and the NCBI database. The common targets of drug-disease interactions were input into the String database to construct a protein-protein interaction (PPI) network. These data were then used to construct the network diagram. Gene ontology (GO) function analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed on the target genes. Finally, the component-disease-pathway-target network file was imported into Cytoscape 3.8.0 and used to construct the pathway network diagram. RESULTS Compounds with a drug-likeness (DL) score ≥ 0.18 and an oral bioavailability (OB) ≥ 30% were selected as the active constituents of TKD. Two hundred eighty eight chemical constituents were screened and 305 chemical drug targets were predicted. After further screening, 1942 disease-related targets, which are hypothesized to be the main chemical components of TKD, were obtained. When comparing the targets of action and CRA treatment targets, 172 common targets were identified. Using GO enrichment analysis of common targets of drug diseases, 2550 biological processes (BP) were predicted, 164 items of which were related to molecular functioning (MF), and 67 items related to cell composition. KEGG pathway analysis was performed on the common targets of drug diseases, and a total of 178 signaling pathways were enriched. CONCLUSION Using network pharmacology research, this study reports on the synergistic effect of the multiple components of TKD on the multi-target, and multiple pathways of colorectal precancerous lesions. These findings lay a theoretical foundation for further colorectal precancerous lesions research.
Collapse
Affiliation(s)
- Fang Liu
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bo Cao
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Heng Zhang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zou
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoxiong Liu
- Department of Emergency, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yukun Dong
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Su
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * Correspondence: Dan Su and Dong-Lin Ren, Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou 510655, China and Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou 510655, China (e-mails: ; )
| | - Dong-lin Ren
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * Correspondence: Dan Su and Dong-Lin Ren, Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou 510655, China and Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou 510655, China (e-mails: ; )
| |
Collapse
|
9
|
Chen B, Li X, Wu L, Zhou D, Song Y, Zhang L, Wu Q, He Q, Wang G, Liu X, Hu H, Zhou W. Quercetin Suppresses Human Glioblastoma Migration and Invasion via GSK3β/β-catenin/ZEB1 Signaling Pathway. Front Pharmacol 2022; 13:963614. [PMID: 36386155 PMCID: PMC9663482 DOI: 10.3389/fphar.2022.963614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/19/2022] [Indexed: 07/20/2023] Open
Abstract
High invasiveness is a biological and clinical characteristic of glioblastoma and predicts poor prognosis of patients. Quercetin, a natural flavonoid compound, exhibits anticancer activity. However, we have a limited understanding of the possible underlying mechanism of quercetin in glioblastoma. In this study, we investigated the anticancer effect of quercetin in human glioblastoma cells. Our results showed that quercetin markedly suppressed the viability of glioblastoma cells in vitro and in vivo, and significantly inhibited glioblastoma cell migration and invasion. Moreover, quercetin reversed EMT-like mesenchymal phenotype and reduced the expression levels of EMT-related markers. Furthermore, we found that quercetin suppressed GSK-3β/β-catenin/ZEB1 signaling in glioblastoma. Taken together, our results demonstrate that quercetin inhibited migration and invasion of human glioma cells by suppressing GSK3β/β-catenin/ZEB1 signaling. Our study provides evidence that quercetin is a promising therapeutic natural compound to treat glioblastoma.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
| | - Hui Hu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Hussain Y, Khan H, Alsharif KF, Hayat Khan A, Aschner M, Saso L. The Therapeutic Potential of Kaemferol and Other Naturally Occurring Polyphenols Might Be Modulated by Nrf2-ARE Signaling Pathway: Current Status and Future Direction. Molecules 2022; 27:4145. [PMID: 35807387 PMCID: PMC9268049 DOI: 10.3390/molecules27134145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Kaempferol is a natural flavonoid, which has been widely investigated in the treatment of cancer, cardiovascular diseases, metabolic complications, and neurological disorders. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor involved in mediating carcinogenesis and other ailments, playing an important role in regulating oxidative stress. The activation of Nrf2 results in the expression of proteins and cytoprotective enzymes, which provide cellular protection against reactive oxygen species. Phytochemicals, either alone or in combination, have been used to modulate Nrf2 in cancer and other ailments. Among them, kaempferol has been recently explored for its anti-cancer and other anti-disease therapeutic efficacy, targeting Nrf2 modulation. In combating cancer, diabetic complications, metabolic disorders, and neurological disorders, kaempferol has been shown to regulate Nrf2 and reduce redox homeostasis. In this context, this review article highlights the current status of the therapeutic potential of kaempferol by targeting Nrf2 modulation in cancer, diabetic complications, neurological disorders, and cardiovascular disorders. In addition, we provide future perspectives on kaempferol targeting Nrf2 modulation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amjad Hayat Khan
- Department of Allied Health Sciences, Bashir Institute of Health Sciences, Islamabad 45400, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10463, USA;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Anisi Stellati Fructus, a Significant Traditional Chinese Medicine (TCM) Herb and Its Bioactivity against Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4071489. [PMID: 35586683 PMCID: PMC9110155 DOI: 10.1155/2022/4071489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Anisi stellati fructus (ASF) is the fruit of Illicium verum Hook F. (Chinese star anise), which is native to many countries, and is a significant Chinese medicinal herb. Gastric cancer (GC) is one of the major fatal types of cancers with multiple stages and a poor prognosis. The present review aims to discuss the bioactive properties of ASF and its phytocompounds against GC, with a particular insight into the molecular mechanisms and signaling pathways involved in its anti-GC mechanism. Furthermore, it highlights the potential mechanism of action of major phytocompounds of ASF against GC. Clinical studies (in vitro and in vivo) regarding the action of ASF and its major bioactive compounds such as quercetin, luteolin, kaempferol, d-limonene, and honokiol against GC were reviewed. For this review, search of literature was performed in Science, PubMed, Google Scholar, Web of Science, and Scopus related to ASF and its phytocompounds, from which only relevant studies were chosen. Major bioactive compounds of ASF and their extracts have proven to be effective against GC due to the mechanistic action of these compounds involving signaling pathways that target cancer cell apoptosis, proliferation, and tumor metastasis in GC cells. Existing reports of these compounds and their combinatory effects with other modern anticancer agents have also been reviewed. From its traditional use to its role as an anticancer agent, ASF and its bioactive phytocompounds have been observed to be effective in modern research, specifically against GC. However, further studies are required for the identification of molecular targets and pharmacokinetic potential and for the formulation of anti-GC drugs.
Collapse
|
12
|
Sun L, Wang B, Sun T, Zhou F, Zhu B, Li C, Wan H, Ding Z. Investigation on the mechanism of 2,3,4',5-Tetrahydroxystilbene 2-o-D-glucoside in the treatment of inflammation based on network pharmacology. Comput Biol Med 2022; 145:105448. [PMID: 35364310 DOI: 10.1016/j.compbiomed.2022.105448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Inflammation is the pathogenesis of various chronic diseases plaguing clinic for years.Fallopia multiflora (Thunb.) is a traditional Chinese herbal medicine with a long history of application in detoxification and anti-inflammation. 2,3,4',5-Tetrahydroxystilbene 2-o-D-glucoside (TSG) is a main active compound of F. multiflora. However, the mechanism of TSG in the treatment of inflammation remains unknown. METHODS Network pharmacology and molecular docking were employed to explore the mechanism of anti-inflammatory effect of TSG. Potential targets of TSG and inflammation were obtained from Swiss Target Prediction, Pharm Mapper, and GeneCards database. Protein-protein interaction (PPI) networks, GO and KEGG pathway enrichment analysis were performed to elucidate the interaction of targets. Moreover, the anti-inflammatory effect of TSG was validated by in vitro experiments using flow cytometry, RT-qPCR, Western blot, and immunocytochemistry assays. RESULTS PPI network and gene enrichment analysis showed that TSG may exert a protein kinase binding activity, and IKBKB, MAPK1, NFKBIA, and RELA were predicted as the targets of anti-inflammation. Verified by molecular docking and Western blot, TSG may target NF-κB and ERK2 related signals to alleviate inflammatory damage. Furthermore, TSG effectively downregulated the expression of inflammatory cytokine, the nuclear translocation of NF-κB p65, and the production of reactive oxygen species (ROS). CONCLUSION TSG possesses significant anti-inflammatory effect. TSG may display a protein kinase binding activity and target NF-κB and ERK2 related signals to treat the inflammation. This work may enlighten the potential application of TSG in anti-inflammation and indicate network pharmacology was an effective tool for the further study of TCM.
Collapse
Affiliation(s)
- Ling Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Bixu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Tong Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Chang Li
- Institute of Cardio-cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Haitong Wan
- Institute of Cardio-cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
AL-Ishaq RK, Liskova A, Kubatka P, Büsselberg D. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. Cancers (Basel) 2021; 13:3934. [PMID: 34439088 PMCID: PMC8394324 DOI: 10.3390/cancers13163934] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is a prevalent global health disease with a massive burden on health care providers. Internal and external factors such as obesity, smoking, diet (red meat), low socioeconomic status and infection with Helicobacter pylori are the critical risk factors of GI cancers. Flavonoids are natural phenolic compounds found abundantly in fruits and vegetables. Upon ingestion, 90% of flavonoids consumed require further enzymatic metabolism by the gut microbiome to enhance their bioavailability and absorption. Several epidemiological studies reported that consumption of flavonoids and their enzymatic conversion by gut microbes is strongly associated with the reduced risk of GI cancer development. This review summarizes the current knowledge on the enzymatic conversion of flavonoids by the human gut microbiome. It also addresses the underlying anti-GI cancer effects on metabolic pathways such as apoptosis and cellular proliferation. Overall, metabolites produced from flavonoid's enzymatic conversion illustrate anti-GI cancer effects, but the mechanisms of action need further clarification.
Collapse
Affiliation(s)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
14
|
Sidhu H, Capalash N. Synergistic anti-cancer action of salicylic acid and cisplatin on HeLa cells elucidated by network pharmacology and in vitro analysis. Life Sci 2021; 282:119802. [PMID: 34237314 DOI: 10.1016/j.lfs.2021.119802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/13/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023]
Abstract
AIM To investigate the anti-cancer potential of salicylic acid and cisplatin combination in HeLa cells and the underlying mechanism. MAIN METHODS Drugs and disease targets were extracted from DrugBank, BATMAN-TCM, STITCH, PharmMapper and Comparative Toxigenomics Database. Cytoscape 3.8.2 was used to merge the protein-protein interaction networks and select core targets. GO and KEGG analysis was done using Metascape and WebGestalt. Effect of salicylic acid and cisplatin alone and in combination on cells viability was studied by MTT assay. The type of interaction between salicylic acid and cisplatin was determined by CompuSyn. Apoptosis was evaluated by molecular docking, Rhodamine-123, DAPI, AO/EtBr staining, flow cytometry, qRT-PCR and western blotting. Metastasis was studied using scratch assay and western blotting. UHRF1 transient silencing was performed by siRNA. KEY FINDINGS Out of 420, 1863 and 1362 respective targets of salicylic acid, cisplatin and cervical cancer, 18 core proteins were enriched in apoptosis and cell migration related pathways. IC50 value of cisplatin was reduced by 14 fold in combination with salicylic acid at IC20 (4 μM). There was loss of mitochondrial membrane potential and downregulation of UHRF1, pAkt, full length PARP and pro-caspase 3 expression. Transient silencing of UHRF1 also induced mitochondrial depolarization and apoptosis. The combination also exhibited anti-metastasis effect as it suppressed migration, upregulated PAX1 and downregulated MMP-2. SIGNIFICANCE Reduction in cisplatin concentration, enhanced anti-cancer effects and UHRF1 downregulation due to synergistic interaction between salicylic acid and cisplatin underscores the therapeutic importance of the combination to overcome chemo-resistance and side effects of cisplatin.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
15
|
Liu F, Li L, Chen J, Wu Y, Cao Y, Zhong P. A Network Pharmacology to Explore the Mechanism of Calculus Bovis in the Treatment of Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611018. [PMID: 33778069 PMCID: PMC7972848 DOI: 10.1155/2021/6611018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calculus Bovis is a valuable Chinese medicine, which is widely used in the clinical treatment of ischemic stroke. The present study is aimed at investigating its target and the mechanism involved in ischemic stroke treatment by network pharmacology. METHODS Effective compounds of Calculus Bovis were collected using methods of network pharmacology and using the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential compound targets were searched in the TCMSP and SwissTargetPrediction databases. Ischemic stroke-related disease targets were searched in the Drugbank, DisGeNet, OMIM, and TTD databases. These two types of targets were uploaded to the STRING database, and a network of their interaction (PPI) was built with its characteristics calculated, aiming to reveal a number of key targets. Hub genes were selected using a plug-in of the Cytoscape software, and Gene Ontology (GO) biological processes and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the clusterProfiler package of R language. RESULTS Among 12 compounds, deoxycorticosterone, methyl cholate, and biliverdin were potentially effective components. A total of 344 Calculus Bovis compound targets and 590 ischemic stroke targets were found with 92 overlapping targets, including hub genes such as TP53, AKT, PIK2CA, MAPK3, MMP9, and MMP2. Biological functions of Calculus Bovis are associated with protein hydrolyzation, phosphorylation of serine/threonine residues of protein substrates, peptide bond hydrolyzation of peptides and proteins, hydrolyzation of intracellular second messengers, antioxidation and reduction, RNA transcription, and other biological processes. CONCLUSION Calculus Bovis may play a role in ischemic stroke by activating PI3K-AKT and MAPK signaling pathways, which are involved in regulating inflammatory response, cell apoptosis, and proliferation.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ying Wu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ping Zhong
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200090, China
| |
Collapse
|